Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Framework
2. Study Area and Data Sources
2.1. Overview of Study Area
2.1.1. Brief Introduction of Ili River
2.1.2. Overview of Water Quantity Conflict
2.2. Data Source
3. Model
3.1. Constructing Inequality Index of VWT
3.1.1. Measuring Transferred TiVA and VWT
3.1.2. Constructing Inequality Index Model
3.2. Model of Water Stress
3.2.1. Indicators to Assess Water Stress
3.2.2. Water Stress Assessment Model
3.2.3. Determining the Indicators of Water Stress
3.3. Thresholds of Inequality Index and WSI
4. Results
4.1. Determining the Inequality Index of VWT between China and Kazakhstan
4.1.1. TiVA Transfer between China and Kazakhstan
4.1.2. VWT between China and Kazakhstan
4.1.3. VWI Inequality Index of VWT in China and Kazakhstan
4.2. WSI in the Riparian Zones of Ili River between China and Kazakhstan
4.3. Types for China and Kazakhstan
5. Discussion
5.1. Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water
5.1.1. Current Management Policies
5.1.2. Analysis on Management Policies in Different Types
5.2. Analysis of Management Policies on Water Quantity Conflict in China–Kazakhstan Ili River Embedded with Virtual Water
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Virtual water | (VW) |
Virtual water transfer | (VWT) |
Water stress index | (WSI) |
Trade in value added | (TiVA) |
Environmentally extended multiregional input–output | (EE-MRIO) |
Critical ratio | (CR) |
Falkenmark water stress indicator | (FWSI) |
NASA | (National Aeronautics and Space Administration) |
ESA | (European Space Agency) |
The Eora Global Supply Chain Database | (EORA) |
Global trade analysis project | (GATP) |
World input–output database | (WIOD) |
Inter-country input–output | (ICIO) |
Inequality Index of VWT | (II) |
Appendix A
Intermediate Use | Final Demand | Total Output | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Output | Basin Country 1 | … | Basin Country (m − 1) | Other Country m | Basin Country 1 | … … | Basin Country (m − 1) | Other Country m | |||||||||
Input | Industry 1 | … … | Industry n | … … | Industry 1 | … … | Industry n | Industry 1 | … … | Industry n | |||||||
Intermediate use | Basin country 1 | Industry 1 | … … | … … | … … | … … | … … | ||||||||||
… … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | ||
Industry n | … … | … … | …… | … … | … … | ||||||||||||
… … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | |
Basin country (m − 1) | Industry 1 | … … | … … | … … | … … | … … | |||||||||||
… … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | ||
Industry n | … … | … … | … … | … … | … … | ||||||||||||
Other country m | Industry 1 | … … | … … | … … | …… | … … | … … | … … | |||||||||
… … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | … … | ||
Industry n | … … | … … | … … | …… | … … | …… | |||||||||||
Added Value | … … | … … | … … | …… | … … | … … | |||||||||||
Total input | … … | … … | … … | …… | … … | … … | |||||||||||
Direct water input |
References
- Gleick, P.H. Water, drought, climate change, and conflict in syria. Weather Clim. Soc. 2014, 6, 331–340. [Google Scholar] [CrossRef]
- Wolf, A.T. Shared waters: Conflict and cooperation. Annu. Rev. Environ. Resour. 2007, 32, 241–269. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, N.K.; Kazama, S.; Yamazaki, D.; Oki, T. Water conflict risk due to water resource availability and unequal distribution. Water Resour. Manag. 2014, 28, 169–184. [Google Scholar] [CrossRef]
- Stahl, K. Influence of hydroclimatology and socioeconomic conditions on water-Related international relations. Water Int. 2005, 30, 270–282. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and conflict: Fresh water resources and international security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Zanjanian, H.; Abdolabadi, H.; Niksokhan, M.H.; Sarang, A. Influential third party on water right conflict: A game theory approach to achieve the desired equilibrium (case study: Ilam dam, Iran). J. Environ. Manag. 2018, 214, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, C.W.; Grey, D. Cooperation on International Rivers: A Continuum for Securing and Sharing Benefits. Water Int. 2005, 30, 420–427. [Google Scholar] [CrossRef]
- Vesco, P.; Dasgupta, S.; De Cian, E.; Carraro, C. Natural resources and conflict: A meta-Analysis of the empirical literature. Ecol. Econ. 2020, 172, 106633. [Google Scholar] [CrossRef]
- Tilmant, A.; Kinzelbach, W.; Juizo, D. Economic Valuation of Benefits and Costs Associated with the Coordinated Development and Management of the Zambezi Basin. Water Policy 2012, 14, 490–508. [Google Scholar] [CrossRef] [Green Version]
- Kampragou, E.; Eleftheriadou, E.; Mylopoulos, Y. Implementing Equitable Water Allocation in Transboundary Catchments: The Case of River Nestos/Mesta. Water Resour. Manag. 2007, 21, 909–918. [Google Scholar] [CrossRef]
