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Abstract: A large amount of construction and demolition waste (CDW) is generated during the
construction of projects. In this paper, polyurethane foam adhesive (PFA) was used to improve the
mechanical properties of CDW. The large-scale direct shear tests, California bearing ratio (CBR) tests
and Scanning electron microscope (SEM) tests were carried out to study the variation regularities
of mechanical properties of treated CDW during the laboratory tests. The test results show that the
shear strength of CDW increases with the increase of PFA content, vertical pressure and the shear
rate. However, the increase of vertical pressure on the shear strength of CDW is smaller than that of
PFA, and the improvement of the shear rate is relatively small. The California bearing ratio (CBR)
test also proves that PFA can effectively improve the bearing capacity of CDW and reduce the loss
of CBR caused by the 4-day soaking. Scanning Electron Microscope (SEM) finds that polyurethane
wraps multiple particles and enhances the internal connection, which results in the cohesion between
the particles being greatly increased. The study presented in this paper will better assess the shear
resistance of improved CDW with PFA as a substitute for pavement base materials in practical
engineering applications.

Keywords: construction and demolition waste; polyurethane; large-scale laboratory direct shear test;
shear strength; California bearing ratio (CBR) test

1. Introduction

The renewal, transformation, and new construction of urban buildings and municipal
facilities generate much construction and demolition waste (CDW) [1,2]. According to
statistics, CDW generated annually increases year by year [3–7]. In fact, the current disposal
methods of CDW are mainly directly discarded or simply landfilled in the suburbs without
any treatment, the disposal methods are out of date [2]. With the increase in the amount
of CDW, this disposal method not only causes waste of a lot of resources, but also leads
to pollution of soil, atmosphere and groundwater, making the environmental problem
more serious [8,9]. Therefore, it is urgent to adopt effective methods to dispose and utilize
CDW. Hence, how to deal with these CDW is an issue that has drawn much attention in
the engineering community.

For a long time, CDW has been regarded as a valuable resource misplaced, and many
scholars have performed researches on CDW [10,11]. In recent years, CDW has been
widely used in civil engineering (e.g., subgrade filling, pipe backfilling, and so on) [12–17].
However, the strength is commonly low due to the impact of CDW on the integrity of
its aggregates during the recycling and crushing process [18]. To improve its mechanical
properties, such as strength and bearing capacity as a pavement base material, some
scholars have actively developed materials to cooperate with CDW to ensure these materials
are available in sufficient mechanical properties to meet engineering requirements [19].
Cement has long been proven to be the main binder that can effectively improve the
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mechanical properties of CDW [18,20,21], but the cementing agent may also increase
carbon emission [18]. Accordingly, it is essential to find a suitable adhesive substitute.
At present, many industrial by-products are used to improve the engineering properties
of CDW, such as ground-granulated blast-furnace slag [18] and fly ash [22–24]. In recent
years, using biological technology to strengthen CDW has also proven the feasibility of
microbial-induced calcium carbonate precipitation technology to improve the mechanical
properties and durability of CDW [25,26].

Compared with the above materials, the PFA has a fast curing time, high strength
and good adhesion. At the same time, the generation of cohesion is mainly contributed
to the polar groups in the molecule. According to statistics, the demand for polyurethane
has reached USD 43.2 billion in 2012 alone, and it is increasing every year, of which the
construction industry accounts for 36% of polyurethane consumption [27]. When PFA
is injected into the soil pores, the volume is expanded rapidly, and the internal bond
between the particles is strengthened. Therefore, PFA has excellent value in improving
the overall strength of the soil structure and strengthening the bulk materials. Some
current studies have reported innovative solutions to utilize PFA as an “additive” in rockfill
materials, sandstone aggregates, municipal waste incineration bottom ash and Calcareous
sands [28–33] to improve their mechanical properties (e.g., load-bearing capacity, ductility
and durability) [28,34]. Therefore, PFA-improved CDW is applied as roadbed filler, which
can save a large area of CDW disposal, a lot of earth materials and provide a new way for
the rational reuse of these solid wastes.

