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Abstract: Motor vehicle traffic is recognized as one of the critical factors that causes air pollution;
however, the relationship between traffic volume and air pollutant concentrations is unclear, especially
at a local level. Traditional traffic volume monitoring systems collect traffic data through counting
the number of vehicles, using either sensors or surveillance cameras, but they have clear limitations
such as they can only monitor certain areas and specific occasions. To overcome such limitations,
we introduce a method of monitoring traffic volume in the local area by collecting estimated travel
times for virtual trips in Google Maps. We began collecting the data in January 2020; ironically, the
COVID-19 pandemic provided a natural experimental environment of showing unusual trends in
traffic volume and unexpected changes in air pollutants. We demonstrate monthly traffic volumes in
urban areas and analyze the correlation of traffic volume with typical traffic-related air pollutants
using the proposed traffic volume monitoring method.

Keywords: traffic volume; air pollutant; big data; COVID-19

1. Introduction

The volume and flow of traffic is considered as direct or indirect determinants of
the level of air quality especially in urban areas or any locations near heavily traveled
roads. The exposure to traffic-related emissions has led to concerns of potential adverse
health effects for many years [1]. Motor vehicle traffic is seen as a leading cause of air
quality contamination in many urban areas [2–4]. In particular, the traffic-related particulate
pollution (e.g., PM2.5) is reported to contribute up to 90% of air pollution in some cities
in developing countries [5,6]. In the United States and many European countries, the
transport sector is also considered the largest emitter, particularly of nitrogen oxides (NOx)
and carbon monoxide (CO) [7,8]. The link of traffic flows to air pollutant concentrations
exists up to a certain extent; however, their intertwined relationship still remains relatively
unknown and perplexing by temporal variation and specific locality. Understanding traffic
patterns, related emissions, and impacts at local (state) and national scales is critical for
decisive policy options and regulations and traffic assignment studies [9]. The complexity of
traffic flows and emissions may also involve other related factors such as congestion, vehicle
type, land development, local economy, and population. This raises the importance of traffic
data measurement methods and how accurately it interprets the air quality assessment.

Traffic data is traditionally collected by conducting traffic volume (vehicle) counting
at random points on high-volume roads (e.g., highway corridors). A common source of
such traffic data is usually monitored from remote traffic sensors (loop detector) and/or
streaming videos captured from surveillance cameras [6,10–12]. Some recent studies used
the traffic applications provided by Google Maps, where traffic intensity is simply identified
by several representative colors (e.g., green-fast moving or red-congestion) [13,14] Local
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(or minor) road counting is uncommon despite their extensive mileage and considerable
daily vehicle-miles traveled (DVMT) commuting flows. Local road traffic data are typically
collected only for specific occasions such as road development or project improvement,
thus limiting provision of timeliness estimates of complete travel and traffic information
with breadth of data collection coverage. It is important to assess the broad geographical
coverage of measurements at continuous counting sites because traffic activity varies
spatially not only by type of roads but also by regions (e.g., urban and rural areas) [15].
In addition, traffic volume is also sensitive to temporal variations: high diurnal traffic
patterns during weekday commuting hours and low traffic on the weekends. However,
the regular and well-known patterns of traffic may also be affected by other unforeseen
factors and events, which in this case, the traffic flow and travel time are hardly predictable
and quantifiable. Although traffic measurements are comparatively rare on such occasions,
they may provide meaningful analysis to characterize traffic behavior in conjunction with
air emissions.

The surge of the unprecedented COVID-19 pandemic has significantly affected the
patterns of human activity, traffic, and air quality, especially in 2020 and 2021. Many
countries around the world have restricted usual daily routines and restrained domestic and
international travel simply to minimize the spread of the virus. As a result, there has been
a reasonably unusual trend of vehicular traffic operations and also changes in air quality
levels reported in various recent studies [16–22]. It is clear that the implementation of such
restrictions changes commuting flows and leads to prominent changes in air pollution
levels. The state of California issued a statewide executive order for all individuals to
stay home on March 19, 2020 (Executive Order N-33-20) [23]. This order meant that most
Californians had to work from home which altered the usual sight of the heavily traveled
roads in California. The transportation sector is the largest contributor of greenhouse
gas (GHG) emissions in California: the mobile source emissions contributed up to 90%
of (NOx), 90% of diesel particulate matter and 50% of CO2e GHG emissions [24].