- Hua, L. Deepening cooperative governance of peripheral transboundary rivers with soft law. J. Beijing Univ. Technol. 2017, 19, 135–143. [Google Scholar]
- Schmeier, S.; Shubber, Z. Anchoring Water Diplomacy-The Legal Nature of 209 International River Basin Organizations. J. Hydrol. 2018, 567, 114–120. [Google Scholar] [CrossRef]
- Bouckaert, F.; Wei, Y.; Hussey, K. Improving the Role of River Basin Organizations in Sustainable River Basin Governance by Linking Social Institutional Capacity and Basin Biophysical Capacity. Curr. Opin. Environ. Sustain. 2018, 33, 70–79. [Google Scholar] [CrossRef]
- Dinar, A.; Ratner, A.; Dan, Y. Evaluating Cooperative Game Theory in Water Resources. Theory Decision 1992, 32, 1–20. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Zhao, C.X. A game theory research framework and key issues of human-water harmony. J. Nat. Resour. 2009, 24, 1315–1324. [Google Scholar]
- Lee, C.S. Multi-Objective Game-Theory Models for Conflict Analysis in Reservoir Watershed Management. Chemosphere 2012, 87, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Safari, N.; Zarghami, M.; Szidarovszky, F. Nash bargaining and leader–Follower models in water allocation: Application to the Zarrinehrud River basin, Iran. Appl. Math. Model. 2014, 38, 1959–1968. [Google Scholar] [CrossRef]
- Wang, X.J.; Liu, J. Research on water allocation scheme of public rivers based on cooperative game model. China Manag. Sci. 2020, 28, 1–9. [Google Scholar]
- Mianabadi, H.; Mostert, E.; Zarghami, M.; van de Giesen, N. A New Bankruptcy Method for Conflict Resolution in Water Resources Allocation. J. Environ. Manag. 2014, 144, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Y.; Wang, H.M.; Wang, S. Application of social choice theory to conflicting decision problems of transboundary water allocation in a river basin. China Popul. Resour. Environ. 2017, 27, 37–44. [Google Scholar]
- Dagmawi, M.D.; He, W.J.; Liang, Y.; An, M.; Zhang, Q. Bankruptcy to Surplus: Sharing Trans-Boundary River Basin’s Water under Scarcity. Water Resour. Manag. 2018, 32, 2735–2751. [Google Scholar]
- Li, F.; Wu, F.P.; Chen, L.X.; Xu, X. An eagle-Dove game model of transboundary water resources conflict and cooperation in an asymmetric perspective. China Popul. Resour. Environ. 2020, 30, 10. [Google Scholar]
- Chen, Y.P.; Liu, J.J.; Wu, F.P. Exploration of water allocation methods for transboundary rivers: Assessment and improvement under bankruptcy theory. China Popul. Resour. Environ. 2020, 30, 9. [Google Scholar]
- Lekakis, J.N. Bilateral Monopoly: A Market for Intercountry River Water Allocation. Environ. Manag. 1998, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Diana, S.; Dennis, W.; Louis, L.; Sonali, S. Sellamuttu Benefit sharing in Mekong Region hydropower: Whose benefits count? Water Resour. Rural. Dev. 2014, 4, 3–11. [Google Scholar]
- Ansink, E.; Gengenbach, M.; Weikard, H.-P. River coalitions and water trade. Oxf. Econ. Pap. 2017, 69, 453–469. [Google Scholar] [CrossRef]
- Kong, W. River Basin Economics and Management: International Trade, Allocation and Quality; University of California: Riverside, CA, USA, 2015. [Google Scholar]
- Bekchanov, M.; Bhaduri, A.; Ringler, C. Potential gains from water rights trading in the Aral Sea Basin. Agric. Water Manag. 2015, 152, 41–56. [Google Scholar] [CrossRef]
- Tian, G.L.; Li, X.Y.; Liu, J.N. Analysis of water rights trading in response to transboundary water conflicts from the perspective of incomplete contracts. Resour. Ind. 2020, 22, 8. [Google Scholar]
- Ye, Q.; Li, Y.; Zhuo, L.; Zhang, W.; Xiong, W.; Wang, C.; Wang, P. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water Res. 2018, 129, 264–276. [Google Scholar] [CrossRef]
- Wu, H.; Jin, R.; Liu, A.; Jiang, S.; Chai, L. Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice. Int. J. Environ. Res. Public Health 2022, 19, 4119. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. The water footprint of the Spanish agricultural sector: 1860–2010. Ecol. Econ. 2014, 108, 200–207. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. Imported water risk: The case of the UK. Environ. Res. Lett. 2016, 11, 055002. [Google Scholar] [CrossRef]
- Brindha, K. National water saving through import of agriculture and livestock products: A case study from India. Sustain. Prod. Consum. 2019, 18, 63–71. [Google Scholar] [CrossRef]
- Li, M.; Tian, Q.; Yu, Y.; Xu, Y.; Li, C. Virtual water trade in the Yellow River Economic Belt: A multi-regional input-output model. Water 2021, 13, 748. [Google Scholar] [CrossRef]