This paper focuses on studying the shear performance of CDW after PFA solidification.
Due to the small size of the traditional direct shear and triaxial apparatus, the test condition
of the samples are quite different from that in the actual project. Considering the size effect,
this study employed the large-scale direct shear test. The shear force generated on the shear
surface during the test was more uniform, and the test results were consistent with practical
engineering. To explore the change law of CDW shear properties, a series of laboratory
large-scale direct shear tests were carried out on CDW with different PFA contents, which
were tested at various vertical loads and different shear rates. And California bearing
ratio (CBR) tests were carried out on the PFA-improved CDW under unsoaked and 4-day
soaked conditions to study the bearing capacity of the PFA-improved CDW as roadbed
filler. In addition, the interaction mechanism between CDW particles and PFA was studied
by Scanning Electron Microscope (SEM). These results will not only find a new way to
reuse CDW, which significantly solves the environmental problems caused by CDW, but
also provide an important reference for PFA-improved CDW application as roadbed filler.

2. Materials and Experimental Program
2.1. Materials

The CDW used in this study was collected in the demolition area of the Hubei Univer-
sity of Technology in Wuhan. The concrete blocks were manually selected and then crushed
with a crushing machine after removing the steel bars. Thereafter the recycled concrete
aggregate with particle sizes ranging from 0.1 mm to 60 mm was obtained. The maximum
particle sizes of the large-scale direct shear test and CBR test were 60 mm and 20 mm,
respectively. The particle grading curves of the large-scale direct shear test and the CBR
test samples are shown in Figure 1. The basic parameters of samples are listed in Table 1.
According to the American Society of Testing Materials (ASTM) [35], the aggregate used in
the large-scale direct shear test and the CBR test samples is a well-graded gravel-like soil.

Polyurethane can be divided into the hydrophilic type and hydrophobic type according
to the contact reaction with water. The polymer used in this study is a two-component
hydrophobic polyurethane foam adhesive composed of polyether polyol and isocyanate,
which should be fully mixed according to the mass ratio of 1:1, and the reaction occurs
rapidly in a short time, as shown in Figure 2. The volume of the foam expands several
times and a large amount of heat is released during the reaction. A large number of
polymerization reactions are completed within 30 min. The strength of the foam gradually
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increases, and the samples are formed. The polyurethane adhesive fills the gaps between
the recycled concrete aggregate particles, and at the same time, bonds the particles together,
which relies on the properties of the solution flow in the early stage of the reaction.
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Table 1. Grading coefficients of samples.

Test Type
Characteristic Particle Size (mm) Grading Parameters

D10 D30 D60 Cu Cc

Large-scale direct
shear test 1.16 5.21 13.12 11.31 1.78

CBR test 0.55 1.9 4.5 8.18 1.46
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2.2. Test Equipments

The direct shear test instrument used in this study is a laboratory large-scale direct
shear instrument produced by Geocomp in the United States. The model of the instrument
is ShearTrac III, as shown in Figure 3. The instrument has a normal loading capacity of
45 kN, and the displacement rate can be accurately controlled to 0.00003~15 mm/min.
The shear boxes are composed of an upper shear box and a lower shear box. The upper
shear box is 100 mm shorter than the lower shear box in length, which ensures sufficient
shear displacement dislocation length. At the beginning of the test, the sample will be first
completed the consolidation phase under a given vertical stress. After the consolidation is
completed, the direct shear instrument performs horizontal shear under the conditions of
the vertical loads and shear rates are set by the computer. Until the sample is sheared and
broken, the test data is transmitted to the computer for collection and storage, eventually.
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The SEM used a high-resolution field emission scanning electron microscope produced
by Hitachi, Japan, with the model SU8010, as shown in Figure 4. The secondary electron
resolution of this test instrument is 1.0 nm at an acceleration voltage of 15 kV and 1.3 nm at
an acceleration voltage of 1 kV, which can observe the surface morphology properties of
the sample, completely meeting the specific needs of this experimental study.

