Choosing a Mode in Bangkok: Room for Shared Mobility?
Abstract
:1. Introduction
2. Data Collection and Questionnaire Design
2.1. Revealed Preference
2.2. Stated Choice
3. Methodology
4. Results
4.1. Descriptive Statistics
4.2. Influential Factors on Travel Mode Choice
4.3. Policy Sensitivity Analysis
4.4. Discussion
4.4.1. Traffic Problems: Congestion, Inefficiency, Commuter Behavior, and Attractiveness of Modes
4.4.2. Proposed Solutions
4.4.3. Consistency and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sample Size Calculation
Appendix B. Stated Choice Experiments and Post Experiment Questions
Alternative # | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Attribute | Private car | Metro | Shared taxi | Motorcycle taxi + metro |
Travel time | On-board: 34 min Walk: 5 min Search for parking: 12 min | On-board: 21 min Walk: 12 min Wait: 9 min | On-board: 26 min Wait: 9 min Detour: 10 min | On-board: 26 min Walk: 2 min Wait: 9 min |
Total 51 min | Total 42 min | Total 45 min | Total 37 min | |
Travel costs | Fuel: 52 Baht Toll fee: 30 Parking fee: 30 Baht | Fare: 70 Baht | Fare: 82 Baht Toll fee: 30 | Fare: 75 Baht |
Crowdedness | - | Crowded (a few empty seats and plenty of standing room) | No. of max. companion along the way: 1 | [Metro]: crowded (a few empty seats and plenty of standing room) |
You choose |
#. | Car Type by Engine Size (Liters) | Average Purchase Price (Baht) | Depreciation (Baht/Year) | Annual Costs 1 (Baht) | Average Annual Cost of Ownership (Baht) | Average Monthly Cost (Baht) | Average Daily Cost (Baht) | |||
---|---|---|---|---|---|---|---|---|---|---|
Compulsory Insurance | Plate Registration | Maintenance | Excluding Voluntary Insurance | Including Voluntary Insurance | ||||||
1 | Ecocar (1.2 L) | 569,000 | 35,800 | 645.21 | 1200–1500 | 3580 | 41,200 | 3432 | 158 | 193 |
2 | Compact (1.4 L–1.6 L) | 716,000 | 45,010 | 645.21 | 1500–1800 | 4500 | 51,800 | 4316 | 198 | 238 |
3 | Medium (1.8 L–2.2 L) | 1,055,000 | 66,300 | 645.21 | 2100–3700 | 6630 | 75,800 | 6315 | 290 | 331 |
4 | Large (from 2.4 L) | 1,495,000 | 94,000 | 645.21 | from 4500 | 10,230 | 117,450 | 9787 | 450 | 506 |
Appendix C. Discrete Choice Model
Appendix D. Model Estimation
References
- Creutzig, F.; Agoston, P.; Minx, J.C.; Canadell, J.G.; Andrew, R.M.; Le Quéré, C.; Peters, G.P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Urban infrastructure choices structure climate solutions. Nat. Clim. Chang. 2016, 6, 1054–1056. [Google Scholar] [CrossRef]
- Creutzig, F.; He, D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transp. Res. Part D Transp. Environ. 2009, 14, 120–131. [Google Scholar] [CrossRef]
- Parry, I.; Strand, J. International fuel tax assessment: An application to Chile. Environ. Dev. Econ. 2012, 17, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Parry, I.; Timilsina, G.R. How should passenger travel in Mexico City be priced? J. Urban Econ. 2010, 68, 167–182. [Google Scholar] [CrossRef]
- Rizzi, L.I.; De La Maza, C. The external costs of private versus public road transport in the Metropolitan Area of Santiago, Chile. Transp. Res. Part A Policy Pract. 2017, 98, 123–140. [Google Scholar] [CrossRef]
- Sen, A.K.; Tiwari, G.; Upadhyay, V. Estimating marginal external costs of transport in Delhi. Transp. Policy 2010, 17, 27–37. [Google Scholar] [CrossRef]
- Creutzig, F.; Javaid, A.; Koch, N.; Knopf, B.; Mattioli, G.; Edenhofer, O. Adjust urban and rural road pricing for fair mobility. Nat. Clim. Chang. 2020, 10, 591–594. [Google Scholar] [CrossRef]
- Ayaragarnchanakul, E.; Creutzig, F. Bangkok’s locked-in traffic jam: Price congestion or regulate parking? Case Stud. Transp. Policy 2021, 10, 365–378. [Google Scholar] [CrossRef]
- MRTA. Mass Rapid Transit Authority of Thailand (MRTA) Annual Report; MRTA: Bangkok, Thailand, 2020; pp. 18–19. Available online: https://www.mrta.co.th/media/896998/en_mrta_ar2020_7june.pdf (accessed on 23 September 2021).