The state government’s stay-at-home order in 2020 gave us an opportunity to investi-
gate the comparative traffic volume analyses. In this study, we propose a novel method of
monitoring traffic volume using a “big data” approach to overcome the limits of the tradi-
tional methods. We explore the monthly time-series traffic distribution of California for the
entire years of 2020 and 2021, primarily focusing on January, February, and March using the
proposed method. These months are taken into further consideration as the stay-at-home
order became effective in March, 2020, and focusing on these three months of consecutive
years allows a fair comparative analysis with no seasonal variation. Furthermore, we exam-
ine the correlation of traffic data with two typical traffic-related air pollutants, NO2 and CO,
respectively. To date, there have been no similar studies conducting quantitative traffic data
collection and analysis and its degree of relationship with the air pollutant concentrations
during the pandemic over the past 2 years reported for the state of California.

2. Data

In this section, we explain how we collected traffic data from Google Maps and air
pollutant data from an Air Quality System database.

2.1. Traffic Data

The traffic data were collected from Google Maps using an implemented simulation
software. The software was designed to collect the estimated travel time and the travel
distance for a given pair of a starting zip code and a destination zip code at the time of
executing it from Google Maps. Particularly, the geographic centers of the pair of the zip
codes serve as the starting point and the destination. To generate realistic pairs of starting
zip codes and destination zip codes, the pairs of zip codes of morning commuters with self-
driving were selected from the 2012 California Household Travel Survey (CHTS), which
is a statewide survey conducted every 10 years. We obtained 11,238 unique pairs of zip
codes of the home and work addresses of morning commuters in the survey. For each pair
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of zip codes, we query a virtual travel once every 90 min between 5:00 a.m. to 11:00 a.m.
during weekdays except holidays, and the time of the query is arbitrarily selected within a
90 min time window at every time. The data collection began on 6 January 2020, and the
total number of the queried virtual travels is 23.4 million until the end of 2021.

2.2. Air Pollutant Data

The data on air quality and chemicals in the air are obtained from the Air Quality
System (AQS) database, which is reported to the United States Environmental Protection
Agency (EPA). This data is collected from a number of sensors positioned throughout the
United States, Puerto Rico, and the U.S. Virgin Islands. The data is collected continuously
and reported to the EPA as hourly averages over a sample duration of 1 h each, and we
select data collected at sensors located only in California. Figure 1 shows the names and
locations of EPA sites. The sites measure the level of a large amount of different chemical
compounds present in the air. In this study, we use NO2 and CO chemicals.

Figure 1. Names and locations of EPA sites used in this study.

The chemical data in the AQS database is made accessible through the AirData website.
This site offers several ways to view the chemical data. We made use of the AQS Application
Programming Interface (API) to access the data. The API allows us to write custom queries
to access data from only the relevant sites, chemicals, dates, and times. We implemented
software to build and execute the API requests on the AQS database. Each data point
contains the date and time of the chemical measurement, a unique site identifier, the precise
location of the site, and the measurement of a given chemical.
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3. Methodology

In this section, we propose a novel method of how the amount of traffic near an EPA
site is estimated using the collected traffic data and explain the data analysis method.

3.1. Traffic Variables

The travel time per mile at time t from an origin zip to a destination zip′ ( ft,zip→zip′ ) is
defined by

ft,zip→zip′ =
et,zip→zip′

dt,zip→zip′
(minutes/mile) (1)

where et,zip→zip′ represents the travel time at time t from zip to zip′ in minutes and dt,zip→zip′

is the travel distance at time t from zip to zip′ in miles. Figure 2 shows an example of
calculating travel time per mile.

