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Abstract: During the actual operation of the solid oxide fuel cell (SOFC), degradation is one of the
most difficult technical problems to overcome. Predicting the degradation trend and estimating the
remaining useful life (RUL) can effectively diagnose the potential failure and prolong the useful life
of the fuel cell. To study the degradation trend of the SOFC under constant load conditions, a SOFC
degradation model based on the ohmic area specific resistance (ASR) is presented first in this paper.
Based on this model, a particle filter (PF) algorithm is proposed to predict the long-term degradation
trend of the SOFC. The prediction performance of the PF is compared with that of the Kalman
filter, which shows that the proposed algorithm is equipped with better accuracy and superiority.
Furthermore, the RUL of the SOFC is estimated by using the obtained degradation prediction data.
The results show that the model-based RUL estimation method has high accuracy, while the excellence
of the PF algorithm for degradation trend prediction and RUL estimation is proven.

Keywords: solid oxide fuel cell (SOFC); degradation; remaining useful life; area specific resistance;
particle filter

1. Introduction

Environmental pollution and energy shortages have become the two major challenges
facing society today, while looking for highly efficient and environmentally friendly energy
conversion methods to alleviate these problems is of great significance [1,2]. The fuel cell,
as a low-polluting and efficient energy conversion device, has attracted extensive attention
in recent years. Among the fuel cells, the solid oxide fuel cell (SOFC) has become one of the
most promising power generation technologies for its quietness, solid fuel flexibility, high
energy efficiency, etc. [3,4].

In practice, SOFCs are susceptible to severe performance degradation, such as fuel
contaminants, carbon deposition, thermal stress, chromium and sulfur poisoning of the
electrodes, etc., which result in fuel cell failure before the expected lifetime is reached.
Short lifetime and high cost are two key factors restricting the commercialization of SOFCs.
In general, SOFC stack performance degradation is a gradual process, not a one-time
event [5,6]. Therefore, an appropriate prediction method can greatly increase the life-
time of the SOFC and indirectly reduce the cost by estimating the downtime and taking
maintenance measures in advance [7].

Degradation trend prediction can capture the evolution of the performance degrada-
tion before the SOFC failure. The methods of prediction generally include two categories:
data-driven methods and model-based methods. The data-driven approach analyzes degra-
dation trends of the SOFC from a large amount of available historical data, rather than a
complex nonlinear mechanism model. Arriagada et al. [8] used ANN and BP algorithms
to predict the performance and parameters of the SOFC’s unknown operating points.
Campanari et al. [9] analyzed and predicted the performance under full load and partial
load by establishing a detailed calculation model of the SOFC and micro-turbine system.
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Marra et al. [10] presented a neural network frame to estimate the degradation trajectory of
the SOFC voltage. Based on the above data-driven research methods, fruitful degradation
prediction results of the SOFC have been obtained. However, due to the higher operating
cost and the unfeasible direct measurement of some variables in the SOFC system, it is
difficult to obtain accurate prediction results.

The model-based prediction method describes the SOFC degradation process by
establishing a physical model that has the advantages of requiring less data, while having
high accuracy and generality. In order to improve system performance and prolong system
lifetime, it is essential to establish a SOFC system model that can effectively describe the
relationship between system performance and various long-term variables. Wu et al. [5]
established the voltage mechanism model considering the nickel coarsening and oxidative
degradation, and also estimated the remaining useful life (RUL) of the fuel cells by the
phase space trajectory similarity. Zaccaria et al. [11,12] developed a physical degradation
model to describe the voltage degradation. Khan et al. [13] presented a simplified empirical
model to describe the time variation in particle size and TPB length in the anode of the
SOFC. These studies focused on the cell voltage degradation. However, the output voltage
of the SOFC is related to cell degradation, load condition changes, and controller-induced
system responses. Hence, using the voltage as the only degradation characteristic signal of
the SOFC is not precise [14].

The increase in ohmic resistance is the main cause of the SOFC stack performance
degradation [15,16]. The area specific resistance (ASR) is the internal resistance normalized
by the active area of the cell. Therefore, the ASR can be used as an index of the SOFC
performance degradation. Furthermore, the change in the ASR is the degradation trend of
the SOFC.

So far, there are few studies on predicting the RUL with the ASR. Dolenc et al. [17]
designed a hybrid approach to predict the RUL of the SOFC. However, the design pro-
cess of the hybrid method is more complicated and the prediction accuracy needs to be
further improved.