- Botsman, R.; Rogers, R. What’s Mine Is Yours: The Rise of Collaborative Consumption; Harper Collins: New York, NY, USA, 2010. [Google Scholar]
- Jonuschat, H.; Stephan, K.; Schelewsky, M. Understanding Multimodal and Intermodal Mobility. Transp. Sustain. 2015, 7, 149–176. [Google Scholar] [CrossRef]
- Feigon, S.; Murphy, C. Transit Cooperative Research Program, Transportation Research Board & National Academies of Sciences, Engineering, and Medicine. In Shared Mobility and the Transformation of Public Transit; Transportation Research Board: Washington, DC, USA, 2016; p. 2378. [Google Scholar] [CrossRef]
- Li, Z.; Hong, Y.; Zhang, Z. An Empirical Analysis of On-demand Ride-sharing and Traffic Congestion. In Proceedings of the International Conference on Information Systems 2016 (ICIS’16), Dublin, Ireland, 11–14 December 2017. [Google Scholar]
- Creutzig, F. Making Smart Mobility Sustainable: How to Leverage the Potential of Smart and Shared Mobility to Mitigate Climate Change. Policy Paper Series: Shaping the Transition to a Low-Carbon Economy—Perspectives from Isreal and Germany. Isreal Public Policy Inst. Heinrich Böll Found. Tel Aviv 2021, 18. [Google Scholar]
- Wu, L.; Wang, W.; Jing, P.; Chen, Y.; Zhan, F.; Shi, Y.; Li, T. Travel mode choice and their impacts on environment—a literature review based on bibliometric and content analysis, 2000–2018. J. Clean. Prod. 2019, 249, 119391. [Google Scholar] [CrossRef]
- Martínez-Díaz, M.; Soriguera, F. Autonomous vehicles: Theoretical and practical challenges. Transp. Res. Procedia 2018, 33, 275–282. [Google Scholar] [CrossRef]
- Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Furtado, F.; Martinez, L.; Petrik, O.; Kauppila, J.; Crist, P.; Gudmundson, L. Shared Mobility Simulations for Helsinki; International Transport Forum (ITF). 2017. Available online: https://www.itf-oecd.org/node/21473 (accessed on 6 June 2022).
- Lopes, M.M.; Martinez, L.M.; Correia, G.H.D.A. Simulating Carsharing Operations through Agent-based Modelling: An Application to the City of Lisbon, Portugal. Transp. Res. Procedia 2014, 3, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Luis, M.; Petrik, O.; Furtado, F.; Kauppila, J.; Crist, P.; Gudmundson, L. Shared Mobility Simulations for Auckland; International Transport Forum (ITF). 2017, p. 116. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwij4fzimpP5AhUSZ94KHbRyA2sQFnoECAIQAQ&url=https%3A%2F%2Fwww.itf-oecd.org%2Fsites%2Fdefault%2Ffiles%2Fdocs%2Fshared-mobility-simulations-auckland.pdf&usg=AOvVaw2UVKw0rb01W0nFYGJdihOp (accessed on 6 June 2022).
- Martinez, L.; Petrik, O.; Wagner, N. Shared Mobility Simulations for Lyon; International Transport Forum (ITF), 2020; p. 93. Available online: https://www.itf-oecd.org/shared-mobility-simulations-lyon (accessed on 6 June 2022).