2.3. Test Process
2.3.1. Samples Preparation for Large-Scale Direct Shear Test

From an economic point of view, the polyurethane content used in this study was low.
To explore the influence of vertical load, polyurethane content and shear rate on the shear
behavior of PFA-improved CDW, and the design was based on the mass percentage: 15 sets
of shear tests were implemented with polyurethane content of 0%, 1.5%, 3%, 4.5%, and 6%
under the conditions of vertical loads of 30 kPa, 60 kPa, and 90 kPa, and the group with the
best reinforcement effect (vertical load of 30 kPa, polyurethane content of 6%) was tested at
four shear rates. The details of the test scheme are shown in Table 2.
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Table 2. Test scheme.

Scheme Types Polyurethane Content (%) Vertical Load (kPa) Shear Rate (mm/min)

A

0

30/60/90 1
1.5
3

4.5
6

B 6 30

0.5
1
2
5

In the process of sample preparation, each sample was divided into five layers and each
layer was 4 kg (excluding the weight of polyurethane) and loaded 25 times for compaction
by a compaction hammer 20 cm above the surface of each layer of the sample to ensure the
uniformity of the sample. Then the surface layer of each layer was roughened to prevent
the sample from delamination. At the same time, the CDW and polyurethane required for
the next layer were weighed in advance, and then stirred the polyurethane polymer polyol
with the CDW. After stirring evenly, the isocyanate was added to the mixture quickly,
then repeated the operation steps of the previous layer of samples. To prevent a large
amount of solidification of the upper layer of the sample polymer from causing the sample
to delamination, which would affect the experimental results, the compaction of the next
layer should be completed within 5 min. After all the five-layer samples were loaded, the
whole sample was placed for 24 h to make the polyurethane fully react inside the sample
to complete the curing. After 24 h, the relevant test parameters on the computer were
initially set and the shear test was started. When the shear displacement reached 30 mm,
the termination of the test was reached.
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2.3.2. Samples Preparation for CBR Test

CBR is a strength test used to evaluate the bearing capacity of subgrade materials,
an index reflecting soil resistance to local load compression deformation. The tests were
carried out by the Chinese Test Methods of Soils for Highway Engineering (JTG 3430—2020).
10 sets of tests with 0%, 1.5%, 3%, 4.5% and 6% polyurethane content were designed under
unsoaked and soaked conditions. The sizes of the CBR samples were 152 mm in diameter
and 120 mm in height. During the preparation of the CBR samples, the mixing mode of
polyurethane and CDW was the same as that of the large-scale direct shear samples. The
difference was that the samples were divided into three layers, each layer was 4 cm and
loaded 98 times for compaction. Unsoaked and soaked samples were tested by CBR on the
fourth day after sample preparation. During the test, a metal column of 50 mm in diameter
and 100 mm in length penetrated the samples at a 1 mm/min penetration rate. After the
test, the ratios of the unit pressure when the CDW penetration was 2.5 mm to the load
strength when the standard gravel reached the same penetration were calculated.

2.3.3. Samples Preparation for Microscopic Test

The samples used in the SEM investigation were collected from the particle agglom-
erates on the shear failure surface in the large-scale direct shear test. Before the test, the
samples were dried and vacuumed, and then the gold powder was sprayed on the sur-
face of the samples to enable the samples to be clearly imaged. In this study, SEM was
employed to test samples with a 1000 magnification, which revealed the mechanism of the
significant improvement of the shear performance of the modified PFA samples from the
microscopic level.