Figure 2. An example of calculating the travel time per mile at time t = 2022-04-19 15:00:00 from the
origin zip code 90012 to the destination zip code 90023. The map was captured from maps.google.com,
accessed on 19 April 2022.

The average out-travel time per mile at time t from an origin zip (gt,zip) is defined by

gt,zip =
1
|Z| ∑

zip′∈Z
ft,zip→zip′ (minutes/mile) (2)

where Z is a set of destination zip codes in the collected traffic data. Figure 3 shows an
example of calculating the average out-travel time per mile.

The region of an EPA site (Repa) is defined by a circular area within a radius (r) centered
by the latitude (xepa) and the longitude (yepa) of the EPA site.

Repa = {(x, y)|(x− xepa)
2 + (y− yepa)

2 ≤ r2} (3)

where (x, y) is a pair of latitude and longitude. In this study, we set the radius r = 10 km.
The region of a zip code (Rzip) is defined by an area within the boundary of the zip code.

Rzip = {(x, y)|(x, y) within the boundary of the zip code} (4)

where (x, y) is a pair of latitude and longitude. Figure 4 shows an example of Repa and Rzip.

maps.google.com
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Figure 3. An example of calculating average out-travel time per mile at time t from the zip code
90012. The map is captured from www.unitedstateszipcodes.org/ca/, accessed on 19 April 2022.

Figure 4. An example of the region of an EPA site and zip codes. The map was captured from
www.unitedstateszipcodes.org/ca/, accessed on 19 April 2022.

The weight factor between the region of a zip code and the region of an EPA site (wepa,zip)
is defined by

wzip,epa =
|Rzip ∩ Repa|
|Rzip|

(5)

where |R| represents the area of R. The weight factor can be interpreted as a ratio of the
intersection area between Repa and Rzip compared to Rzip.

www.unitedstateszipcodes.org/ca/
www.unitedstateszipcodes.org/ca/
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The traffic volume of an EPA site at time t (qt,epa) is defined by

qt,epa = ∑
zip∈{zip|wzip,epa>0}

wzip,epa · gt,zip (minutes/mile) (6)

The traffic volume of an EPA site is the weighted sum of average out-travel time
per mile at time t from regions of zip codes which are overlapped with the region of the
EPA site.

The traffic data is collected at a given time by the implemented software; therefore, we
view the traffic volume q as a snapshot at time t. Here, times are moments; hence, they are
discrete values in this study.

The average traffic volume of an EPA site from time t1 to time t2 (Qt1,t2,epa) is defined by

Qt1,t2,epa =
1
|T| ∑

t∈T
qt,epa (minutes/mile) (7)

where T = {t|t1 ≤ t < t2}.

3.2. Data Analysis

We will show the following using the proposed traffic volume of the EPA site:

• Average traffic volume of each EPA site;
• Time series of the average traffic volumes of EPA sites in metropolitan areas;
• Differences in the average traffic volume, NO2, and CO between 2020 and 2021;
• Correlation between the traffic volume and NO2/CO.

We began collecting traffic data on 6 January 2020. After the first case of COVID-
19 in California was confirmed by Center for Disease Control and Prevention (CDC) on
26 January 2020, the number of positive test cases increased in a short amount of time [25].
On 19 March 2020, California’s governor issued a stay-at-home order, in which people were
encouraged to stay at home and avoid going out [23]. Considering a timeline of California
in the COVID-19 pandemic, we define the three-time periods:

• First period: 6 January 2020 to 19 March 2020 ;
• Second period: 6 January 2021 to 19 March 2021;
• All periods: 6 January 2020 to 31 December 2021.

4. Results

In this section, we present the use of the proposed method to calculate the traffic
volume of EPA sites.