- Petrik, O.; Martinez, L.; Kauppila, J. Shared Mobility Simulations for Dublin; International Transport Forum (ITF), 2018; p. 97. Available online: https://www.itf-oecd.org/sites/default/files/docs/shared-mobility-simulations-dublin.pdf (accessed on 6 June 2022).
- Asgari, H.; Jin, X.; Corkery, T. A Stated Preference Survey Approach to Understanding Mobility Choices in Light of Shared Mobility Services and Automated Vehicle Technologies in the U.S. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 12–22. [Google Scholar] [CrossRef]
- Javaid, A.; Creutzig, F.; Bamberg, S. Determinants of low-carbon transport mode adoption: Systematic review of reviews. Environ. Res. Lett. 2020, 15, 103002. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Zhang, H.; Martin, E.; Guzman, S. China’s Hangzhou Public Bicycle. Transp. Res. Rec. J. Transp. Res. Board 2011, 2247, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Abouelela, M.; Tirachini, A.; Chaniotakis, E.; Antoniou, C. Characterizing the adoption and frequency of use of a pooled rides service. Transp. Res. Part C Emerg. Technol. 2022, 138, 103632. [Google Scholar] [CrossRef]
- König, A.; Grippenkoven, J. Modelling travelers’ appraisal of ridepooling service characteristics with a discrete choice experiment. Eur. Transp. Res. Rev. 2019, 12, 1. [Google Scholar] [CrossRef]
- Dias, F.F.; Lavieri, P.S.; Garikapati, V.; Astroza, S.; Pendyala, R.M.; Bhat, C.R. A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation 2017, 44, 1307–1323. [Google Scholar] [CrossRef]
- Huynh, T.L.D.; Vo, A.K.H.; Nguyen, T.H.H.; Le Nguyen, V.B.; Ho, N.N.H.; Do, N.B. What makes us use the shared mobility model? Evidence from Vietnam. Econ. Anal. Policy 2020, 66, 1–13. [Google Scholar] [CrossRef]
- Salim, S.; Sanik, E.; Osman, M.H.; Abdullah, M.I.S. Travel Behavior towards Shared Mobility Among Malaysian Users: Insights from a Preliminary Study. Int. J. Eng. Trends Technol.—IJETT 2020, 1–5. Available online: https://ijettjournal.org/special-issues/ijett-aiic101 (accessed on 9 May 2022).
- Suatmadi, A.Y.; Creutzig, F.; Otto, I.M. On-demand motorcycle taxis improve mobility, not sustainability. Case Stud. Transp. Policy 2019, 7, 218–229. [Google Scholar] [CrossRef]
- Auttapibarn, N.; Sirikijpanichkul, A.; Vanichavetin, C.; Rujopakarn, W. Development of Hybrid Choice Models for Modal Shift Study: A Case Study of MRT Green Line Extension Kasetsart University Station. SWU Eng. J. 2018, 13, 1–17. Available online: http://research.ku.ac.th/forest/Publish.aspx?PublishID=23999 (accessed on 23 September 2021).
- Lekawattana, N.; Sirithorn, S. Development of Travel Mode Choice Model between School Bus and Passenger Car. Srinakharinwirot Eng. J. 2014, 9, 1. Available online: http://ejournals.swu.ac.th/index.php/SwuENGj/article/view/4343 (accessed on 23 September 2021).