- Wang, R.; Zimmerman, J. Hybrid analysis of blue water consumption and water stress implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 2016, 50, 5143–5153. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2013, 28, 142–149. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, W.; Deng, H. The potential role of virtual water in solving water stress and food security problems in China. Int. J. Sustain. Dev. World Ecol. 2005, 12, 419–428. [Google Scholar] [CrossRef]
- Angelis, E.; Metulini, R.; Bove, V.; Riccaboni, M. Virtual water trade and bilateral conflicts. Adv. Water Resour. 2017, 110, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Merz, L.; Yang, D.; Hull, V. A meta coupling framework for exploring transboundary watershed management. Sustainability 2020, 12, 1879. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.L.; Wang, X.W. Study on the virtual water flow relationship between China and Mekong riparian countries driven by agricultural trade. J. North China Inst. Water Resour. Hydropower 2018, 39, 16–23. [Google Scholar]
- Koopman, R.; Wang, Z.; Wei, S.J. Tracing value-Added and double counting in gross exports. Soc. Sci. Electron. Publ. 2014, 104, 459–494. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Zhang, H.X. Accounting Trade in Value-Added: Concepts and Methods. Stat. Res. 2015, 6, 30–37. [Google Scholar]
- Heil, M.T.; Wodon, Q.T. Inequality in CO2 emissions between poor and rich countries. J. Environ. Dev. 1997, 6, 426–452. [Google Scholar] [CrossRef]
- Yang, T.; Liu, W. Inequality of household carbon emissions and its influencing factors: Case study of urban China. Habitat Int. 2017, 70, 61–71. [Google Scholar] [CrossRef]
- Hedenus, F.; Azar, C. Estimates of trends in global income and resource inequalities. Ecol. Econ. 2006, 55, 351–364. [Google Scholar] [CrossRef]
- Padilla, E.; Serrano, A. Inequality in CO2 emissions across countries and its relationship with income inequality: A distributive approach-science direct. Energy Policy 2006, 34, 1762–1772. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Nie, R.; Wang, S.Z. Measuring and decomposing regional inequality of carbon dioxide emissions in China: An interpersonal equity perspective. Sci. Res. 2012, 11, 1662–1670. [Google Scholar]
- Shang, H.Y. A comparison of virtual water consumption inequity measurement methods. China Rural. Water Conserv. Hydropower 2011, 5, 1–5. [Google Scholar]
- Wang, H.H.; Liu, H.C.; He, X.J.; Zeng, W.H. A study of carbon equity based on historical cumulative carbon emissions. China Popul. Resour. Environ. 2016, 26, 22–25. [Google Scholar]
- Prell, C. Wealth and pollution inequalities of global trade: A network and input-output approach. Soc. Sci. J. 2016, 53, 111–121. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Feng, K.; Hubacek, K.; Wang, J.; Liu, M.; Jiang, L.; Jiang, H.; Liu, N.; Zhang, P.; et al. Revealing environmental inequality hidden in China′s inter-Regional trade. Environ. Sci. Technol. 2018, 52, 7171–7181. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-Scale water stress requires micro-Scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Smakhtin, V.; Revenga, C.; Döll, P. A pilot global assessment of environmental water requirements and scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Alcamo, J.; Henrichs, T. Critical regions: A model-Based estimation of world water resources sensitive to global changes. Aquat. Sci. 2002, 64, 352–362. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water stress. Sci. Adv. 2016, 2, 150–186. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water stress: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, 632–688. [Google Scholar]
- Wada, Y.; Wisser, D.; Bierkens, P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Richter, B.D.; Postel, S.; Malsy, M.; Flörke, M. Water depletion: An improved metric for incorporating seasonal and dry-Year water stress into water risk assessments. Elem. Sci. Anthr. 2016, 4, 000083. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Liu, J.; Savenije, G. A simple approach to assess water stress integrating water quantity and quality. Ecol. Indic. 2013, 34, 441–449. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yang, H. Assessing water stress by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.Y. Difficulties and Countermeasures Faced by the Cooperative Utilization of Sino-Kazakhstan Transboundary Rivers in the Construction of Silk Road Economic Belt. Russ. East Eur. Cent. Asian Stud. 2017, 3, 103–116. [Google Scholar]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Salmyrzauli, R.; Khalil, A. Water consumption of agriculture and natural ecosystems along the Ili river in China and Kazakhstan. Water 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- NASA. Global Rainfall. Available online: https://gpm.nasa.gov/ (accessed on 12 December 2020).
