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Abstract: Treating urban grey water with physical, chemical, and biological treatment techniques
and reusing it as a sustainable non-potable water source has received much attention recently, yet
there is a lack of studies regarding it. In this work, a typical slum nearby an urban household area
in Malaysia was selected as a source of contaminated grey water which is located on the opposite
side of a building site (100◦29′ E and 5◦7′ N) located in an urban area in a city in the Perak state,
namely Parit Buntar, where the total urban grey water was being accumulated. Poor sanitation of
that slum was seen to pose various health risks to the public, and hence, the importance of treating its
grey water was perceived. Thus, this study was conducted to evaluate the performance of a low-cost
double slope passive solar still by treating the grey water from the aforementioned slum, as well as to
analyze the quality, quantity, and cost per liter of the produced water. Grey water was collected and
filled in the solar still basin at s depth of 1 cm. The cover and basin of the solar still were made from
transparent polythene film and black-painted stainless steel trough, respectively, while the frame was
made from polyvinyl chloride (PVC), and the solar still was named PSSG1 abbreviated. PSSG1 was
exposed to Malaysia’s climate conditions for several days from 8.00 a.m. to 6.00 p.m. at Universiti
Sains Malaysia (USM), which was able to produce the maximum amount of water up to 4.11 L/m2·d
with the cost per liter/m2 of only USD 0.0082. Water quality parameters tested showed that water
produced from PSSG1 met the standards of the restricted and unrestricted reusable non-potable grey
water, the World Health Organization (WHO), and the Malaysian class I drinking water standards. It
was also found that the PSSG1 with higher average daily basin water temperature produced water
with higher quality for the reuse applications and yielded healthier water compared to the water
produced by some reported previous grey water treatment techniques. Therefore, the cost-effective
PSSG1 can be used as a daily practical alternative for treating low-strength grey water collected from
various urban household areas in Malaysia in order to assist pollutants removal from the drained
urban grey waters.

Keywords: grey water reuse; triangular-shaped solar distiller; polythene film cover; economical
potable water production

1. Introduction

The urban wastewater consisting of all non-toilet streams originating from kitchen
sinks, dishwashers, baths, hand basins, and washing machines is generally referred to

Sustainability 2022, 14, 9452. https://doi.org/10.3390/su14159452 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14159452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6364-7851
https://orcid.org/0000-0002-9642-4064
https://doi.org/10.3390/su14159452
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14159452?type=check_update&version=1


Sustainability 2022, 14, 9452 2 of 20

as urban grey water [1–4]. A total of 50–70% of each household’s total wastewater is
grey water [5,6]. Reusable treated grey water reuses as sustainable non-potable water has
received great attention recently due to having low contaminants [7]. Until now, in the
urban zones in many developing countries, the volume of contaminated grey water from
slums due to the kitchen, laundry, and bathing activities in many household areas has
increased due to the high rates of urbanization and population growth. Poor accessibility
and the lack of legal compliance in many urban slums have caused poor sanitation leading
to the increase in the occurrence of diseases and environmental pollution and consequently
poses various health risks to the public. The quality parameters of grey water by different
categories of the bathroom, laundry, kitchen, and mixed grey water are shown in Table 1 [8].

Table 1. The quality parameters of grey water by different categories [8].

Bathroom Laundry Kitchen Mixed

pH(-) 6.4–8.1 7.1–10 5.9–7.4 6.3–8.1
TSS (mg/L) 7–505 68–465 134–1300 25–183

Turbidity (NTU) 44–375 50–444 298.0 29–375
COD (mg/L) 100–633 231–2950 26–2050 100–700
BOD (mg/L) 50–300 48–472 536–1460 47–466
TN (mg/L) 3.6–19.4 1.1–40.3 11.4–74 1.7–34.3
TP (mg/L) 0.11- > 48.8 ND- > 171 2.9- > 74 0.11–22.8

Total coliforms
(CFU/100 mL) 10–2.4 × 107 200.5–7 × 105 >2.4 × 108 56–8.03 × 103

Fecal coliforms
(CFU/100 mL) 0–3.4 × 105 50–1.4 × 103 - 0.1–1.5 × 108

The quality parameters of different categories of grey water, as analyzed by Li (2009),
indicated that the kitchen and the laundry grey water had higher organics and physical
pollutants compared to the bathroom and mixed grey water [8]. The results also showed
that the bathroom and laundry grey water were less contaminated by microorganisms
compared to the other grey water streams. Based on this study [8], bathroom and mixed
grey water were classified as low-strength grey water, while grey water from laundry and
kitchen basins were considered as medium- and high-strength grey water, respectively.
Therefore, treating grey water is one of the main challenges in protecting the environment
and human health through reuse water applications [9,10]. Grey water treatment aims to
provide non-potable water for reuse applications such as laundry, toilet flushing, windows
and car washing, lawn irrigation, fire extinguishing, and groundwater discharge [1,3]. The
reusable grey water needs to achieve four quality standards, namely, sanitary safety, aesthet-
ics, environmental acceptance, and financial feasibility standards after the reuse treatment
processes [11]. As stated in several pieces of research [11–14], the guideline for non-potable
grey water reuse as developed by Li et al. in 2009 [15] for the unrestricted and restricted
water reuse encompasses the parameters of pH, fecal coliform, total coliforms, total sus-
pended solids (TSS), biochemical oxygen demand (BOD5), total nitrogen (TN), turbidity,
and total phosphorous (TP) [15]. According to the guideline [15], the unrestricted reuse
of grey water for non-potable water purposes, such as recreational impoundments, lakes,
and ponds with body contact (swimming purpose), requires a high range of water quality
parameters as follows: pH: 6–9, fecal coliform: ≤10/mL, total coliforms: ≤100/mL, TSS:
≤30 mg/L, BOD5: ≤10 mg/L, TN: ≤1.0 mg/L, TP: ≤0.05 mg/L and turbidity: ≤2 NTU.