- Lueangthitikanchana, K. Factors Affecting Thai Consumer Decisions to Travel to Taiwan. Master’s Thesis, Thammasat University, Bangkok, Thailand, 2016. [Google Scholar]
- Vithivoravee, P. Factors Influencing Thai Tourists’ Decision to Travel to Internationtal Destinations: A Case Study of Thai Tourirsts Travelling to Scandinavian Countries. Master’s Thesis, Dhurakij Pundit University, Bangkok, Thailand, 2016. [Google Scholar]
- Waewkaew, T. Tourism Behavior of Thai Tourists Travelling to Korea or Japan. Master’s Thesis, Rajamangala University of Technology Thanyaburi, Bangkok, Thailand, 2014. [Google Scholar]
- Dissanayake, D.; Morikawa, T. Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: Case study in Bangkok Metropolitan Region. J. Transp. Geogr. 2010, 18, 402–410. [Google Scholar] [CrossRef]
- Nam, D.; Park, D.; Khamkongkhun, A. Estimation of value of travel time reliability. J. Adv. Transp. 2005, 39, 39–61. [Google Scholar] [CrossRef]
- Walker, J.L.; Wang, Y.; Thorhauge, M.; Ben-Akiva, M. D-efficient or deficient? A robustness analysis of stated choice experimental designs. Theory Decis. 2017, 84, 215–238. [Google Scholar] [CrossRef] [Green Version]
- Teye-Ali, C.; Davidson, P. New algorithms for generating balanced efficient stated preference designs. HEART | Eur. Assoc. Res. Transp. 2013. Available online: https://transp-or.epfl.ch/heart/2013/ABS56_Teye-Ali_Davidson.pdf (accessed on 23 September 2021).
- Bliemer, M.C.; Rose, J.M.; Hensher, D.A. Efficient stated choice experiments for estimating nested logit models. Transp. Res. Part B Methodol. 2009, 43, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A. Stated preference analysis of travel choices: The state of practice. Transportation 1994, 21, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Greene, W.H. Specification and estimation of the nested logit model: Alternative normalisations. Transp. Res. Part B Methodol. 2002, 36, 1–17. [Google Scholar] [CrossRef]
- Hole, A.R. Creating efficient designs for discrete choice experiments. In Proceedings of the Nordic and Baltic Stata Users Group Meeting, Oslo, Norway, 13 September 2016; Available online: https://www.stata.com/meeting/nordic-and-baltic16/slides/norway16_hole.pdf (accessed on 12 January 2021).
- Rose, J.M.; Bliemer, M.C.J. Constructing Efficient Stated Choice Experimental Designs. Transp. Rev. 2009, 29, 587–617. [Google Scholar] [CrossRef]
- Sanko, N. Guidelines for State Preference Experiment Design. 2002. Available online: https://b.kobe-u.ac.jp/~sanko/pub/Sanko2001_1.pdf (accessed on 23 September 2021).
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Office of Transport and Traffic Policy Planning. Travel Demand Freight Movement Survey For National Transport Planning; OTP: Bangkok, Thailand, 2017. Available online: https://www.otp.go.th/index.php/edureport/view?id=147 (accessed on 15 August 2021).
