Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Materials
2.2. Experimental Design for Phytoremediation Experiments
2.3. Chemical and Instrumental Analyses
2.4. Data Analysis and Software
3. Results and Discussion
3.1. Pollution Load of Composite Industrial Effluent Used in This Study
3.2. Reduction of Pollution Load by Sacred Lotus (N. nucifera)
3.3. Bioaccumulation of Heavy Metals by Sacred Lotus (N. nucifera)
3.4. Changes in Plant Growth Attributes of Sacred Lotus (N. nucifera)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, S.N.; Manzoor, S.; Asim, M. Impact of Industrial Pollution on Our Society. Pak. J. Sci. 2021, 73, 222–229. [Google Scholar]
- Nisal, A.; Diwekar, U.; Hanumante, N.; Shastri, Y.; Cabezas, H. Integrated Model for Food-Energy-Water (FEW) Nexus to Study Global Sustainability: The Main Generalized Global Sustainability Model (GGSM). PLoS ONE 2022, 17, e0267403. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Bashir, M.F.; Bashir, M.A.; Shahzad, L. A Bibliometric Analysis and Systematic Literature Review of Tourism-Environmental Degradation Nexus. Environ. Sci. Pollut. Res. 2021, 28, 58241–58257. [Google Scholar] [CrossRef] [PubMed]
- Palani, G.; Arputhalatha, A.; Kannan, K.; Lakkaboyana, S.K.; Hanafiah, M.M.; Kumar, V.; Marella, R.K. Current Trends in the Application of Nanomaterials for the Removal of Pollutants from Industrial Wastewater Treatment—A Review. Molecules 2021, 26, 2799. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, N.; Singh, D.V.; Bhat, R.A.; Dervash, M.A.; Hameed, O.B. Freshwater Contamination: Sources and Hazards to Aquatic Biota. In Fresh Water Pollution Dynamics and Remediation; Springer: Singapore, 2020; pp. 27–50. [Google Scholar]
- The World Bank. Wastewater a Resource That Can Pay Dividends for People, the Environment, and Economies, Says World Bank; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Hoque, A.; Mohiuddin, M.; Su, Z. Effects of Industrial Operations on Socio-Environmental and Public Health Degradation: Evidence from a Least Developing Country (LDC). Sustainability 2018, 10, 3948. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Current Status of Water Pollution by Integrated Industrial Hubs (IIHs) in India. Environ. Degrad. Causes Remediat. Strateg. 2020, 1, 104–119. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, R.K.; Kumar, P. Assessment of Heavy Metals Uptake by Cauliflower (Brassica oleracea Var. Botrytis) Grown in Integrated Industrial Effluent Irrigated Soils: A Prediction Modeling Study. Sci. Hortic. 2019, 257, 108682. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Nwogwu, N.A.; Ajala, O.A.; Ajibade, F.O.; Ajibade, T.F.; Adelodun, B.; Lasisi, K.H.; Ugya, A.Y.; Kumar, P.; Omotade, I.F.; Babalola, T.E.; et al. Phytoremediation Mechanisms of Heavy Metal Removal: A Step Towards a Green and Sustainable Environment. In Innovative Bio-Based Technologies for Environmental Remediation; CRC Press: Boca Raton, FL, USA, 2021; pp. 207–236. [Google Scholar]