4.1. Traffic Volume

Before we show the results of our comparative study of two periods, we present the
overall traffic volumes of EPA sites from 6 January 2020 to 31 December 2021. Figure 5
shows the average traffic volume of each EPA site for all periods. The colored circles
show the regions of EPA sites (Repa), and the color of each circle represents the average
traffic volume of the EPA site. We can see that the traffic volumes of EPA sites located
in metropolitan areas such as San Francisco or Los Angeles are remarkably higher than
the ones of EPA sites located in rural areas. The red and blue boxes in Figure 5 show the
approximated boundaries of the San Francisco Area (SFA) and the Los Angeles Area (LAA),
respectively. The next higher traffic volumes are found in the Sacramento, San Diego, and
Fresno areas, and this is well-matched with real traffic congestion [26]. In addition, we
observed that the overall distribution of traffic volumes is similar to the distribution of
motor vehicle accidents [27]. (Please refer to Figure 1 in [27].) Generally, our proposed
method represents the real-world traffic phenomenon accurately.
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Figure 5. Spatial distribution of the average traffic of each EPA site from January 2020 to December
2021 (unit: minutes/mile). The circles show the regions of EPA sites, and the color (light yellow to
dark red) of each circle represents the average traffic volume of the EPA site. Red and blue boxes
indicate the boundaries of the San Francisco Area and the Los Angeles Area, respectively.

Due to the stay-at-home order and its prominent effect in urban areas, we expect that
the amount of traffic is reduced. To verify this premise, we show time series of the monthly
traffic volumes of EPA sites in the SFA and the LAA during all periods. The traffic volumes
of the SF area and the LA area are the values averaged for the 18 and 24 sites that belong
to the SF area and the LA area, respectively. The traffic volumes in both areas drastically
reduced after the stay-at-home order, and they gradually increased until the end of 2021
as shown in Figure 6. We also can see that the monthly traffic volumes of the are higher
than the traffic volumes of the SFA for every month. The traffic congestion in the LAA is
commonly known as worse than the traffic congestion in the SFA [26], as shown in Figure 6.
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Figure 6. Monthly time series of traffic volume (unit: minutes/mile) in (a) the San Francisco Area
and (b) the Los Angeles Area.

4.2. Traffic Volume and Air Pollution

We analyzed the changes in traffic volumes in January, February, and March in 2021
and compared them to those in 2020 for interpreting the quantitative variations of traffic
volume before and after the stay-at-home order. Furthermore, we quantified the changes in
air quality (NO2 and CO concentrations) in 2020 and 2021. The traffic volumes, NO2, and
CO concentrations in 2020 and 2021 are the values averaged for each year. The comparative
analysis is mainly focused on the same months in 2020 and 2021, because NO2 and CO
concentrations are strongly dependent upon seasonal variation [28]. Figure 7 shows a
contrasting distinction of traffic volume, NO2, and CO concentrations in percentage by
subtracting 2020 from 2021. Both the SFA and the LAA showed 10∼20% traffic reduction
in January and February, which is supported by the results on traffic change before and
after the state’s order estimated on highways [27]. In addition, the SFA with relatively
lower traffic volume showed more significant decreases in traffic volume due to the order
(Figure 7). A decrease in the concentration of NO2 and CO in the atmosphere can be
attributed to the significant reduction in vehicular emission after the order. Because the
state’s order was issued on 19 March 2020, the traffic volume in March 2020 was already
low (Figure 6), and there was no significant difference in traffic volume in March 2021. In
this regard, the concentration of NO2 and CO in March also did not change significantly.
Therefore, the SFA with greater traffic volume reduction also resulted in a greater decrease
in NO2 and CO concentrations in 2021 compared to those in 2020. Based on this perspective,
a previous study also inferred the traffic reductions associated with COVID-19 from a
decrease in NOx, PM2.5, and O3 in Southern California [17].