The particle filter (PF) algorithm is approximated by the Bayesian filtering algorithm
based on Monte Carlo, which recursively estimates the evolutionary posterior distribution
of the system using a set of weighted particles. In particular, the PF is a promising approach
to deal with nonlinear models under non-Gaussian noise [18,19]. Until now, PF has been
successfully applied in many fields, such as radar tracking, robot localization, etc. However,
the concrete study of the RUL prediction of the SOFC with the PF algorithm has not been
found in the earlier literature.

The main contributions of this paper are presented as follows:

1. To improve the durability, a dynamic model of the ohmic ASR is proposed, which can
accurately evaluate the performance degradation characteristics of the SOFC;

2. Based on the established dynamic model, the PF algorithm is proposed to achieve the
long-term prediction of the degradation trend and the accurate estimation of the RUL
of the SOFC.

The rest of this paper is organized as follows: Section 2 briefly introduces the nonlinear
dynamic mechanism model of the SOFC. The PF algorithm and the detailed process of
the degradation trend prediction and the RUL estimation for the SOFC are presented in
Section 3. In Section 4, some results and discussion are given. Finally, conclusions are
summarized in Section 5.

2. Nonlinear Dynamic Model of the SOFC

There are various models in the literature that describe the dynamic behavior of the
SOFC. According to the different design purposes, these models range from the simple
0-dimensional models (that only describe the main dynamics) to the detailed 3D dynamic
models. As we all know, degradation directly affects the resistance of the SOFC stack.
The increase in resistance causes the decrease in stack voltage and the increase in outlet
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temperature. Hence, it is crucial to develop a dynamic model for the degradation trend
prediction and the RUL estimation.

2.1. Energy Balance Sub-Model

By performing energy balance around the entire fuel cell stack, the temperature
dynamics can be described as [20]:

K
dTstack,out

dt
=

.
Estack,in −

.
Estack,out −VI (1)

where K is the stack lumped thermal capacity, and
.
Estack,in and

.
Estack,out, respectively,

represent the energy flows at the inlet and the outlet of the SOFC stack.
Where:

.
Estack,in =

.
Nan,in ·

[
xH2,in · hH2(Tan,in) + xH2O,in · hH2O(Tan,in)

]
+

.
Nca,in ·

[
xO2,in · hO2(Tca,in) + xN2,in · hN2(Tca,in)

]
(2)

.
Estack,out =

.
NH2,out · hH2(Tan,out) +

.
NH2O,out · hH2O(Tan,out) +

.
NO2,out · hO2(Tca,out) +

.
NN2,out · hN2(Tca,out) (3)

where the input molar flow rates
.

Ni,in, the input gas mole fraction xi,in and the SOFC input
temperatures Ti,in can be measured,

.
Ni,out is the molar flow rate at the stack outlet, and

hgas(T) means the enthalpy of the gas under the temperature T.
Where: .

NH2,out =
.

NH2,in − rox (4)
.

NH2O,out =
.

NH2O,in + rox (5)
.

NN2,out =
.

NN2,in (6)
.

NO2,out =
.

NO2,in − 0.5rox (7)

hH2(T) = −0.9959× 104 + 30.73T (8)

hH2O(T) = −25.79× 104 + 42.47T (9)

hO2(T) = −1.229× 104 + 35.12T (10)

hN2(T) = −1.059× 104 + 31.40T (11)

where rox is the electro-oxidation reaction rate, which can be calculated as:

rox =
I

4F
(12)

where I is the stack current.

2.2. Electrochemical Sub-Model

The voltage of the SOFC stack can be modeled as follows:

V = N(V0 − ηohm − ηact − ηcon) (13)

where N is the number of cells, V represents the cell voltage, ηohm, ηact and ηcon are the
ohmic polarization voltage, the activating polarization voltage and the concentration
polarization loss voltage of the stack, respectively. V0 means the open circuit voltage, which
can be described as:

V0 = 1.2586− 0.000252T +
RT
2F

ln
pH2 p0.5

O2

pH2O
(14)
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where R is the universal gas constant, pH2 , pO2
and pH2O represent the partial pressures of

hydrogen, oxygen and water vapor within the stack. In general, the partial pressure of the
gases in the stack is similar to the input/output gas partial pressure, which is calculated as:

pi =
1
2

( .
Ni,in
.

Ntot,in
+

.
Ni,out
.

Ntot,out

)
(15)

where i ∈ {H2, H2O}, and
.

Ntot,in/out means total anode inlet/outlet molar flow rates.
Similarly, the oxygen partial pressure pO2 is calculated in the same way on the cathode side.