Many studies have been conducted about the treatment of urban households with
grey water at low, medium, and high strength levels using different techniques, such as
physical, chemical, and biological systems, in order to produce non-potable water for reuse
applications based on the above guideline. Some researchers investigated the physical
treatments of household grey water such as using the nylon sock type filter followed by
the steps of sedimentation and disinfection [16], a slanted soil filter [17], a sand filter along
with the activated carbon and disinfection [18], a medium strength UF membrane [19],
a submerged spiral wound module [20], ultrafiltration (UF) membrane of 0.05 µm pore
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size [21], a direct nano-filtration membrane [22], sand filtration combined with the mem-
brane filtration and disinfection [23] and micro and ultrafiltration membranes [24]. Low
strength bath grey water was treated by March et al. [16] in which the quality parameters of
COD, turbidity, the suspended solids (SS), and TN were reduced from 171 mg/L, 20 NTU,
44 mg/L and 11.4 mg/L in the influent to 78 mg/L, 16.5 NTU, and 18.6 mg/L and 7.1 mg/L
in the effluent, respectively. In another study by Itayama et al. [17], the COD, the BOD,
the SS, the TN, and the TP in the kitchen basin grey water were reduced from 271 mg/L,
477 mg/L, 105 mg/L, 20.7 mg/L, and 3.8 mg/L to 40.6 mg/L, 81 mg/L, 23 mg/L, 4.4 mg/L,
and 0.6 mg/L, respectively, using a slanted soil filter. The chemical treatments of grey water
were studied in a few studies, such as the use of an electro-coagulation process followed
by a disinfection stage [25], the application of coagulation systems with the magnetic ion
exchange resin process, and the coagulation process using aluminum salt [26] as well as
application of photocatalytic ozonation [27]. Several studies investigated the performances
of several biological treatment techniques such as rotating biological contractor (RBC),
sequencing batch reactor (SBR), anaerobic sludge blanket (UASB), constructed wetland
(CW), and membrane bioreactors (MBR)) in order to treat medium- and high-strength grey
water. For example, Nolde [11], Friedler et al. [28], and Eriksson et al. [29] investigated
the performance of the RBC, while Shin et al. [30] and Hernandez et al. [31] studied the
performance of the SBR in the grey water treatment. Meanwhile, Hernandez et al. [31]
and Elmitwalli and Otterpohl [32] looked into the performance of UASB, and Li et al. [7]
and Gross et al. [33] focused on the use of CW as the biological treatment process. The
performance of MBR for the treatment was investigated by Lesjean and Gnirss [34], Liu
et al. [35], Merz et al. [36], Ding et al. [37,38], Atanasova et al. [39], Bani-Melhem et al. [40]
and Fountoulakis et al. [41]. The performance of SBR followed by ultrafiltration was studied
by Kaminska and Marszalek [42], Chrispim, and Nolasco evaluated the performance of
biofilm reactors [43], practicing a hybrid MBR in comparison with a conventional MBR was
studied by Palmarin and Young [44], the use of stacked multi-layer reactors with passive
aeration and particle trapping was investigated by [45] for the treatment of grey water.

In work by March et al. [16], the physical process was performed in which the removal
rates of some parameters, such as COD, BOD5, turbidity, TSS, TN, and TP from the bath
grey water were reported as 54.38% (not available) N/A, 17.50%, 57.72%, 37.71%, and
N/A, respectively. Meanwhile, Itayama et al. [17], who also examined the physical process,
reported the removal values as 85.01%, 83.01%, N/A, 78.09%, 78.74%, and 84.21% from
the kitchen basin grey water. In another experiment by Lin et al. [25] using the chemical
treatment, the results were observed at 60%, 60.86%, 90.69%, 68.96%, N/A, and N/A,
respectively. Meanwhile, Pidou et al. [26], who applied the chemical treatment, reported
the removal values as 63.71%, 88.78%, 90.81%, N/A, 12.77%, and 94.57%, respectively.
Using the RBC as a biological treatment, Friedler et al. [28] identified the removal values as
70.88%, 88.81%, 94.24%, 62.79%, 69.68% and 58.33%, respectively (Table 2).

Table 2. The calculated pollutants removal rates from grey water using several physical, chemical,
and biological treatment techniques in previous studies.