- Hess, S.; Bierlaire, M.; Polak, J.W. Estimation of value of travel-time savings using mixed logit models. Transp. Res. Part A Policy Pract. 2005, 39, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, A.; Creutzig, F. Status consciousness in energy consumption: A systematic review. Environ. Res. Lett. 2021, 16, 053010. [Google Scholar] [CrossRef]
- Semenescu, A.; Gavreliuc, A.; Sârbescu, P. 30 Years of soft interventions to reduce car use—A systematic review and meta-analysis. Transp. Res. Part D Transp. Environ. 2020, 85, 102397. [Google Scholar] [CrossRef]
- Winter, K.; Cats, O.; Martens, K.; van Arem, B. Identifying user classes for shared and automated mobility services. Eur. Transp. Res. Rev. 2020, 12, 36. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Information, R. Short- and Long-Term Effects of Land Use on Reducing Personal Vehicle Miles of Travel. Transp. Res. Rec. J. Transp. Res. Board 2015, 2500, 102–109. [Google Scholar] [CrossRef]
Attributes/Alternatives | Attribute Levels | |||||||
---|---|---|---|---|---|---|---|---|
PV | PT | SM | Multimodal (Transfer to Metro) | |||||
Car | Mtc | Metro | Bus, Van | Shared Taxi | Ride-Hailing | Mtc-Taxi | Shared Taxi | |
Total travel time 1 (min) | 13, 32, 51 | 6, 21, 36 | 11, 26, 42 | 15, 35, 57 | 12, 32, 45 | 9, 27, 42 | 7, 19, 37 | 12, 29, 46 |
Fuel cost, fare (Baht) | 13, 33, 52 | 2, 8, 13 | 15, 44, 70 | 8, 19, 35 | 25, 66, 82 | 37, 99, 123 | 25, 60, 75 | 28, 63, 88 |
Toll (Baht) | √ | - | - | - | √ | √ | - | √ |
Parking fee (Baht) | 10, 30, 55 | 5, 10, 20 | - | - | - | - | - | - |
Crowdedness | - | - | √ | √ | √ | - | √ | √ |
(1) | |||||
---|---|---|---|---|---|
Variable | Frequency | Proportion (%) | |||
Individual characteristics | N = 785 | ||||
Gender: male | 385 | 49.0 | |||
Main mode | |||||
Private vehicle | 469 | 60.3 | |||
Public transit | 219 | 28.1 | |||
Bus | 122 | 15.7 | |||
Metro | 13 | 1.7 | |||
Boat and ferry | 7 | 0.9 | |||
Paratransit | 77 | 9.9 | |||
Walk/cycle | 72 | 9.3 | |||
Other | 18 | 2.3 | |||
Most important factor of choosing main mode | |||||
Time | 275 | 35 | |||
Convenience/accessibility | 215 | 27.4 | |||
Cost | 107 | 13.6 | |||
Privacy | 56 | 7.1 | |||
Reliability/punctuality/frustration | 27 | 3.4 | |||
Social status | 22 | 2.8 | |||
Physical exercise | 19 | 2.4 | |||
Comfort | 16 | 2.0 | |||
Waiting time | 13 | 1.7 | |||
Safety | 11 | 1.4 | |||
Others | 24 | 3.2 | |||
Occupation | |||||
Student | 61 | 5.4 | |||
Government employee | 81 | 7.1 | |||
Company employee | 628 | 55.1 | |||
Freelancer | 22 | 1.9 | |||
Business owner | 134 | 11.8 | |||
Not working/stay at home | 111 | 9.8 | |||
Other 1 | 102 | 8.9 | |||
Education | |||||
Lower than Pratom (middle school) | 37 | 3.1 | |||
Middle school, high school | 531 | 44.6 | |||
Bachelor’s degree or similar | 596 | 50.1 | |||
Higher than bachelor’s degree | 26 | 2.2 | |||
(2) | |||||
Variable | Frequency | Proportion (%) | |||
Household characteristics | N = 472 | ||||
Residential type | |||||
Detached house | 234 | 49.6 | |||