- Galal, T.M.; Eid, E.M.; Dakhil, M.A.; Hassan, L.M. Bioaccumulation and Rhizofiltration Potential of Pistia stratiotes L. for Mitigating Water Pollution in the Egyptian Wetlands. Int. J. Phytoremediation 2018, 20, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Yildiz Töre, G.; Özkoç, Ö.B. Recent Developments in Aquatic Macrophytes for Environmental Pollution Control: A Case Study on Heavy Metal Removal from Lake Water and Agricultural Return Wastewater with the Use of Duckweed (Lemnacea). In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 75–127. [Google Scholar]
- Mekbib, Y.; Huang, S.X.; Ngarega, B.K.; Li, Z.Z.; Shi, T.; Ou, K.F.; Liang, Y.T.; Chen, J.M.; Yang, X.Y. The Level of Genetic Diversity and Differentiation of Tropical Lotus, Nelumbo nucifera Gaertn. (Nelumbonaceae) from Australia, India, and Thailand. Bot. Stud. 2020, 61, 15. [Google Scholar] [CrossRef] [PubMed]
- Gowthami, R.; Sharma, N.; Pandey, R.; Agrawal, A. A Model for Integrated Approach to Germplasm Conservation of Asian Lotus (Nelumbo Nucifera Gaertn.). Genet. Resour. Crop Evol. 2021, 68, 1269–1282. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, M.; Li, Z.; Niu, Y.; Jin, Q.; Zhu, B.; Xu, Y. Effects of Ethylene Biosynthesis and Signaling on Oxidative Stress and Antioxidant Defense System in Nelumbo nucifera G. under Cadmium Exposure. Environ. Sci. Pollut. Res. 2020, 27, 40156–40170. [Google Scholar] [CrossRef] [PubMed]
- APHA, A. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Shashibhushana, H.S.; Lokeshappa, B. Pollutant Removal Potential of Single-Size Root Zone Media Using Vetiveria Zizanioides as Emergent Macrophyte and Its Validation. Int. J. Environ. Sci. Technol. 2019, 16, 7911–7920. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Al-Bakre, D.A.; Adelodun, B.; Abou Fayssal, S.; Andabaka, Ž.; Goala, M.; et al. Sustainable Upcycling of Mushroom Farm Wastewater through Cultivation of Two Water Ferns (Azolla Spp.) in Stagnant and Flowing Tank Reactors. Horticulturae 2022, 8, 506. [Google Scholar] [CrossRef]
- Jayasri, M.A.; Suthindhiran, K. Effect of Zinc and Lead on the Physiological and Biochemical Properties of Aquatic Plant Lemna minor: Its Potential Role in Phytoremediation. Appl. Water Sci. 2017, 7, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Ismail, N.‘I.; Abdullah, S.R.S.; Idris, M.; Hasan, H.A.; Halmi, M.I.E.; al Sbani, N.H.; Jehawi, O.H. Simultaneous Bioaccumulation and Translocation of Iron and Aluminium from Mining Wastewater by Scirpus grossus. Desalination Water Treat. 2019, 163, 133–142. [Google Scholar] [CrossRef]
- Kobaissi, A.N.; Kanso, A.A.; Kanbar, H.J. Translocation of Heavy Metals in Zea Mays L. Treated with Wastewater and Consequences on Morphophysiological Aspects. Rev. Int. Contam. Ambient. 2014, 30, 297–305. [Google Scholar]
- Shalini; Sharma, P.K.; Naithani, P. Effect of Industrial Effluent on the Groundwater Quality in Haridwar. J. Graph. Era Univ. 2018, 6, 47–54. [Google Scholar]
- Kumar, V.; Thakur, R.K. Pollution Load of SIDCUL Effluent with Reference to Heavy Metals Accumulated in Sediments Using Pollution Load Index (PLI) and Geo-Accumulation Index (I-Geo) at Haridwar (Uttarakhand), India. J. Environ. Biosci. 2017, 31, 163–168. [Google Scholar]