In the electrochemical model, two equivalent ohmic ASR are considered to describe
the relationship between the three voltages and current density in the literature [21–23]:

ηohm + ηact + ηcon =
I
A

R =
I
A
(R0 + Rc) (16)

where R represents the lumped ASR, A means the active area, R0 means the lumped ASR
without contact resistance, and Rc is the lumped ASR representing contact resistance. Based
on experimental data, the R0 can be fitted in the form of the following polynomial:

R0 = a0 + a1x + a2x2 + a3x3 + a4x4 (17)

where a0 = 0.3044, a1 = 0.408, a2 = 0.8687, a3 = 2.7861, a4 = 2.9285, x = 1000/T− 1.1463,
and the unit of the T is Celsius.

The Rc can be calculated as [24]:

∂(Rc
2)

∂(t)
=

kp

(σ0
ox)

2 T2 exp
−Eox + 2Eel

RT
(18)

where kp means the rate constant for the growth of the scale thickness, σ0
ox represents

the conductivity constant, and Eox and Eel mean the activation energy for the oxide scale
growth and the conductivity, respectively.

3. Degradation Trend Prediction and RUL Estimation of the SOFC

To effectively diagnose potential failures and prolong the lifetime of the SOFC, the PF
algorithm is presented, then it is used to predict the ASR and estimate the RUL of the SOFC
in this section.

3.1. Particle Filter Algorithm

PF is a Monte Carlo algorithm based on Bayes’ principle, which is proposed to recur-
sively estimate the evolving posterior distribution of a system by using a set of weighted
particles [25]. The core idea of the PF is to express the required posterior density function
by a set of random particles with equal weights. Based on the following system state space
model, the PF algorithm can be described as:{

xk = f (xk−1, wk−1)
zk = h(xk, vk)

(19)

The probability density function p(xk, zk−1) based on the state space model is calcu-
lated by the Chapman–Kolmogorov equation, that is:

p(xk|zk−1 ) =
∫

p(xk|xk−1 )p(xk−1|zk−1 )dxk (20)

and

p(xk|zk ) =
p(zk|xk )p(xk|zk−1 )

p(zk|zk−1 )
(21)
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Then the minimum variance estimation value is calculated according to the Bayesian
estimation theory as:

x̂k =
∫

xk p(xk|zk )dxk (22)

According to the Monte Carlo method and the law of large numbers, when the sample
size is large enough, the posterior probability density p(xk|zk ) can be approximated as:

p̂(xk|zk−1 ) =
N

∑
i=1

Wi
k|k−1Dδ

(
xk − χi

k

)
(23)

p̂(xk|zk ) =
N

∑
i=1

Wi
k|kDδ(xk − χi

k) (24)

where:

Wi
k|k =

p(zk
∣∣χi

k )
∼
W

i

k|k−1
N
∑

i=1
p(zk

∣∣χi
k )
∼
W

i

k|k−1

(25)

p̂(xk|zk ) =
N

∑
i=1

Wi
k|kDδ(xk − χi

k) (26)

There are finite N random particles
{

χ1
0, . . . , χN

0
}

that are extracted from the probabil-
ity density function p(v0). Each of these particles is assigned a unified weight of 1/N.

Wi
1|0 =

∼
W

i

1|0 =
1
N

, i = 1, . . . , N (27)

χi
k = Γ

(
χi

k−1, εk−1

)
(28)

Suppose the system has m outputs, Dδ(·) represents the Dirac pulse function. Through
introducing a suggested distribution q(χi

k+1

∣∣χi
k , zk+1) and using the principle of impor-

tance sampling, the probability density function of the subsequent particles χi
k+1 can be

estimated as:

p̂(xk+1|zk ) =
N

∑
i=1

Wi
k+1|kDδ(xk+1 − χi

k+1) (29)

where:
∼
W

i

k+1|k =
∼
W

i

k|k
p(χi

k+1

∣∣χi
k )

q(χi
k+1

∣∣χi
k , zk+1)

(30)

and the projected weights are standardized as:

Wi
k+1|k =

∼
W

i

k+1|k
N
∑

i=1

∼
W

i

k+1|k

(31)

Afterwards the algorithm comes into the next iteration. The estimated state x̂k can be
expressed as:

x̂k =
N

∑
i=1

∼
W

i

k+1|k · χi
k (32)