Authors and Year [Ref.] Type of Treatment
Removal Rate (%) of

COD BOD5 Turbidity TSS TN TP

(March et al., 2004) [16] Physical 54.38 N/A 17.50 57.72 37.71 N/A
(Itayama et al., 2004) [17] Physical 85.01 83.01 N/A 78.09 78.74 84.21

(Lin et al., 2005) [25] Chemical 60.00 60.86 90.69 68.96 N/A N/A
(Pidou et al., 2008) [26] Chemical 63.71 88.78 90.81 N/A 12.77 94.57

(Friedler et al., 2005) [28] Biological 70.88 88.81 94.24 62.79 69.68 58.33

The above studies identified that the physical treatment systems alone were not ade-
quate to ensure an acceptable range of impurities decreased from the urban grey water [15].
Although, the chemical treatments of low-strength grey water were capable of removing
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the pollutants originating from organic materials, suspended solids, and surfactants well.
However, it was reported that employing the chemical methods is not appropriate for
the treatment of medium- and high-strength urban grey water [15]. Reportedly, the best
approaches to grey water treatment were identified as using the integration of aerobic
biological methods such as RBC, SBR, and CW with physical filtration and disinfection [15].
Meanwhile, MBR is considered the greatest feasible treatment alternative [6,46] in order
to supply non-potable reusable grey water. However, it seems that the above treatment
systems alone are not capable of producing reusable grey water that meets the World
Health Organization (WHO) drinking water standards. In contrast, solar desalination stills
were reported as one of the cost-effective alternatives to treat contaminated water in order
to produce safe and freshwater [47–63] without employing the solid–liquid separation
stage in the pre-treatment system, including the septic tank and screen and filter bags, in
order to decrease the number of particles, thus investigating the solar still performance in
term of households urban grey water treatment and comparing its performance with the
performances of each of the reported physical, chemical, and biological treatment system
seems obligatory.

Solar still is a sealed container with different configurations of shapes, i.e., triangu-
lar [47–55], trapezoidal [56–60], pyramid [61], tubular [62], and hemispherical [63], in
which it is mainly encompassed of basin/bed to keep the contaminated water and has a
transparent cover to allow the solar radiation intensities pass through it and thus to heat
the basin water.

In a solar still, the evaporation and condensation processes between the basin surface
water and the inner cover of the solar still (the basic process of the hydrological cycle)
would occur to produce fresh distilled water [64,65] (Figure 1). The rate of condensed water
vapor droplets on the inner surface of the transparent cover of a solar still (glass cover)
strongly depends on the rate of water evaporated from the surface of the basin water in
the solar still in the form of vapors (Figure 1). The following equations and formulas are
presented with the calculations of the rates of condensed vapor droplets based on the basin
water evaporation in which the condensation and evaporation rates greatly depend on the
values of temperature of basin water and glass of the solar still [51,52,64–68].
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Figure 1. The sketch of a single slope passive solar still [65].

The numerical hourly condensed water production rate per unit area of a solar still
(Mhn) is calculated [66] by dividing the rate of evaporative heat transfer from basin water
surface (qew) [67] to the latent heat of water evaporation (L) which is shown as the following:

Mhn = (qew/L) × 3600 kg/m2 h (1)

The rate of evaporative heat transfer from the basin water surface (qew) depends greatly
on the differences in the hourly values of temperatures of basin water (Tw) and inner cover
(Tg) of the solar still, which is calculated as the following:

qew = hew Ab (Tw − Tg) (2)
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(Ab) is the area of the solar still basin, and (hew) is the evaporative heat transfer
coefficient from the water surface to the condensing cover of the solar still, whose value is
based on the values of the saturated vapor pressure at basin water and condensing cover
temperatures (Pw and Pg) and convective heat transfer coefficient (hcw). The values of hew
and hcw are calculated by [66]:

hew = 16.273 × 10−3hcw (Pw − Pg)/(Tw − Tg) (3)

and
hcw = 0.884 [Tw − Tg + (Pw − Pg) × (Tw + 273)/268.9 × 103 − Pw]1/3 (4)

The values of Pw and Pic are obtained according to [68] as follows:

Pw = 7235 − 431.45 Tw + 10.76 T2
w (5)

Pg = 7235 − 431.45 Tg + 10.76 T2
g (6)

Different designs of solar distillation stills were constructed and used to treat water
from lakes [48–51,53,69], groundwater [59,70–72], and seawater [52,73–75] in which these
are the natural water resources located nearby the remote, rural, and coastal areas. The
investigated parameters of treated water in these studies were reported to be acceptable
according to the WHO drinking water standards. In a study in Malaysia [51], the treatment
of water samples from a lake source was performed using two passive solar stills, which
were designed and fabricated using glass (GSS) and polythene film (PSS) as cover materials.
It was revealed in the study that the quality parameters of pH, TDS, salinity, nitrate,
nitrite, iron, turbidity, and EC after the experiment were in agreement with the acceptable
ranges of WHO standards for drinking water [76] (Table 3). Furthermore, GSS was found
to be capable of producing improved quality water compared to PSS as the hourly and
average daily basin water temperature of GSS were higher than those of the PSS. In another
study [69], samples of lake water were treated using two passive and active solar stills
whereby the examined parameters of pH, nitrate, iron, sulfate, and turbidity of both solar
stills were also in agreement with the WHO standards of drinking water [76]. It was found
by Al-Qadami et al. [69] that the active solar still with basin water temperature higher than
that of the passive solar still model could produce fresh water with improved quality.

