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Abstract: The power factor in electrical power systems is of paramount importance because of the
influence on the economic cost of energy consumption as well as the power quality requested by the
grid. Low power factor affects both electrical consumers and suppliers due to an increase in current
requirements for the installation, bigger sizing of industrial equipment, bigger conductor wiring that
can sustain higher currents, and additional voltage regulators for the equipment. In this work, we
present a technique for predicting power factor variations in three phase electrical power systems,
using machine learning algorithms. The proposed model was developed and tested in medium
voltage installations and was found to be fairly accurate thus representing a cost reduced approach
for power quality monitoring. The model can be modified to predict the variation of the power factor,
taking into account removable energy sources connected to the grid. This new way of analyzing
the behavior of the power factor through prediction has the potential to facilitate decision-making
by customers, reduce maintenance costs, reduce the probability of injecting disturbances into the
network, and above all affords a reliable model of behavior without the need for real-time monitoring,
which represents a potential cost reduction for the consumer.

Keywords: power factor; prediction; three phase systems; machine learning

1. Introduction

The economic growth of a country is closely related to its electrical energy consumption
as depicted in Figure 1, where the relationship between the Gross Domestic Product (GDP)
compared to the energy consumption of the countries belonging to the Organization for
Economic Cooperation and Development is clearly visible. There is a clear correlation
between these two variables [1]. However, this relationship is not always maintained when
GDP decreases because, during a slowdown in the economy, power plants need to remain
operational and this situation prevents electricity consumption from decreasing at the same
rate as economic activity slows down.

The constant use of electricity is one of the main methods for economic development.
A regular problem is the poor power quality in the supply network; this issue implies
a large economic investment from the supplier side due to the need of high efficiency
equipment, expensive devices for transitory events suppression inside the load center and
through the general electricity system. It also causes an important economical investment
from the user who is forced to hire highly qualified personnel to measure, identify, and
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provide an optimal solution to correct the potential problems that may arise due to a poor
quality of electrical power. Electric power consumers are usually classified under three
categories defined as residential, commercial and industrial. Additionally, the consumed
power in any of the three categories mentioned above will vary according to electrical
load type connected; the highly inductive loads as well as the nonlinear loads are the most
important, as they are closely related to harmonic events in voltage and current as well as
high losses in the efficiency and poor quality of electrical energy [2].
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One of the fundamental parameters to assess the quality of power in a load center
along with harmonic content is the power factor (PF); this parameter indicates the efficiency
in the use of supplied electrical power from the grid to the facility. Ideally, the PF should be
equal to 1 and any deviation from this value implies loss of electrical power. The expression
for calculating the PF is shown in Equation (1) describing the dependence of this parameter
on the active power and the apparent power [3].

PowerFactor =
Total active power input (W)

Total apparent power input (VA)
(1)

Having a low PF value [4,5] can cause numerous disadvantages like bigger sizing
in industrial equipment, additional voltage regulators and larger conductor wiring to
withstand higher currents to name a few. A low PF value therefore represents a higher
economical cost for the user as much as for the supplier because it implies that consumed
power from grid is very inefficiently converted in useful work (energy wastage). A low PF
usually could have two different origins namely high harmonic content in current waveform
or phase voltage-current shift, being by far the latest the most common. Therefore, in order
to improve a low PF value, a power factor compensation (PFC) system is usually applied [6–8]
consisting of an electrical circuit that supplies reactive power to the grid. Because of the
voltage-current phase shift is caused by high inductive loads, a capacitor bank or power
electronics converters (STATCOMs) are usually utilized to compensate and improve the
PF. Operation of these PFC is based on the connection/disconnection of the PFC from the
grid depending on real-time measurements of phase current and voltages waveforms. As
a consequence, this implies an increased complexity and cost for the PFC system due to
the need for a full sensor network required to monitor the phase currents, voltages, and
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powers. Indeed, in order to detect and eventually improve low PF values, it will be usually
necessary to request at the supplier company the installation of smartmeters [9], which are
devices capable of measuring and recording in real time the key parameters of electrical
consumption as phase voltages and currents, consumed active and apparent power, power
factor, harmonics content (THD), etc. From the consumer side, it can be necessary to use
power quality analyzers for monitoring and recording in real time the PF [10] implying
high economical costs.

Nevertheless, usually PF variations show a cyclical behavior as they are related to
activation/deactivation of the inductive or non-linear loads. Thus, if these cyclic variations
could be predicted on a daily, basis it could be very appealing, as no sensor network would
be required for PF compensation and the number of recorded electrical variables it could
be minimized. This minimization would simplify the monitoring procedure and reduce the
investment cost for the consumer. Evidently, this alternative implemented by the consumer
can prevent and correct present and potential failures in the electrical installation that also
has important costs for the supplier.