Figure 1 shows the general process of the PF for the state prediction. When one
particle has unit weight while all other weights are near zero, particle degradation or
samples impoverishment occurs. This can be addressed by complementary procedural
resampling, which is widely used in the PF. The additional process is only triggered and
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utilized when the effective particle count falls below a definite threshold Nth. The effective
number of particles Ne f f is approximated by the following equation:

N̂e f f =
1

N
∑

i=1

( ∼
W

i

k|k

)2 (33)
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3.2. Prediction of the Degradation Trend Based on the PF Algorithm

In this study, we are supposing that the stack is not subject to the changes in external
operating conditions and internal faults. In order to accurately predict the degradation
trend, this paper assumes that the lumped ASR linearly changes with time, which can be
expressed as:

R(t) = λkt + ak (34)

The above model is rewritten as a discrete state-space model with two states:{
Xk+1= AXk+Wk
Zk+1= BXk+Vk

(35)

where Xk is the degradation state of the SOFCs, Zk denotes the stack ASR, Wk and Vk
means the process noise and the measurement noise, assuming that both noises follow the
Gaussian distribution with zero mean, Wk ∼ N(0, Q) and Vk ∼ N(0, R). Then, the state
variable Xk is composed of the lumped ASR Rk and the degradation rate λk, which is given
as follows:

Xk = [Rk, λk]
T (36)

Here, the matrixes A and B are assigned as:

A = [1, 1; 0, 1] (37)

B = [1, 0] (38)

Then, the degradation state and the measure variable can be estimated by the proposed
PF algorithm.

3.3. Estimation of the RUL

The RUL is defined as the time when the output power of the SOFC falls below a
threshold value. The time when the stack cannot operate adequately represents its end of
life (EOL).
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According to the application conditions and the final requirements, the EOL standard
may be different. It can be known from the existing literature that EOL can also be defined
as the decline in output voltage or power conversion efficiency. Taking into account the
EOL standard and the operating conditions, the lumped ASR at this time REOL can be
calculated as:

REOL =
NV0 −VEOL

N I
A

(39)

where V0 is the open circuit voltage, and VEOL represents the minimal nominal acceptable
output voltage. After defining REOL, RUL can be characterized as the time span from the
initial R to the final value REOL.

In general, RUL of the SOFC can be predicted by the estimated Rk value as Algorithm 1:

Algorithm 1 RUL estimation algorithm

For k = 1 : Length
Set P = 0, Alpha = R(k), Beta = λ(k)× t,
and Alphamax = REOL, RULk = 0
While Alpha ≤ Alphamax

Alpha = Alpha + Beta
P = P + 1

End While
RUL(k) = P

End

where k and Lenth, respectively, represent the degradation time step and the overall
length of the degradation time. RUL(k) is the RUL of the SOFC at time step k. When the
R(k) reaches REOL, it means the SOFC reaches the EOL and RUL(k) = 0.

4. Results and Discussion

To verify the validity of the SOFC dynamic model in the MATLAB/Simulink simu-
lation environment, the setting values of the parameters used in Equations (1)–(18) are
given in Table 1. In this study, the input air and fuel temperatures are both 973 K, the
input air flow rate is set as Fin

ca = 0.4056 mol · s−1, and the input fuel flow rate is chosen as
Fin

an = 2.72× 10−3 mol · s−1.

Table 1. Model Parameter setting values for the SOFC.

Symbol Definition Value

N number of cells 5
K stack lumped thermal capacity 5500 J·K−1

A active area 100 cm2

xin
H2

the initial mole fraction of hydrogen 0.97
xin

O2
the initial mole fraction of oxygen 0.21

xin
H2O the initial mole fraction of water vapor 0.03

VEOL minimal nominal acceptable voltage 4 V
R ideal gas constant 8.3142 J·mol−1·K−1

F Faraday constant 96,485 C·mol−1

Eox activation energy for the scale growth 220 K J·mol−1

Eel activation energy for the oxide scale conductivity 75.2 K J·mol−1

kp rate constant for the thickness growth of the scale 0.0126 cm2·s−1

δ0
ox conductivity constant 3.2 × 105 S·cm−1

During normal operation of the SOFC, a load disturbance causes the stack current to
have multiple step changes that reduce from 15 A to 10 A at 5000 s, and go back to 13 A
after 10,000 s. The step curve of the stack current is shown in Figure 2. In this circumstance,
the temperature dynamic characteristics of the SOFC are depicted in Figure 3, where we
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can see the temperature decreases with the load current declining, and increases with the
current rising. This is because the decrease in the load current can prevent electrochemical
reaction and generate less heat in the stack.
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In the case of the above current disturbances, the temperature dynamics are reasonable
and the same as the objective situation. This indicates that the established nonlinear
dynamic model can accurately describe the dynamic behaviors of the SOFC.