Table 3. The performances of several solar stills after the treatments of lake water [51,69], groundwa-
ter [59] and seawater [52] samples, as recommended for the remote, rural and coastal community
consumption.

Water Quality
Parameters PSS [51] GSS [51]

Passive
Solar Still

[69]

Active Solar
Still
[69]

SSSB [59] TrSS
[52]

WHO Standards
for Drinking

Water [76]

pH 6.51 6.53 6.62 6.59 7.14 7.7 6.5–8.0
Total dissolved solids
(TDS) mg/L 95 28 - - - - - - - - 45 7.52 600

Total Arsenic (mg/L) - - - - - - - - - - - - - - - - ≤0.01 - - - - 0.01
Salinity (mg/L) 0.1 0 - - - - - - - - Na 0.006 <0.25
Nitrate (mg/L) 0.6 0.4 0.45 0.38 0.74 - - - - <50
Nitrite (mg/L) 0.03 0.01 - - - - - - - - Na - - - - <0.05
Fluoride (mg/L) - - - - - - - - - - - - - - - - 0.02 - - - - 1.5
Chloride (mg/L) - - - - - - - - - - - - - - - - 10.99 - - - - 250
Hardness (mg/L) - - - - - - - - - - - - - - - - 33.81 - - - - 200
Iron (mg/L) 0.03 0.02 0.1 0.07 0.00 - - - - 0.3
Sulfate (mg/L) - - - - - - - - 0.2 0 0.72 - - - - 250
Turbidity (NTU) 1.37 0.92 1.6 1.43 Na - - - - <5
Electrical Conductivity
(EC) (µS/cm) 52.5 15.66 - - - - - - - - Na 11.6 <250
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In another study, groundwater with high arsenic content obtained from a rural com-
munity area in India was treated using a single slope single basin (SSSB) solar still [48]. It
was observed in the study that the parameters of pH, TDS, total Arsenic, nitrate, fluoride,
chloride, hardness, iron, sulfate, and total coliform after conducting the experiment using
SSSB [59] conformed with the WHO’s ranges of drinking water guideline [76], as given in
Table 3. In another study in Malaysia [51], seawater samples were treated using a low-cost
passive triangular solar still (TrSS), whereby the results showed that the quality parameters
of pH, salinity, TDS, and EC were also in compliance with the WHO standards of drinking
water [76] (Table 3).

However, until the present, the investigation on the use of solar still covered with a
low-cost polythene film layer and with a black painted stainless steel basin as a treatment
technique of the polluted urban grey water has not been reported.

As Malaysia enjoys varied annual average rates of daily solar radiation intensity with
ranges between the maximum rates from 700 to 800 W/m2 and the minimum rates from
500 to 600 W/m2 [49–52,57,77,78], thus, the daily intensities of solar radiation in Malaysia
have a potential to be used in a year for desalination systems using only solar energy such
as passive and active solar desalination stills.

In this work, a typical slum nearby an urban household area in Malaysia was selected
as a source of contaminated grey water which is located on the opposite side of a building
site (100◦29′ E and 5◦7′ N) located in an urban area in a city in the Perak state, namely
Parit Buntar, where the total urban grey water was being accumulated. Poor sanitation of
that slum was seen to pose various health risks to the public, and hence, the importance
of treating its grey water was perceived. Thus, this study was conducted to evaluate the
performance of a low-cost double slope passive solar still by treating the grey water from
the aforementioned slum, as well as to analyze the quality, quantity, and cost per liter of
the produced water. The cover and basin of the solar still were made from transparent
polythene film and black-painted stainless steel trough, respectively, while the frame
was made from polyvinyl chloride (PVC). The productivity of the solar stills in other
studies [52,60,79] was found to be increased by feeding the lower depth of water in their
basins. Accordingly, the collected grey water in this study was fed into the solar still basin
at 1 cm depth, and the solar still was named PSSG1, abbreviated. Therefore, the aim of this
study was to examine the treatment of grey water originating from one of the typical urban
areas in Malaysia by using a low-cost polythene film cover double slope solar still, namely
PSSG1, with has 1 cm water depth in its black-painted stainless steel trough in order to
evaluate the amount of freshwater production. The study also aimed to analyze the cost
per liter and quality of the water produced by PSSG1 whilst comparing its water quality
parameters, particularly the values of BOD5, TSS, TN, TP, turbidity, pH, fecal coliforms,
and total coliforms after treatment, with the standards of non-potable grey water reuse
guideline [15] and the WHO drinking water standards [80]. The percentages of pollutants
removal by PSSG1 were also compared with those of the water produced by different types
of grey water treatment techniques in other studies, such as the physical, chemical, and
biological treatment processes.