Townhouse/semi-detached house | 65 | 13.8 | |||
Commercial building | 104 | 22.0 | |||
Condo/apartment/dorm | 68 | 14.4 | |||
Others | 1 | 0.2 | |||
Income (Baht/month) | |||||
≤10,000 | 8 | 1.7 | |||
10,001–50,000 | 222 | 47 | |||
50,001–100,000 | 203 | 43 | |||
100,001–200,000 | 25 | 5.3 | |||
>200,000 | 14 | 3.0 | |||
Car ownership, Yes | 293 | 62.1 | |||
Motorcycle ownership, Yes | 230 | 48.7 | |||
(3) | |||||
Variable | Obs | Mean | S.d. | Min | Max |
Household size (persons) | 472 | 4 | 1.5 | 1 | 10 |
Individual income (Baht/month) | 785 | 20,909 | 17,805 | 800 | 300,000 |
Age (years old) | 785 | 39 | 11 | 18 | 79 |
Comfortable walking distance (meters) | 785 | 770 | 909 | 20 | 15,000 |
Variable | Coefficient | ||||||
---|---|---|---|---|---|---|---|
MTC | Metro | Bus | ST | RH | MTC-taxi+ | ST+ | |
Total travel time | −0.05 *** (−4.20) | ||||||
Total travel cost | −0.01 *** (−8.84) | ||||||
In-vehicle time | 0.09 *** (6.12) | ||||||
Fare or fuel cost | 0.004 (1.39) | ||||||
Detour time | - | - | - | 0.04 ** (2.75) | - | - | −0.09 (−0.83) |
High crowdedness | - | −0.22 ** (−2.85) | −1.07 *** (−10.89) | 0.44 *** (4.72) | - | −0.08 (−0.72) | −0.37 (−0.84) |
Income | −0.01 (−1.32) | −0.01 * (−2.15) | −0.007 (−1.57) | 0.003 (1.12) | 0.005 (1.51) | −0.001 (−0.32) | −0.01 (−1.42) |
Male | 0.25 * (2.17) | −0.13 (−1.23) | −0.29 * (−2.56) | −0.4 *** (−3.78) | −0.44 ** (−2.76) | −0.31 * (−2.50) | −0.11 (−0.57) |
Age | −0.009 (−1.77) | −0.02 *** (−3.96) | −0.01 * (−2.53) | −0.001 (−0.30) | −0.01 (−1.54) | −0.003 (−0.51) | 0.006 (0.66) |
Graduated college or higher | −0.26 * (−2.13) | −0.26 * (−2.32) | −0.43 *** (−3.46) | −0.13 (−1.17) | −0.22 (−1.30) | −0.19 (−1.46) | 0.02 (0.11) |
Employee 1 | 0.07 (0.53) | 0.19 (1.58) | 0.15 (1.10) | 0.008 (0.07) | −0.27 (−1.53) | −0.27 (−1.94) | −0.36 (−1.75) |
Value privacy 2 | −0.2 (−1.63) | −0.26 * (−2.39) | −0.04 (−0.29) | −0.13 (−1.11) | −0.13 (−0.75) | −0.14 (−1.08) | 0.06 (0.28) |
Value convenience 2 | 0.32 * (2.43) | 0.7 *** (5.83) | 0.91 *** (6.76) | 0.06 (0.46) | 0.18 (1.01) | 0.42 ** (2.96) | 0.3 (1.44) |
Value reliability 2 | 0.48 ** (2.67) | 0.81 *** (5.23) | 0.76 *** (4.40) | 0.3 (1.60) | 0.43 (1.47) | 0.8 *** (4.20) | 0.52 (1.54) |
Value travel time 2 | −0.36 ** (−2.92) | −0.21 (−1.94) | −0.13 (−1.10) | −0.07 (−0.58) | 0.22 (1.27) | −0.15 (−1.16) | 0.12 (0.60) |
Value travel cost 2 | 0.01 (0.09) | 0.12 (0.90) | 0.23 (1.77) | 0.57 *** (4.75) | 0.36 * (2.06) | 0.42 ** (3.03) | 0.19 (0.90) |
Environmental conscious 3 | 0.32 (1.96) | 1.76 *** (12.98) | 1.98 *** (13.39) | 1.85 *** (13.59) | 1.99 *** (10.86) | 1.81 *** (11.89) | 1.78 *** (8.17) |
Shift to car | 0.55 (1.77) | 1.04 *** (3.85) | 0.87 ** (2.83) | 0.27 (0.80) | 1.36 *** (3.63) | 1.05 *** (3.38) | 1.22 ** (2.91) |
Max. walking distance | 0.18 * (2.52) | 0.2 ** (3.15) | −0.01 (−0.12) | 0.11 (1.65) | 0.29 *** (3.84) | 0.33 *** (5.18) | 0.33 *** (4.27) |
Distance from home to workplace | −0.03 ** (−2.64) | 0.03 ** (2.58) | 0.01 (0.96) | 0.01 (1.13) | −0.01 (−0.76) | 0.04 ** (3.25) | 0.002 (0.12) |