The artificial intelligence (AI) could provide a valid option to solve issues concern-
ing power quality and in particular about PF because in the past few years it has been
widely documented its influence in multiple domains such as image processing [11], power
electronics [12], medical [13], and many other domains.

Artificial intelligence can be classified into different disciplines as Computer Vision
(CV), Machine Learning (ML), Neural Networks (NN), Deep Learning (DL) and Natural
Language Processing (NLP) as depicted in Figure 2.
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Figure 2. Artificial intelligence fields.

In Figure 3, a classification for machine learning domain is shown accordingly to the
learning process—namely, supervised, unsupervised, and reinforcement learning.

Due to the nature of our data, which is tabular type, we decided to use a supervised ML
technique. Moreover, supervised ML techniques have two options; the first are regression
methods and the second classification methods. The use of one of them depends on the
nature of the analyzed data. In our case, power factor data are continuous type therefore
it is recommended to use the regression methods, which in turn is divided into different
algorithms being OLS, Poly and RF the most important. Below, a brief description of each
algorithm is provided.

Decision Trees (RF) are used for both regression and classification problems. They visu-
ally flow like trees, hence the name, and in the regression case, they start with the root of the
tree and follow splits based on variable outcomes until a leaf node is reached and the result
is given. Random Forest algorithm combines ensemble learning methods with the decision
tree framework to create multiple randomly drawn decision trees from the data, averaging
the results to output a new result that often leads to strong predictions/classifications.
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Ordinary Least Squares regression (OLS) is a common technique for estimating coeffi-
cients of linear regression equations which describe the relationship between one or more
independent quantitative variables and a dependent variable (simple or multiple linear
regression).

Polynomial Regression (Poly) is a form of regression analysis in which the relationship
between the independent variables and dependent variables are modeled in the nth degree
polynomial. Polynomial Regression models are usually fit with the method of least squares.
This algorithm is a special case of Linear Regression where we fit the polynomial equa-
tion on the data with a curvilinear relationship between the dependent and independent
variables.

In particular, AI in electrical power systems has been used in several areas such event
detection as flickers and surge voltage transients [14], frequency regulation, distribution
system control [15], power factor correction [8], voltage sag and swell problems [16], and
power quality disturbances detection and classification [17].

In this work, a model for PF prediction using only phase currents (no phase voltages
measurements required) is proposed. This solution provides a reliable prediction of PF
fluctuations by using (ML) techniques, in particular linear regression models have been
used. The results obtained from model deployment are very promising although for PF
variations predictions in installations where renewable energy systems are operating it
should be further optimized.

2. Materials and Methods

For this work, four electric load centers (ELC) were selected (listed in Table 1) based on
the requirement for electrical local regulations for each site specified by Mexico’s network
code [18]. All ELCs analyzed have the same business division (gas stations); therefore,
the type of electrical equipment is more or less similar between them. However, there are
other important differences among these sites such frequency of service, contracted load,
neighboring electrical installations, brands and characteristics of the installed equipment,
years of service, maintenance scheme, geographical site, and infrastructure of the supplier
company as well as installed load.

Obtaining data from the selected centers (ELC) was performed with a MYeBox 1500®

three phase power quality analyzer from Circutor®. Data is stored in a 25 GB external SD
memory card. Each selected ELC was monitored for a 7-day time period by using demand
period storage rate of 5 min and recording current measurements for each phase along with
real-time PF calculations [19]. Figure 4 shows the connection diagram of the analyzer in a
3F + N system [20].
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Table 1. List of selected sites (ELC) for quality power monitoring.

Site ID Geographical Location

ALSA ELC-1 Zacatecas, México
Centro-Sahuayo ELC-2 Michoacán, México

Yerbabuena ELC-3 Michoacán, México
Castellanos 2 ELC-4 Michoacán, México
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Once the data for each site was acquired, the procedure for ML analysis could be per-
formed. Procedure for ML model building, testing and evaluating is graphically depicted
in Figure 5 and is the typical used in the literature [21]. First, datasets are preprocessed
(cleaning and tabular formatting), secondly site selection is performed based on statistical
results and data splitting for model training using 70% of data for training and 30% of
data for testing. Next, several linear regression algorithms are used for training and the
statistical results are used to evaluate their performance. Finally, the model is tested in
other selected sites, and statistical results are analyzed for final model evaluation.
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3. Results and Discussion

All data processing and display as well as ML model training and test were performed
with Python environment [22]. As described above in Section 2, a total of 4 sites belonging
to gas stations business category were analyzed. Figure 6 shows monitored PF data plotted
as a function of measurement time.
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Figure 6 depicts the behavior of PF for a defined period of time (10,000 min i.e., 7 days).
As it can be observed, each site shows cyclic variations of PF, but they are different between
them because the equipment connected to the electrical grid in each site has different
specifications. The cyclic variation of PF can be related to highly inductive loads operating
at certain daily hours. For example, for site ELC-2 it can be seen that PF diminishes down to
0.5 between 8:00 p.m. and 8:00 a.m. corresponding to the night-shift when big equipment
(high inductive loads) is operated.