- ESA. Land Use and Land Cover. Available online: http://www.esa.int/ (accessed on 13 December 2020).
- Wa, J.Y.; Lu, J.X. Analysis of hydrological and ecological effects of water resources development and utilization in the Ili River Basin. J. Nat. Resour. 2009, 24, 1297–1307. [Google Scholar]
- The Transboundary Waters Assessment Programme (TWAP). The Global Transboundary River Basins. Available online: http://twap-rivers.org/indicators/ (accessed on 10 September 2021).
- The Eora Global Supply Chain Database. Available online: https://worldmrio.com/ (accessed on 6 July 2021).
- He, Y.M. Patterns and new developments in the equitable and rational use of water resources in international rivers: An empirical analysis, comparison and lessons learned. Resour. Sci. 2012, 34, 13. [Google Scholar]
Research Objective | Indicators | Variables (m3/year) | Symbol | |
---|---|---|---|---|
Water stress | Total annual water availability | Annual water availability (annual runoff) | Annual precipitation | |
Annual evapotranspiration | ||||
Other water availability | Desalinated water | |||
Imported physical water | ||||
Total annual water consumption | Agricultural use | |||
Industrial use | ||||
Ecological use | ||||
Domestic use |
Types | |
---|---|
Type 1 Type 2 Type 3 | , |
Type 4 | , |
Type 5 Type 6 | , , |
Year | Beneficiary of Virtual Water (Net Importer of Virtual Water) | Beneficiary of Economy (Net Exporter of TiVA) | VWI (10−2) |
---|---|---|---|
1990 | Kazakhstan | China | 61.4971 |
1991 | Kazakhstan | China | 39.8408 |
1992 | Kazakhstan | China | 62.3452 |
1993 | China | Kazakhstan | 36.7883 |
1994 | Kazakhstan | China | 87.7068 |
1995 | Kazakhstan | China | 36.9415 |
1996 | China | Kazakhstan | 36.9415 |
1997 | China | Kazakhstan | 36.8217 |
1998 | China | Kazakhstan | 36.7995 |
1999 | China | Kazakhstan | 36.7915 |
2000 | China | Kazakhstan | 36.7879 |
2001 | China | Kazakhstan | 36.7984 |
2002 | China | Kazakhstan | 36.7960 |
2003 | China | Kazakhstan | 36.7975 |
2004 | China | Kazakhstan | 36.7978 |
2005 | China | Kazakhstan | 36.7962 |
2006 | China | Kazakhstan | 36.8006 |
2007 | China | Kazakhstan | 36.7902 |
2008 | China | Kazakhstan | 36.7901 |
2009 | China | Kazakhstan | 36.7902 |
2010 | China | Kazakhstan | 36.7902 |
2011 | China | Kazakhstan | 36.7896 |
2012 | China | Kazakhstan | 36.7903 |
2013 | China | Kazakhstan | 36.7903 |
2014 | China | Kazakhstan | 36.7901 |
2015 | China | Kazakhstan | 36.7902 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wu, F.; Yu, Q.; Chen, X.; Zhao, Y. Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case. Sustainability 2022, 14, 9406. https://doi.org/10.3390/su14159406
Xu X, Wu F, Yu Q, Chen X, Zhao Y. Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case. Sustainability. 2022; 14(15):9406. https://doi.org/10.3390/su14159406
Chicago/Turabian StyleXu, Xia, Fengping Wu, Qianwen Yu, Xiangnan Chen, and Yue Zhao. 2022. "Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case" Sustainability 14, no. 15: 9406. https://doi.org/10.3390/su14159406
APA StyleXu, X., Wu, F., Yu, Q., Chen, X., & Zhao, Y. (2022). Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case. Sustainability, 14(15), 9406. https://doi.org/10.3390/su14159406