2. Materials and Methods
2.1. Study Area

This work was carried out to examine the treatment of urban grey water collected from
a typical urban slum in Parit Buntar urban zone, Perak, Malaysia (Figure 2). The samples
of grey water were collected from an urban grey water collection slum (Figures 3 and 4)
located approximately in front of a building site (Bank Islam, at the coordinate of 100◦29′ E
and 5◦7′ N), where the total grey water of the urban area was being drained and accumu-
lated. Generally, the Parit Buntar grey water slum contains grey water as discharged from
household kitchen basins, shops, laundries, and restaurant kitchen basins which was then
becoming diluted with the stormwater runoff. Poor sanitation of that slum seemed to pose
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various health risks to the public, and hence, the importance of treating its grey water was
perceived.
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2.2. Experimental Set-Up

In this study, a double slope passive solar still with a transparent polythene film layer
as cover, PVC pipes as frame, and black-painted stainless steel trough as basin materials
(Figure 5) was designed and fabricated at the research site in the engineering campus of
Universiti Sains Malaysia (USM), Malaysia in order to treat the urban households’ grey
waters. The samples of urban grey water collected from a typical grey water slum in Parit
Buntar urban area (Figures 3 and 4), which was nearby USM, were fed into the basin at
1 cm depth (Figure 5).
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Comparative studies on passive solar stills with different basin water depths of 1.5 cm,
2.5 cm, and 5 cm in Malaysia [52], 2 cm to 12 cm in India [60], and 1 cm, 2 cm, 3 cm,
and 4 cm in India [79] were conducted. As the productivity of the solar stills in these
studies [52,60,79] was found to be increased by feeding the lower depth of water in their
basins, accordingly, the collected grey water in this study was fed into the solar still’s
basin with 1 cm depth to investigate the performance of the treated grey water in terms of
produced water quantity and quality. Hence, the solar still was named PSSG1, abbreviated.

Figure 5 shows the sketch and photograph of the experimental set-up of the tested
PSSG1. As can be seen, the solar still frame had a length and width of 60 and 50 cm,
respectively. The black-painted basin of PSSG1 had a length of 50 cm, a width of 30 cm,
and a depth of 8 cm, with a calculated area of 0.15 m2 and volume of 0.012 m3. The solar
still was constructed using the cost-effective polythene film cover materials. Compared to
the solar still using glass cover (GSS) [51], the use of those materials has made the solar still
lighter and more easily portable. In addition, PVC pipes and polythene film have longer
duration, i.e., up to 5 years [81], compared to vinyl chloride sheets with durability of two
years [82]. Thus, the lifetime of PSSG1 was expected up to 5 years in this work.

Different designs of single and double slope passive solar stills were constructed
and tested experimentally in several countries with different climate conditions, such as
Saudi Arabia [83], India [56], Egypt [84], Jordan [61], Ivory Cost [68] and Malaysia [52,57]
and their performances were studied for durations of 1 day, 1 day, 4 days, 3 days, 1 day,
5 days and 5 days, respectively. Thus, the experiment using PSSG1 was conducted for a
period of three days, i.e., on 1, 5, and 10 of April 2019, in order to evaluate the cost per
liter/m2, quantity, as well as the quality of the produced water. Specifically, the quality of
the collected grey water and the produced water were analyzed in the environmental lab
on the university campus. The above procedures were presented in the following schematic
diagram in this section (Figure 6). The total fabrication cost of PSSG1 was around RM 84.14
or USD 20.12 (Table 4). In the experiment, a multimeter was used in order to measure
the temperatures of the basin water, solar still inner cover, and the ambient hourly. The
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solar radiation intensity on the campus was measured every 15 min using a solarimeter.
Table 5 shows the details of the models, accuracies, range, percentage errors, and standard
uncertainties of the instruments used in the experiment to measure solar radiation intensity,
water production, and temperature. The standard uncertainty was determined by Rahbar
and Isfahani [85] as u = (a/√3), where a is the accuracy of the instrument, and u is the
standard uncertainty. In the process, vapors were condensed at the inner side of the PSSG1
transparent cover. The condensed water was moved down and collected at the bottommost
of the polythene film cover of the solar still (Figure 5). A measuring cylinder was used to
measure the amount of the collected condensed water. Figure 7 illustrates the collected
grey water from a typical slum in the study area (a) and the water produced by PSSG1 (b).
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Table 4. Fabrication costs of PSSG1.

Items Quantity Unit Cost (RM) Cost (RM)

Polythene film cover (0.15 mm thickness) 1.2 m2 RM 1.90/m2 2.28
PVC pipe frame (15 mm diameter) 4.8 m RM 6.20/m 29.76

Stainless steel tray 1 40.00 40.00
Plastic rope 30 m RM 12.00/roll 3.60

Transparent tape 1 2.50 2.50
Flat black spray 1 6.00 6.00

Total cost 84.14

Note: USD 1 ≈ RM 4.18

Table 5. The model, accuracy, range, percentage errors and standard uncertainty of the experimental
instruments.