4.1. ASR Prediction Results of the Degradation Trend

The timescale for SOFC degradation is typically 103 h [26], and in this study we use
the ASR change during 1600 h to characterize the long-term performance degradation trend
of the SOFC. Firstly, the initial values of the PF algorithm i.e., covariance matrix P0, state
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matrix X0, process and measurement error covariance matrix Q and R are, respectively, set
as follows: 

X0 =
[
0.2718, 2× 10−4]T

P0 = [0.01, 0; 0, 0.01]
Q =

[
0, 0; 0, 10−12]

R = 0.01

(40)

Based on the above initial values, the ASR prediction results of the SOFC by using the
PF algorithm are depicted with the red line in Figure 4. For comparison, the experimental
results proposed by Hou et al. in [23] are shown as the green line in the first 100 h, and
the Kalman filter (KF) proposed by Dolenc et al. in [14] is also used to predict the ASR
and the results are described as the blue line. As can be seen from Figure 4, the ASR
prediction results based on the PF and the KF algorithms are both almost consistent with
the experiment results; however the PF approach yields faster convergence speed and
higher prediction accuracy compared to the KF approach.
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Figure 4. The degradation trend prediction results (Experimental results (Hou et al. [23])).

To evaluate the effectiveness of the proposed method, Root Mean Square Error (RMSE),
Mean Average Percentage Error (MAPE) and the Coefficient of determination (R2) are used
as performance indicators. Different from RMSE and MAPE, the nearer to 1 the R2 is, the
better the predictive effect is. The R2 is defined as:

R2 = 1− (∑ ŷt − yt)
2

(∑ yt − ymoy)
2 (41)

The comparison results of the prediction accuracy are given in Table 2. From the
analysis results, the RMSE and MAPE using the PF algorithm are 0.0008 and 0.0430,
respectively. The resulting RMSE and MAPE of the KF approach are, respectively, 0.0126
and 1.4582. In addition, the R2 value for the PF and KF algorithms are separately 0.9866
and 0.8895. These further indicate that the PF algorithm has better prediction accuracy than
that of the KF approach.
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Table 2. Comparison of the prediction accuracy.

PF KF

RMSE 0.0008 0.0126
MAPE 0.0430 1.4582

R2 0.9866 0.8895

4.2. RUL Prediction Results of the Degradation Trend

Degradation is one of the main disadvantages of using SOFCs, as it can negatively
impact performance and environmental sustainability over a long period of time [27]. Using
the estimation results of the RUL, it will be likely to know the best time and the relevant
part of the SOFC required to perform a preventive maintenance to avoid some degradation.
Furthermore, the operating conditions of the SOFC can be changed in real time to prolong
its lifetime while maintaining power demand.

In this article, we further estimate the RUL of the SOFC by using the ASR degradation
results based on the PF algorithm. The continuous increase in the ASR results in the
performance degradation of the SOFC. Using the estimation method described in Section 3.3,
the RUL estimation results of the SOFC are represented with the red solid line in Figure 5,
where we can see the proposed RUL estimation method that can better assess the real RUL
of the SOFC.
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In addition, the confidence interval of 1 ± 0.125 is also depicted by the blue dashed
lines in Figure 5. As can be seen from Figure 5, all the RUL estimation results of the SOFC
are within the confidence interval during the 1600 h prediction length. This confirms that it
is feasible to estimate the RUL of the SOFC by using the proposed RUL estimation method
based on the PF, and that the estimated RUL results presented in this paper are accurate
and valid.

5. Conclusions

The main contribution of this paper is to predict the long-term degradation trend and
estimate the RUL of the SOFC. In order to meet the requirements of prediction accuracy, the
SOFC degradation model based on the ASR was established first. The simulation results
verify the feasibility of the established nonlinear dynamic degradation model.
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To protect the SOFC, the PF algorithm is proposed to realize the long-term degradation
trend prediction and RUL estimation of the SOFC based on the established model. The
good results of degradation trend prediction and RUL estimation have been proven in
this study.

Future works should develop the degradation model considering more degradation
mechanisms. In addition, and based on this model, other high-performance estimation
approaches should be proposed to evaluate the RUL of the SOFC and prolong its lifetime.
Furthermore, the results should be applied to the more complex and realistic SOFC system.
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