3. Laboratory Results and Discussions
3.1. Large-Scale Direct Shear Test Results and Analysis
3.1.1. The Influence of Vertical Load on the Shear Strength of CDW

The relationship between shear stress and shear displacement of CDW with different
content of polyurethane under vertical loads of 30 kPa, 60 kPa and 90 kPa is shown in
Figure 5. As can be seen from Figure 5: All the stress-strain curves present a similar trend,
that the shear stress firstly increases to the peak shear stress and then decreases with the
increase of shear displacement, and finally tends to be stable. This obvious strain-softening
behavior is similar to the research results of Infante et al. [36]. With the increase of the
vertical load, the peak shear stress also increases greatly. Generally speaking, under greater
restraining pressure, the strength of the granular bulk material is greater. This trend is
clearly shown in Figure 5a. When the polyurethane content is 0%, the peak shear stress
corresponding to the vertical load of 30 kPa is 49.1 kPa, and the peak shear stresses are
91.3 kPa and 136.2 kPa, corresponding to the vertical load of 60 kPa and 90 kPa, which
are increased by 85.95% and 177.39%, respectively. This is attributed to the fact that in the
shear process, with the increase of the vertical load, the irregular particles are embedded in
each other in continuous extrusion, and the particles are arranged more closely. As a result,
the friction force of the contact interface increases and the shear stress also increases.

In addition, at the initial stage of shear displacement, the slope of stress-strain curves
under the vertical loads varies greatly. The slope of the stress-strain curve under 90 kPa is
the highest, followed by that under 60 kPa, and that under 30 kPa is the lowest. When the
stress is close to the peak shear stress, the slope of stress-strain curves under the vertical
loads gradually approaches. Therefore, the increase of vertical load can be considered as an
active contribution to the increase of the initial stiffness of the sample. With the increase of
the vertical load, the shear displacement also gradually increases when the peak shear stress
is reached. The result is mainly caused by the fact that a good interlocking effect is better
achieved among the particles when the vertical load is greater. During the shearing process,
some aggregates gradually fill the gaps between coarse aggregates with the movement of
the shear box and are compacted under vertical load. The relative movement between the
particles is also relatively difficult.
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3.1.2. The Influence of Polyurethane Content on the Shear Strength of CDW

The relationship curves between shear stress and shear strain of CDW under different
vertical loads and polyurethane content of 0%, 1.5%, 3.0%, 4.5%, and 6.0% are shown
in Figure 6. It is clear to show that: Under the same vertical load, the peak shear stress
increases with the increase of polyurethane content. The specific values of peak shear
stress under different vertical loads and polyurethane contents are shown in Table 2. First,
after the mixing of polyurethane and CDW particles, the filling of polyurethane foam in
the structural gaps of the CDW sample can be realized, which makes the sample denser
and the internal connection stronger. Hence the overall mechanical strength of the sample
is improved. Secondly, polyurethane forms a huge skeleton network through connected
gaps, which cures the loose CDW particles into a complete structure, thus improving its
shear performance. With the increase of the polyurethane content, the stress and strain
relationship curves under the three different vertical stresses are gradually approaching.
The situation largely results from the fact that the resistance of the CDW to the horizontal
load under the curing of the polyurethane has significant improvement. In contrast, the
vertical load has a limited increase in shear stress, and the impact is gradually reduced.
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The residual stress of the samples increases with the increase of the polyurethane
content, and the strain-softening characteristic of the curve converges. When the sample is
damaged, the particles are wrapped by polyurethane foam, it is difficult for the particles
to have rolling displacement and rearrangement under horizontal load, and the residual
stress of the sample is improved. With the increase of the polyurethane content, the shear
displacement corresponding to the peak shear stress also gradually decreases, and the
slope of the curve gradually increases. It shows that the polyurethane content is positively
correlated with the initial stiffness of the sample, and has a similar effect to the vertical
load. This is because the polyurethane foam bonds the particles together with the increase
of polyurethane content, and the integrity of the sample is improved. The improvement
of integrity will lead to larger shear stress when the sample is destroyed, which enhances
the shear strength of CDW and greatly increases the residual stress of the sample at the
same time.