Instruments Model Accuracy Range % Error Standard
Uncertainty

Digital multimeter EM382 ±1 ◦C 0 to 100 ◦C 1 ±0.5 ◦C
Solarimeter SM206 ±1 W/m2 0 to 3000 W/m2 0.5 ±0.5 W/m2

Measuring Cylinder ±0.5 mL 0 to 50 mL 0.5 ±0.3 mL
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3. Results and Discussion
3.1. Effects of Solar Radiation Intensity on Temperatures of Water, Inner Cover of PSSG1, and
Hourly Water Production

Table 6 shows the variations of average solar radiation intensity (Is), the average
temperatures of water (Tw), PSSG1’s inner cover (Tic), and ambient air (Ta), as well as the
cumulative productivities (Mc) of the solar still from 8 a.m. to 6 p.m. within the three
experimental days on the 1, 5 and 10 April 2019. As can be seen, with the rise in the average
solar intensities, all the average temperatures (ambient, basin water, and PSSG1’s inner
cover) have increased, which resulted in an increased amount of water production (Table 6).
In detail, the highest average solar radiation intensity took place on 10 April 2019 with the
rate of 735.00 W/m2, in which this condition caused the average temperatures (Tw and Tic),
and Mc to achieve the values of 48.45 ◦C, 41.23 ◦C, and 4.11 L/m2, respectively.
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Table 6. The average values of TW and Tic of PSSG1, Is and Ta and the cumulative productivity of
PSSG1 (Mc) obtained from 8 a.m. to 6 p.m. for the three experimental days.

Date Average Is
(W/m2)

Average Ta
(◦C)

Average TW
(◦C)

Average Tic
(◦C) Mc (L/m2·d)

01.04.2019 516.47 31.04 44.73 38.02 2.81
05.04.2019 652.23 32.09 47.65 40.38 3.74
10.04.2019 735.00 32.36 48.45 41.23 4.11

The plot of Is values obtained from 8 a.m. to 6 p.m. on the third experimental day
(10 April 2019) is shown in Figure 8. Meanwhile, the plot of hourly values of Tw and Tic
versus the values of Mh of PSSG1 on this day is shown in Figure 9. The average values of Is,
Tw, and Tic of PSSG1 and Ta were found to be 735 W/m2, 48.45 and 41.23 ◦C, and 32.36 ◦C,
respectively, on this day (Table 6). The highest values of Tw, Tic of PSSG1, and Ta were
recorded at 57, 47, and 36 ◦C respectively at 2:00 p.m. once the Is reached the highest value
of 1277 W/m2 (Figures 8 and 9). The rise and fall of these temperatures corresponded to
the growth and decline in the solar radiation intensity all over the day (Figures 8 and 9).
Thus, these results conform to the results obtained in other studies [48,51,52]. As seen
in Figures 8 and 9, the water production by PSSG1 corresponds to the solar radiation
intensity and water temperature. The highest evaporation from the PSSG1’s basin water
was observed during the experiment at the highest PSSG1 water temperature at 2:00 p.m.,
which corresponds to the increase in the solar radiation intensity to the highest value of
1277 W/m2 at that time (Figures 8 and 9).
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The highest hourly water production by the solar still, i.e., 0.70 L/m2, was recorded at
3:00 p.m. even though the solar radiation intensity and the water temperature had reduced
from 2:00 to 3:00 p.m. (Figures 8 and 9). This result shows that there was a one-hour time
lag between the peak values of solar radiation intensity and water temperature. Such a
condition was similarly reported in other previous studies [48,49,51,52,86–93].
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3.2. Cumulative Water Production of PSSG1

The maximum values of the cumulative productivity of PSSG1 (Mc) on the third exper-
imental day (10 April 2019) were shown in Figure 10. The solar still produced the maximum
amount of 4.11 L/m2 of potable water during the experimental day. The maximum cumu-
lative productivity of this low cost solar still was higher than those of solar stills examined
by previous studies in Malaysia [47,48,51,52,57], India [56,60,70,94], Egypt [84,95], Jor-
dan [61,96], Nigeria [97] and Pakistan [98], whereby the maximum cumulative productivity
values were recorded by these studies at 2.10, 2.227, 3.22, 1.55, 2.26, 2.54, 2.10, 1.91, 3.03,
4.10, 3.58, 2.99, 3.85, 2.396, and 3.25 L/m2·d, respectively.
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3.3. Cost Study and Analysis of the Produced Water by PSSG1

As shown in Table 4, the assumed fixed cost (F) [95] of PSSG1 is USD 20.12, which is
equal to its fabrication cost. Assuming that n is the estimated lifetime of PSSG1, F is the
fixed cost, V is the variable cost, and C is the total or cumulative cost, the average rate of
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the cost of the distillate yield was then calculated. Based on Equation (7), the total cost of
the solar still is given as [95]:

C = F + V (7)

As V equals n × 0.3 × F, then C = F + 0.3 × F × n; therefore, the total cost of PSSG1
with the expected still lifetime of five years is calculated as:

C = 20.12 + 0.3 × 20.12 × 5 = USD 50.30

The average daily productivity of PSSG1 was estimated from the experimental day
as 4.11 L/m2·day, assuming that solar still would operate 300 days in the year [95]. The
obtained total water production of PSSG1 during the solar still life was MPSSG1 = 6165 L/m2.
Therefore, the cost per liter/m2 from the PSSG1 was calculated as: 50.30/6165 = USD
0.0082. Furthermore, it was also observed that the cost per liter/m2 of PSSG1 in this study
was much lower (i.e., USD 0.0082) than other solar stills reported by previous studies in
Pakistan [98], India [56,79,99–103], Malaysia [50,82], Egypt [95,97,104–107], Canada [52],
Saudi Arabia [108], Iran [109–113] which reportedly costed at the rates of USD 0.063, 0.2,
0.024, 0.0264, 0.026, 0.86, 0.026, 0.054, 0.105, 0.015, 0.065, 0.049, 0.08, 0.048, 0.06, 0.14, 0.18,
0.039, 0.13, 0.023, 0.019, 0.105 and 0.1652, respectively.