Many previous studies had no choice but to indirectly estimate the traffic volume
near the air quality observation sites, and the traffic volume could be calculated around
the specific roads such as highways. However, the new method introduced in this study
can be used to calculate traffic volume in close proximity to the EPA sites. Therefore, it
is possible to analyze the direct comparison between traffic volume and air pollutants at
each site. Figure 8 shows correlation coefficients between NO2 and CO concentrations and
traffic volume for the first, second, and all periods. Sites around big cities with higher traffic
volume (e.g., the SFA, the LAA, Fresno, and San Diego) show higher correlation coefficient
values. This indicates that variations of NO2 and CO concentrations are more directly
related with traffic changes under the condition of heavy traffic. On the other hand, NO2
and CO concentrations in rural areas with low traffic volume are not sensitive to changes in
traffic volume but are controlled by other factors such as weather. This relationship based
on the threshold of traffic volume can be observed accurately in comparison before and
after the stay-at-home order. In comparison to the correlation of all periods (Figure 8a,b),
NO2 and CO concentrations near large cities in the first period (i.e., before the order)
are more strongly correlated to traffic changes (Figure 8c,d). In the second period when
traffic volumes were decreased due to the order, only a few areas showed a positive
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correlation coefficient, but many other areas appeared to be either negatively correlated or
uncorrelated (Figure 8e,f). Therefore, the air quality was not controlled by traffic volume
itself but possibly by other sources (e.g., factory, home, and wildfire) and subsequent
environmental factors (e.g., weather) may have determined the level of air quality during
the time of reduced traffic related to the COVID-19 pandemic. Because our analysis is based
on daily data, traffic volumes and NO2 and CO concentrations for 73 days from 6 January
to 19 March 2021, were used for calculating the correlation coefficient. The 73 samples are
not a small number for statistical analysis. However, since they are samples for consecutive
days, it seems that they can be easily affected by a few sources. Thus, in a situation where
traffic volume is limited, other factors “accidentally” affect the NO2 concentration in some
sites, resulting in the negative correlation.

Figure 7. Percentage changes in traffic volume, NO2, and CO in: (a) the San Francisco Area; and
(b) the Los Angeles Area in January, February, and March 2021 relative to 2020.
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Figure 8. Spatial distributions of correlation coefficients for: (a,c,e) NO2 concentration and traffic;
and (b,d,f) CO concentration and traffic during: (a,b) all periods; (c,d) first period; and (e,f) second
period. Only significant sites in the 90% confidence level are shaded.
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5. Conclusions

This study presents a novel traffic volume monitoring method using the estimated
travel times for virtual trips in Google Maps which can be applied to any region of interest.
Unlike other conventional approaches of measuring traffic volume where the data collection
is more centered around the particular high-volume roads, this zip-to-zip method covers
and highlights all possible traffic routes near our experiment sites. A few recent studies
utilized the Google Maps Traffic Application, which simply distinguishes the traffic condi-
tions by four representative colors. This approach also contrasts to our traffic measurement
using Google Maps, where the traffic volumes are derived from the time of virtual travel
between zip codes.

In this study, the traffic volume was calculated using 23.4 million virtual trip queries
in California from January 2020 to December 2021. We demonstrated the usefulness of
the proposed method in two folds. First, we were able to check the impact of COVID-
19 pandemic on traffic volume quantitatively, and second, we analyzed the correlation
between traffic volume and air pollutants at each EPA site. As expected, the estimated
traffic volume near the EPA sites located in the two most populated cities in California
(i.e., LA and SF) markedly showed a greater volume of traffic than any other locations across
the state. In addition, the influence of state-wide COVID-19-related action was evidenced
in traffic volume, especially for the two cities where traffic was most prominent in the
state. Furthermore, the correlation between traffic volume and two common vehicular air
pollutants was found to be more significant during the first period when traffic volume
was high, while the correlation during the second period is rather trivial and implies the
potential interference of other determining factors such as weather or possibly industrial
activities. There are some uncertainties associated with our observational approaches
that could possibly be improved. As our estimation of the traffic volume near an EPA
site is derived by assigning different weight averages depending on the proportion of
overlapping regions of zip codes and selected perimeter of the EPA sites, it may lessen the
accuracy of traffic volume estimation. If our model, considering more fragmented traffic
fluxes within the region of zip code to relate with EPA site surroundings, would likely
be further revamp the performance. In this study, the proposed method was utilized to
estimate traffic volume around EPA sites; however, this method can be applied to broad
types such as ports, airports, residential areas, or industrial complexes.
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