The relationship between the peak shear stress of CDW and the polyurethane content
is plotted in Figure 7. From Figure 7, it can be observed that the peak shear stress of CDW
is consistent with the change in the polyurethane content. At the same time, the slope of the
curve increases significantly with the content of polyurethane reaching 4.5% and 6.0%. This
trend can also be seen in the spacing between the shear stress-shear displacement curves
at each polyurethane content in Figure 6. This also shows that when the polyurethane
content is low (below 4.5%), the improvement effect of polyurethane on the shear strength
of CDW is limited. When the polyurethane content continues to increase (above 4.5%), the
improvement effect of polyurethane on the shear strength of CDW is relatively obvious.
The mechanism is revealed in the following microscopic analysis. The increased ratio
of the peak shear stress of the CDW after curing relative to the peak shear stress of the
uncured CDW under the same vertical load is plotted in Figure 8. The specific values of
the improvement ratios of peak shear stress are listed in Table 3. It can be clearly seen
that under the same vertical load, the improvement ratio increases with the increase of
polyurethane content. Still, when the polyurethane content is constant, the improvement
ratio decreases with the increase of vertical load. Therefore, it can be obtained that the
curing effect of CDW at a vertical load of 30 kPa and a polyurethane content of 6% is
significantly better than that of the other test groups.
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Table 3. The improvement ratios of peak shear stresses at different vertical loads.

Polyurethane
Content (%)

Peak Shear Stress (kPa)/Increase Ratio (%)

30 kPa 60 kPa 90 kPa

0 49.1/0 91.3/0 136.2/0
1.5 61.0/24.2 107.3/17.5 154.6/13.5
3 76.9/56.6 124.8/36.7 171.5/25.9

4.5 109.3/122.6 157.8/72.8 203.9/67.7
6 145.4/196.1 193.1/111.5 242.6/78.1

3.1.3. The Influence of Shear Rate on the Shear Strength of CDW

To study the effect of shear rate on the shear stress of CDW, this paper selected typical
samples (vertical load of 30 kPa, polyurethane content of 6%) to conduct direct shear tests
at shear rates of 0.5 mm/min, 1 mm/min, 2 mm/min and 5 mm/min respectively. The
relationship between shear stress and shear strain is shown in Figure 9. The shear stress-
shear strain curves presented in Figure 9 show that for any shear rates, all of the shear
stress curves of the solidified CDW present similar trends, indicating that the shear rate has
little effect on the shear properties of the solidified CDW. As the shear rate increases, the
peak shear stress also increases slightly. When the shear rate is small, the shear resistance
mainly comes from the fragmentation of the particles. When the shear rate is large, not
only the fragmentation of the particles but also the slippage and rolling of the particles
must be overcome during the shearing process. This results in the peak shear stress slightly
increasing. The faster the shear rate, the smaller the shear displacement when the peak
shear stress is reached, and the slower the shear rate, the greater the shear displacement
when the peak shear stress is reached. In addition, the slope of the stress-strain curve
increases with an increase shear rate before the curve tends to be stable.
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3.1.4. The Influence of Polyurethane Content on the Cohesion and Internal Friction Angle
of CDW