Owns car | −0.28 * (−2.15) | −1.3 *** (−11.44) | −1.24 *** (−9.90) | −0.83 *** (−6.80) | −1.38 *** (−7.85) | −1.63 *** (−11.96) | −1.45 *** (−6.93) |
Owns motorcycle | 0.58 *** (4.70) | −0.42 *** (−3.79) | −0.71 *** (−5.83) | −1.49 *** (−12.49) | −1.34 *** (−7.47) | −0.33 * (−2.43) | −0.997 *** (−4.77) |
Household size | 0.03 (0.73) | 0.18 *** (4.45) | 0.04 (0.84) | 0.26 *** (6.23) | 0.4 *** (6.68) | 0.38 *** (8.01) | 0.53 *** (7.67) |
Detached home | −0.39 ** (−3.10) | −0.37 ** (−3.27) | −0.5 *** (−4.01) | 0.5 *** (4.03) | 0.24 (1.30) | −0.05 (−0.38) | 0.01 (0.04) |
Condo | 0.13 (0.77) | −0.29 (−1.54) | −0.59 *** (−3.51) | 0.08 (0.46) | −0.11 (−0.40) | −0.04 (−0.21) | 0.27 (0.92) |
ASC | −0.76 * (−2.06) | −0.98 ** (−2.93) | −0.55 (−1.49) | −2.73 *** (−7.71) | −2.78 *** (−5.46) | −3.87 *** (−9.47) | −4.32 *** (−5.12) |
N | 28,332 | ||||||
Pseudo R2 | 0.21 |
Variable Change | Car | MTC | Metro | Bus | ST | RH | MTC-taxi+ | ST+ | |
---|---|---|---|---|---|---|---|---|---|
eBUM modal share | 39.9 | 23.8 | 1.3 | 22.6 | - | - | - | - | |
Baseline choice probability | 40.71 | 19.06 | 9.73 | 9.34 | 10.86 | 2.81 | 5.23 | 2.26 | |
PV cost | Elasticity (%) | −0.009 | −0.0004 | 0.021 | 0.003 | 0.029 | 0.127 | 0.046 | 0.041 |
mode shift (%) | 29.7 | 23.3 | 17.7 | 9.0 | 14.4 | 6.0 | |||
PT cost | Elasticity (%) | 0.001 | 0.0001 | −0.013 | −0.002 | 0.004 | 0.012 | 0.005 | 0.006 |
Mode shift (%) | 56.0 | 11.3 | 13.4 | 5.3 | 9.7 | 4.3 | |||
SM cost | Elasticity (%) | 0.002 | 0.001 | 0.004 | 0.002 | −0.045 | −0.242 | 0.01 | 0.015 |
Mode shift (%) | 40.3 | 18.8 | 13.6 | 13.0 | 9.5 | 4.8 | |||
PV time | Elasticity (%) | −0.011 | −0.001 | 0.031 | 0.008 | 0.044 | 0.17 | 0.071 | 0.077 |
Mode shift (%) | 27.0 | 20.5 | 23.5 | 8.5 | 15.1 | 5.4 | |||
PT time | Elasticity (%) | 0.005 | 0.001 | −0.033 | −0.016 | 0.012 | 0.051 | 0.018 | 0.022 |
Mode shift (%) | 48.1 | 19.0 | 15.0 | 5.0 | 9.7 | 3.3 | |||
SM time | Elasticity (%) | 0.002 | 0.001 | 0.004 | 0.003 | −0.065 | −0.201 | 0.013 | 0.026 |
Mode shift (%) | 30.9 | 30.4 | 11.8 | 12.8 | 9.1 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaragarnchanakul, E.; Creutzig, F.; Javaid, A.; Puttanapong, N. Choosing a Mode in Bangkok: Room for Shared Mobility? Sustainability 2022, 14, 9127. https://doi.org/10.3390/su14159127
Ayaragarnchanakul E, Creutzig F, Javaid A, Puttanapong N. Choosing a Mode in Bangkok: Room for Shared Mobility? Sustainability. 2022; 14(15):9127. https://doi.org/10.3390/su14159127
Chicago/Turabian StyleAyaragarnchanakul, Eva, Felix Creutzig, Aneeque Javaid, and Nattapong Puttanapong. 2022. "Choosing a Mode in Bangkok: Room for Shared Mobility?" Sustainability 14, no. 15: 9127. https://doi.org/10.3390/su14159127
APA StyleAyaragarnchanakul, E., Creutzig, F., Javaid, A., & Puttanapong, N. (2022). Choosing a Mode in Bangkok: Room for Shared Mobility? Sustainability, 14(15), 9127. https://doi.org/10.3390/su14159127