The purpose of any supervised ML model is to establish a function of the predictors;
that best explains the response variable (target). In this case, the predictors are the phase
currents and the target variable will be the power factor value as depicted in Table 2.
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Table 2. Predictors and target variables identification.

X1 X2 X3 Y

Current phase A Current phase C Current phase B Power Factor

For this function to be stable and to be a good and reliable estimate of the target
variable, it is very important that these predictors are correlated with it. Therefore, the first
step would be to perform a correlation analysis between these variables. The correlation is
a statistical measure that indicates the extent to which two or more variables move together.
A positive correlation indicates that the variables increase or decrease together. A negative
correlation indicates that if one variable increases, the other decreases, and vice versa. The
correlation coefficient (r) indicates the strength of the linear relationship that might be
existing between two variables. A correlation map involving the phase voltages, currents
and power factor for every location was performed, and the results are shown in Figure 7.
It can be observed that the highest correlation was obtained between phase currents and
power factor whereas a weak correlation factor is observed between phase voltages and PF.
Therefore, the use of only phase currents to predict PF is justified.
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Figure 7. Correlation map between power factor, phase voltages and phase currents. It can be
observed the strong correlation between PF and phase currents whereas concerning phase voltages
the correlation is rather poor.

Once the correlation has been stablished for all sites, it is necessary to carefully select
the site that will be used for ML model training. At first glance, site ELC-3 seems appealing
for selection as is the one showing the higher correlation factors between phase currents
(IL1, IL2, IL3) and PF being 0.8, 0.8, and 0.85, respectively.

However, this decision should be validated by exploring in detail the characteristics
of the dataset. Specifically, the good performance of any ML model relies upon data
distribution and for linear regression models four main characteristics should be taken into
account: additivity and linearity of effects, constant error variance, normality of errors and
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zero correlation between errors. Therefore, for ML applications it is always preferable to
have a normal (gaussian) distribution as described by Equation (2):

y =
1√
2π

e−(x−µ)
2

2σ (2)

However, it is not mandatory that data should always follow normality. As a matter
of fact, some ML models work very well in the case of non-normally distributed data like
decision tree models which don’t assume any normality and work fairly well. In order
to analyze data distribution for each site histograms and Kernel Distribution Estimation
(KDE) plots are very useful. Histogram plots give an estimate of the probability distribution
of a continuous variable whereas KDE plots depict the probability density function of the
continuous or non-parametric data variables. Figure 8 displays the histograms and KDE
plots for the 4 sites showing that for ELC-1, ELC-2, and ELC-4 a broad data dispersion along
with multimodal-type distribution is observed. Conversely, for ELC-3 site a bimodal-type
distribution and a slightly narrower data dispersion was detected thus becoming a more
suitable option for ML model training.
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Following and to confirm that ELC-3 site is the most suitable for model training a
test-train split for each dataset was performed using sizes adjusted at 70% for training and
30% for testing, setting random_state = 101.

The Mean Squared Error, Mean absolute error, Root Mean Squared Error, and
R-Squared or Coefficient of determination metrics are the evaluation metrics used in
regression analysis.



Sustainability 2022, 14, 9113 9 of 14

The Mean absolute error (MAE) represents the average of the absolute difference
between the actual and predicted values in the dataset. This parameter is calculated with
Equation (3):

MAE =
1
N

N

∑
i=1
|yi − ŷ| (3)

Mean Squared Error (MSE) represents the average of the squared difference between the
original and predicted values in the data set. This parameter is calculated with Equation (4):

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (4)

Root Mean Squared Error is the square root of Mean Squared error. This parameter is
calculated with Equation (5):

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (5)

MSE and RMSE penalizes the large prediction errors vi-a-vis MAE. However, RMSE
is widely used than MSE to evaluate the performance of the regression model with other
random models, as it has the same units as the dependent variable (Y-axis).

The coefficient of determination or R-squared represents the proportion of the variance
in the dependent variable which is explained by the linear regression model. This parameter
is calculated with Equation (6):

R2 = 1− ∑(yi − ŷ)2

∑(yi − y)2 (6)

The lower value of MAE, MSE, and RMSE implies higher accuracy of a regression
model. However, a higher value of R2 is considered desirable.