Figures 10 and 11 reflect the changes in the cohesion and internal friction angle of CDW
with the increase of polyurethane content. It can be seen from Figure 10 that the cohesion of
CDW with 0% polyurethane is only 4.9 kPa. With the increase of the polyurethane content,
the cohesion of CDW after curing also increases. When the polyurethane content is 6%, the
cohesion increase to 96.3 kPa, an increase of 1865.3%. The explanation of the significant
increase in cohesion mainly involves two aspects. One is that the polyurethane foam reacts
between the CDW particles and expands in volume. The gaps between the particles are
filled by the polyurethane foam, resulting in the sample being denser. Meanwhile, the
polyurethane foam binds the dispersed particles to each other. Another is that the surface
of the particles is uneven and irregular, the polyurethane foam is forced to adapt to the
shape of the gaps between the particles during the formation process, which also makes the
connection between the polyurethane and the particles more reliable, therefore the integrity
is enhanced. In addition, when the polyurethane content is 4.5%, the cohesion of CDW
increases rapidly. When the polyurethane content is 4.5%, enough polyurethane foam is
generated. While filling the gaps between the particles, it also begins to wrap multiple
particles, making the particles more closely connected. It can be seen from Figure 11 that
the increase of the polyurethane content has no obvious effect on the internal friction angle
of CDW. The internal friction angle changes from 55.44◦ to 58.26◦, and the change range is
small. Although polyurethane has a slight increase in the internal friction angle of CDW,
there is no obvious law in the trend of improvement.
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3.2. California Bearing Ratio (CBR) Test Results and Analysis

Figure 12 presents the relation between the CBR values and the polyurethane contents.
As can be seen that the CBR value of the PFA-improved CDW increased with the increase of
the polyurethane content, regardless of the unsoaked and 4-day soaked conditions. When
the polyurethane content is zero, the particles are relatively loose, and the particles are
easy to move when the metal column enters. Polyurethane foam reacts in the gaps to
produce volume expansion. The volume of polyurethane foam is several times the volume
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of the original polyurethane solution. These polyurethane foams continuously squeeze and
bond with the surrounding particles in the production process, which greatly increases the
resistance of particle rearrangement. In fact, CBR values greatly influence the design of
pavement base and subbase. Usually, the larger the CBR values, the smaller the thickness
of the pavement base and subbase. The 4-day soaked period has an effect on the CBR value
of CDW. Compared with the unsoaked CDW, the CBR value of CDW is reduced after the
4-day soaked period, and this phenomenon is more significant when the polyurethane
content is zero. The main reason is that CDW particles are soaked in water for a long time,
the strength of the material itself decreases significantly, and the brittleness of the material
increases. Compared with CDW improved by polyurethane, the traditional CDW has
more gaps between particles, which also increases the contact area between particles and
water, and accelerates the destruction of water molecules on particles. With the increase of
polyurethane content, the loss of CBR after the 4-day soaked period gradually decreased.
Most of the gaps after water molecules enter are occupied in advance by the polyurethane
foam with volume expansion, which well resists the destruction of CDW particles after
water molecules enter. Moreover, when the polyurethane content is high, the CDW particles
are wrapped by the polyurethane foam generated by the reaction. The contact area between
the particles wrapped by polyurethane foam and water molecules is greatly reduced, and
the CDW particles are well protected, which greatly reduces the loss caused by the increase
of material brittleness.
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3.3. Microscopic Analysis

SEM was used in this study to reveal further the mechanism of the significant improve-
ment of the shear resistance of CDW after polyurethane is added. From Figure 13, it can be
observed clearly that the surface morphology of CDW particles with different polyurethane
content after 1000 times magnification is different. It can be seen from Figure 13a that the
surface of a single CDW particle is rough, uneven, and accompanied by multiple cracks
with different widths. The complex surface morphology and angular properties increase
the interlocking effect between particles, thereby improving the resistance of the sample
to horizontal load. However, these factors also lead to large gaps between particles, no
cohesion and poor integrity. Even if there is contact bite force between particles, in the
shearing process, with the increase of the horizontal load, large dislocations and slippages
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still occur. Even the stress is concentrated in the edges and corners of the particles under the
load, which eventually causes the destruction of the edges and corners of the particles, and
the occlusion effect between the particles is significantly reduced. When the polyurethane
content is zero, once the edges and corners of the particles are destroyed, the interlocking
effect disappears, and the crushing strength of a single particle has become the main factor
affecting the shear strength of CDW.
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Figure 13. Particle morphology of CDW with different polyurethane contents. (a) Polyurethane
content is 0%, (b) Polyurethane content is 1.5%, (c) Polyurethane content is 3%, (d) Polyurethane
content is 4.5%, (e) Polyurethane content is 6%.