3.4. Quality Analysis of the Grey Water Influent and Effluent

Based on the laboratory analysis results of the quality of the collected grey water
(Table 7) and the grey water quality data (Table 1), it can be implied that the grey water
sampled from a typical slum nearby the Parit Buntar urban area can be categorized as low-
strength grey water. By using PSSG1 in treating the collected grey water, the parameters
concentrations of pH, turbidity, COD, TDS, BOD5, TSS, TN, NH3, TP, total coliform, fecal co-
liform, nitrate, nitrite, EC and salinity decreased in the effluent produced as follows: In Day
1, the values decreased from 7.42, 79.1 NTU, 84 mg/L, 240 mg/L, 18.06 mg/L, 176 mg/L,
6.649 mg/L, 6.0 mg/L, 4.3 mg/L, 1020/mL, 110/mL, 7.0 mg/L, 0.298 mg/L, 160.2 µS/cm
and 0.07 mg/L to 7.1, 2.6 NTU, 9.2 mg/L, 87.03 mg/L, 0.5 mg/L, 3.1 mg/L, 0.223 mg/L,
0.07 mg/L, 0.01 mg/L, 10/100 mL, 3/100 mL, 1.1 mg/L, 0.04 mg/L, 48.3 µS/cm and
0.06 mg/L. In Day 2, the values decreased to 6.9, 2.3 NTU, 8.7 mg/L, 69.31 mg/L, 0.3 mg/L,
2.6 mg/L, 0.142 mg/L, 0.04 mg/L, 0 mg/L, 8/100 mL, 3/100 mL, 0.95 mg/L, 0.03 mg/L,
43.6 µS/cm and 0.03 mg/L; and in Day 3, the values decreased to 6.7, 2 NTU, 8 mg/L,
61.49 mg/L, 0.2 mg/L, 2 mg/L, 0.129 mg/L, 0.03 mg/L, 0 mg/L, 7/100 mL, 2/100 mL,
0.9 mg/L, 0.03 mg/L, 41.2 µS/cm and 0.02 mg/L (Table 7). Thus, these results indicate
that the quality of the produced water by PSSG1 was improved on Day 3 compared to the
quality parameters on Day 1 and Day 2. This was because the average solar radiation inten-
sity was obtained the highest at 735 W/m2 and the average still basin water temperature
reached the highest value of 48.45 ◦C on Day 3 (Table 6).

In a comparative study by Riahi et al. 2018 [51], the solar still, GSS, obtained a higher
average of Tw which resulted in producing an improved quality of freshwater compared
to the water produced by PSS [51]. In another study by Al-Qadami et al. [69], the active
solar still, which was integrated with an external heat source of a solar power system, had
a higher average basin water temperature than the passive solar still water temperature
throughout the experiment; this shows that use of active solar still resulted in producing
better quality freshwater compared to the passive solar still which does not use the external
energy (Table 3). As seen in Tables 6 and 7, PSSG1, which had a higher average basin water
temperature on Day 3 (48.45 ◦C), produced a better quality of freshwater compared to those
produced on Day 1 (44.73 ◦C) and Day 2 (47.65 ◦C). Therefore, the above results conform to
the results from other comparative studies [51,69]. The parameters of the produced water
by this low-cost solar still were also in compliance with the standards of the non-potable
grey water reuse guideline offered by Li et al. [15], WHO-2017 drinking water standards
(Table 7 [80]), and the Malaysian class I drinking water standards (Table 7 [114]).
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Table 7. Performance evaluation of the solar still (PSSG1) used for the treatment of the grey water of Parit Buntar urban area.

Water Quality
Parameters

Grey Water
Collected from the

Urban Area

Generated Water by
PSSG1 on Day 1

Generated Water by
PSSG1 on Day 2

Generated Water by
PSSG1 on Day 3

WHO-2017 Drinking
Water Standards (WHO,

2017) [80]

Malaysia Class I
Drinking Water
Standards (EQR,

2006) [114]

pH 7.42 7.1 6.9 6.7 6.5–8.0 6.5–8.0
Chemical Oxygen
Demand (COD) (mg/L) 84 9.2 8.7 8.0 <10 <10

Biochemical oxygen
demand (BOD5) (mg/L) 18.06 0.5 0.3 0.2 <2 <1

Salinity (mg/L) 0.07 0.06 0.03 0.02 <0.25 <0.50
Total dissolved solids
(TDS) (mg/L) 240 87.03 69.31 61.49 <600 <500

Total suspended solids
(TSS) (mg/L) 176 3.1 2.6 2 <250 <25

Ammonia, NH3 (mg/L) 6.0 0.07 0.04 0.03 <1.5 <1.5
Turbidity (NTU) (mg/L) 79.1 2.6 2.3 2.0 <5 <5
Nitrate (mg/L) 7.0 1.1 0.95 0.9 <50 <50
Nitrite (mg/L) 0.298 0.04 0.03 0.03 <0.05 <0.05
Total nitrogen (TN)
(mg/L) 6.649 0.223 0.142 0.129 <1 <1