An ordinary least square regression (OLS) algorithm was algorithm was used and the
evaluation metrics as MAE, MSE, RMSE and R2 were calculated for each site. As observed
from results depicted in Table 3, ELC-3 site showed the lowest RMSE as well as the higher
R2 value.

Table 3. Statistical parameters comparison using OLS algorithm.

MAE MSE RMSE R2

ELC-1 0.159 0.031 0.175 0.70
ELC-2 0.052 0.007 0.087 0.73
ELC-3 0.023 0.001 0.029 0.82
ELC-4 0.072 0.009 0.096 0.73

Once the site for model training was confirmed, the next step was to compare the
statistical parameters with the three main linear regression ML models, specifically or-
dinary least square regression (OLS), polynomial regression (Poly), and random for-
est regression (RF). The hyperparameters configuration setting for Poly regression was
(degree = 2) whereas for RF algorithm setting was (n_estimators = 100, random_state = 101,
criterion = “absolute_error”, max_depth = 19).

In Figure 9, an error residuals (calculated errors between observed and predicted
values) plot is depicted. In this type of plot, a random distribution of error residuals should
be observed in order to consider linear regression as suitable technique for prediction.
Consequently, the results obtained from Figure 9 confirm that for all three models the
random behavior in the residuals distribution is present. Furthermore, it can be observed
that RF model has the most compact residuals distribution (fewer spread) implying that
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calculated errors between observed and predicted values are lower than the other two
models (OLS and polynomial).
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Finally, last step was to predict the PF variations for the remaining three sites (ELC-1,
ELC-2, and ELC-4) using the previously trained and adjusted RF model. Figure 10 shows
the fitting results for each of these locations while Table 3 displays the statistical parameters
for each site.

The plots in Figure 10 show a rather good fit between model predicted data and actual
measured PF values. These results validate the satisfactory performance of the proposed
model where only phase currents were taken into account. Moreover, as observed from
Table 4, most of the sites show a fairly high R2 coefficient (0.85) along with a low RMSE
error except for ELC-4 where RMSE error is slightly bigger (0.175). The higher discrepancy
obtained for site ELC-4 could be associated to a weaker correlation observed between phase
currents and PF for this particular site (see Figure 7). Therefore, a different approach should
be considered like taking into account also the phase voltages or consider only one phase
current (i.e., IL3) for model prediction.
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Figure 10. RF predictions results for al monitored sites. It can be observed that model underestimates
the PF variations in most cases. (a) RF prediction vs. actual measured data for site ELC-1; (b) RF
prediction vs. actual measured data for site ELC-2; (c) RF prediction vs. actual measured data for site
ELC-3; (d) RF prediction vs. actual measured data for site ELC-4.

Table 4. Statistical parameters obtained after RF prediction results.

MAE MSE RMSE R2

ELC-1 0.099 0.012 0.110 0.85
ELC-2 0.091 0.014 0.117 0.85
ELC-3 0.012 0.0003 0.018 0.85
ELC-4 0.135 0.031 0.175 0.85

4. Conclusions

In this work a new approach to predict power factor variations has been proposed
relaying only on phase currents (without considering phase voltages) thus simplifying the
data acquisition procedure and consequently reducing the time and costs for a simplified
power quality analysis at consumer facilities. It also was shown that Random Forest model
gives a very good result for different sites (with different electrical loads). The root Mean
Square Error and the coefficient of determination obtained were quite acceptable. The
prediction results demonstrate the viability for use this model for PF variations prediction
using only phase currents as input variables in power systems where the PF reflects the
power consumption from the grid. Finally, the developed model can be modified to
adequately predict PF variations when phase currents do not show a high correlation as
a result of specific installation conditions and to consider the presence of grid-connected
renewable energy sources.
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Nomenclature

1. (GDP) Gross Domestic Product
2. (OCDE) Organization for Economic Co-operation and Development
3. (AIE) International Energy Agency
4. (PF) Power Factor
5. (PFC) Power Factor Compensation
6. (STATCOMs) Static synchronous compensator
7. (THD) Total Harmonic Distortion
8. (AI) Artificial Intelligence
9. (CV) Computer Vision
10. (ML) Machine Learning
11. (NN) Neural Networks
12. (DL) Deep Learning
13. (NLP) Natural Language Processing
14. (ELC) Electric Load Centers
15. (ID) Identification
16. (OLS) Ordinary Least Squares
17. (PLY) Polynomial
18. (RF) Random Forest Regression
19. (MAE) Mean Absolute Error
20. (MSE) Mean Square Error
21. (RMSE) Root Mean Square Error
22. (KDE) Kernel Distribution Estimation
23. (NB) Naive Bayes
24. (IL1) Line Current 1
25. (IL2) Line Current 2
26. (IL3) Line Current 3
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