It can be seen from Figure 13b–e that the area covered by polyurethane foam on the
particle surface increases with the increase of polyurethane content. In the early stage of
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the reaction, polyether polyol and isocyanate are both liquids. Depending on the excellent
fluidity of the liquid, they pass through the gaps between particles evenly. At this time,
the gaps of the particles that cause the poor integrity of the sample left a certain space for
the reaction of isocyanates and polymer polyols. When the polyurethane content is 1.5%, a
small area of the particle surface is attached with a small amount of polyurethane foam. The
polyurethane foam gradually fills the cracks between the particles. However, the content is
low, causing less polyurethane foam to be produced, and there are still large gaps inside
the particles. When the polyurethane content is 3%, the surface of the particles has been
covered by polyurethane. Although there are still many gaps, the cracks and particle edges
and corners are significantly reduced. With the continuous increase of the polyurethane
content, when it reaches 4.5%, the polyurethane foam gradually increases, and the volume
after the expansion is also significantly increased. The polyurethane foam fills the gaps
between the particles, and some particles are gradually wrapped to form the tendency
of particle agglomerates. This is also why compared with the polyurethane content of
0%, 1.5% and 3.0%, the peak shear stress increased significantly when the polyurethane
content was 4.5% and 6.0%. When the polyurethane content reaches 6%, the polyurethane
foam has the highest coverage on the surface of particles and has completely wrapped
multiple particles to form a complete agglomerate. The connection between the particles
is tighter under the action of polyurethane cementing, and the integrity of the CDW has
significantly improved. The ability to resist horizontal load has also reached a higher level
in the shearing process.

4. Conclusions

Based on the large-scale laboratory direct shear test, this study focused on the evolution
law of the shear properties of CDW with different polyurethane dosages under different
vertical pressures and shear rates. Compared with traditional CDW, the shear strength and
local bearing capacity of CDW improved by polyurethane have been greatly improved.
Therefore, CDW improved by polyurethane can be better used in the actual engineering
construction of geotechnical engineering.

The main conclusions are as follows:
The addition of polyurethane has little effect on the internal friction angle, the polyurethane

foam adhesive plays a significant role in improving the shear resistance of CDW mainly by
greatly improving the cohesion of CDW. The peak shear stress and residual shear strength
increase with the increase of polyurethane content. When the CDW with 6% polyurethane
content under 30 kPa, the improvement effect was most obvious, which increased 196.1%
compared with the peak shear stress of CDW with 0% polyurethane content under the
same vertical load.

The stress-strain curves of CDW with 0% polyurethane content present an obvious nonlin-
ear relationship and have strain-softening behavior. With the increase of polyurethane content,
the initial stiffness of CDW is improved, and the strain-softening behavior is suppressed.

The vertical load also have a significant influence on the shear properties of CDW.
With the increase of polyurethane content, this effect gradually decreases compared with
the increase of polyurethane foam on the shear stress of CDW. The shear rate has little
effect on the peak shear stress of CDW, with the increase in shear rate, the peak shear
stress increases slightly, but the residual shear strength is smaller. At the same time, the
corresponding shear displacement is smaller when the shear stress reaches the peak value.

CBR test shows that polyurethane can significantly improve the bearing capacity of
CDW. The decrease in CDW strength after the 4-day soaked period results in a decrease in
the CBR value. However, the loss of CBR caused by the 4-day soaked period is reduced by
the polyurethane by occupying the gaps between the particles and wrapping the particles.

SEM observation reveals that with the increase of polyurethane content, the polyurethane
foam gradually covers the surface of the particles from partial to full coverage and finally
wraps multiple particles to form clusters. The internal connection between the particles is
strengthened, and the structure is more solid, which can resist large horizontal loads.
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