Total Phosphorus (TP)
(mg/L) 4.3 0.01 0.0 0.0 <0.05 <0.05

Faecal Coliform
(CFU/100 mL) 110 3 3 2 <10/100 mL <10/100 mL

Total Coliform (CFU/100
mL) 1020 10 8 7 <100/100 mL <100/100 mL

Electrical conductivity
(µS/cm) 160.2 48.3 43.6 41.2 <250 <1000
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In addition, PSSG1 was observed to be capable in removing pollutants from the grey
water on the third experimental day, such as COD, BOD5, turbidity, TDS, TN, TSS, TP,
NH3, total coliforms, faecal coliforms, nitrate, nitrite, EC and salinity, at the highest rates
(i.e., by 90.47%, 98.89%, 97.47%, 74.37%, 98.05%, 98.86%, 100%, 99.50%, 99.31%, 98.18%,
87.14%, 89.93%, 74.28% and 71.42%, respectively). These rates were found to be higher
than the pollutants removal rates through other techniques, such as the physical process
by March et al. [16] and Itayama et al. [17], the chemical treatment by Lin et al. [25]
and Pidou et al. [26], and the RBC treatment by Friedler et al. [28], as shown in Table 2,
respectively. Therefore, it was concluded that the grey water treatment using PSSG1 in
this study was considerably more efficient compared to other treatment processes, such
as physical [16–23], chemical [25,26], and biological [7,11,28–30,32–36] treatment systems.
This was due to PSSG1 being noted to be capable of producing fresh directly without
requiring any pre- and post-treatment processes.

Overall, the grey water treatment using PSSG1 in this study has fulfilled the four
required principles of grey water treatment for reuse applications as mentioned by Nolde,
2000 [11], which are aesthetics, sanitary safety, environmental acceptance, and financial
feasibility. Most of the grey water treatment methods (such as physical, chemical, and
biological treatments) employ the solid–liquid separation stage in the pre-treatment system,
including the septic tank, and screen and filter bags, in order to decrease the number of
particles [15]. This work, on the other hand, has identified that the use of separation steps
in the treatment processes might not be needed with the use of PSSG1.

4. Conclusions

In summary, the energy from the sun, which is a sustainable energy source, can be well
absorbed by a low-cost solar still and then transformed as heat for treating a typical low-
strength urban grey water. This work investigated the use of a low-cost passive solar still,
namely, PSSG1, in treating the grey water collected from a typical urban grey water slum
to experiment with the treatment process under the Malaysian outdoor tropical climate
conditions. It was found that PSSG1 was capable of removing the pollutants of COD, BOD5,
turbidity, TDS, TSS, TN, TP, NH3, total coliform, fecal coliform, nitrate, nitrite, EC, and
salinity by 90.47%, 98.89%, 97.47%, 74.37%, 98.86%, 98.05%, 100%, 99.50%, 99.31%, 98.18%,
87.14%, 89.93%, 74.28%, and 71.42%, respectively, from the contaminated grey water which
accredited that the parameters of the water produced by this solar still were in compliance
with the standards of the restricted and unrestricted non-potable grey water reuse guideline,
the World Health Organization (WHO) and the Malaysian class I drinking water. It was
also determined that obtaining the highest average of the bain water temperature in PSSG1
resulted in producing the highest daily amount of water at 4.11 L/m2 and the improved
quality of freshwater. Furthermore, the cost per L/m2 of PSSG1 was significantly low,
i.e., USD 0.0082, which affirmed that this solar still can be a potentially beneficial and
economical approach to treating grey water in urban areas. Therefore, PSSG1 can be used
as a practical alternative for treating low-strength grey water collected from various urban
household areas in Malaysia in order to assist pollutants removal from the drained urban
grey waters.

Directions for the Further Research

The distillate water produced by the solar distiller is deficient in minerals and fluoride
concentration, and hence, some minerals and fluoride salts may be added to the distil-
late [59] to be in accordance with the requirements per drinking water quality standards,
which state 1.5 mg/L in WHO, 2008 [76]. Meanwhile, Based on the studies reported by
Parsa et al., 2021 [65], some thermally resistant waterborne pathogens such as E. coli and
Enterococcus faecalis are able to survive in distiller basin water with temperatures up to 55
and 65 ◦C, respectively; thus, the optimal temperature of water in the distiller should reach
above 65 ◦C to disinfect the distiller basin water and destroy those pathogens; therefore, one
of the best solutions is by integrating the passive solar still in this work with the external
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energy sources such as the photovoltaic thermal modules recommended by [115–117] to
heat the basin water and increase the water temperature above 65 ◦C to avoid transmitting
the pollutants and pathogen into the distillate. The amount of water production of the solar
still and the quality of the produced water will also be improved. However, the cost of the
modules should be considered. The performances of the passive solar still in this work
and the future planned solar still integrated with the photovoltaic thermal modules may
also be investigated for treating the agro-based industrial wastewater (AIW) such as the
wastewaters discharged from an olive oil mill, sugar industry, pulp and paper mill, palm
oil mill, coffee industry and vegetable oil refinery in the future in Malaysia and comparing
their performances with the presentations of the electro-coagulation processes stated by
Rakhmania et al. [118].
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