- Rai, P.K. Heavy Metal Pollution in Aquatic Ecosystems and Its Phytoremediation Using Wetland Plants: An Ecosustainable Approach. Int. J. Phytoremediation 2008, 10, 133–160. [Google Scholar] [CrossRef] [PubMed]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongtha, S.; Teamkao, P.; Boonapatcharoen, N.; Tripetchkul, S.; Techkarnjararuk, S.; Thiravetyan, P. Phosphorus Removal from Domestic Wastewater by Nelumbo nucifera Gaertn. and Cyperus alternifolius L. J. Environ. Manag. 2014, 137, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Pathak, V.; Tripathi, B. Accumulation of Cadmium and Copper from Aqueous Solutions Using Indian Lotus (Nelumbo nucifera). Ambio 2009, 38, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Abd Rasid, N.S.; Naim, M.N.; Che Man, H.; Abu Bakar, N.F.; Mokhtar, M.N. Evaluation of Surface Water Treated with Lotus Plant; Nelumbo nucifera. J. Environ. Chem. Eng. 2019, 7, 103048. [Google Scholar] [CrossRef]
- Sreekumar, V.P.A.; Prasannakumari, A.A.; Sumitha, V.; Pramod, B.; Scaria, S.; Vidyalaya, K.; Cantt, A.; Tropical, J.N. Phytoremediation Potential of Lagenandra Ovata L. and Nelumbo nucifera Gaertn. Associated with Aruvikkara Reservoir, Kerala-South India. Ecol. Environ. Conserv. 2020, 26, 206–212. [Google Scholar]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Heavy Metals Accumulation in Plants Growing in Ex Tin Mining Catchment. Int. J. Environ. Sci. Technol. 2011, 8, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Evaluation of Natural Phytoremediation Process Occurring at Ex-Tin Mining Catchment. Chiang Mai J. Sci. 2013, 40, 198–213. [Google Scholar]
- Khan, M.A.; Shah, M.A.; Mir, S.S.; Bashir, S. The Environmental Status of a Kashmir Himalayan Wetland Game Reserve: Aquatic Plant Communities and Eco-Restoration Measures. Lakes Reserv. Res. Manag. 2004, 9, 125–132. [Google Scholar] [CrossRef]
- Guo, H.B. Cultivation of Lotus (Nelumbo nucifera Gaertn. Ssp. Nucifera) and Its Utilization in China. Genet. Resour. Crop Evol. 2009, 56, 323–330. [Google Scholar] [CrossRef]
- Orozco Obando, W.S. Evaluation of Sacred Lotus (Nelumbo nucifera Gaertn.) as an Alternative Crop for Phyto-Remediation. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2012; p. 208. [Google Scholar]
Parameters | Borewell Water | Composite Industrial Effluent (CIE) | Student’s t-Test ^ | CPCB Standard for Surface Discharge | |
---|---|---|---|---|---|
t-Value | p-Value | ||||
pH | 7.71 ± 0.08 | 8.85 ± 0.09 | 16.397 | <0.001 | 5.5–9.0 |
EC (dS/m) | 0.58 ± 0.01 | 1.40 ± 0.02 | 63.516 | <0.001 | na |
TDS (mg/L) | 487.06 ± 24.49 | 1071.84 ± 85.25 | 11.419 | <0.001 | na |
BOD (mg/L) | 4.10 ± 0.19 | 374.49 ± 20.29 | 31.616 | <0.001 | 30 |
COD (mg/L) | 11.14 ± 2.20 | 1118.11 ± 58.10 | 32.976 | <0.001 | 250 |
TKN (mg/L) | 13.11 ± 2.31 | 76.55 ± 9.35 | 11.409 | <0.001 | 100 |
P (mg/L) | 6.85 ± 1.55 | 43.67 ± 8.18 | 7.660 | <0.001 | 5.0 |
Cd (mg/L) | Bdl | 1.92 ± 0.07 | 47.507 | <0.001 | 2.0 |
Cu (mg/L) | 0.03 ± 0.01 | 2.16 ± 0.07 | 52.174 | <0.001 | 3.0 |
Cr (mg/L) | Bdl | 2.14 ± 0.12 | 30.888 | <0.001 | na |
Fe (mg/L) | 1.09 ± 0.06 | 8.36 ± 0.26 | 47.190 | <0.001 | 3.0 |
Pb (mg/L) | Bdl | 0.22 ± 0.02 | 19.052 | <0.001 | 0.1 |
Zn (mg/L) | 0.43 ± 0.05 | 9.84 ± 0.31 | 51.905 | <0.001 | 5.0 |
Parameters | Treatments | Concentration | |
---|---|---|---|
Initial | Final | ||
pH | Control | 7.78 ± 0.04 a | 6.21 ± 0.02 b |
50% | 8.59 ± 0.03 a | 6.03 ± 0.02 b | |
100% | 8.94 ± 0.03 a | 6.88 ± 0.04 b | |
EC (dS/m) | Control | 0.58 ± 0.01 a | 0.28 ± 0.07 b |
50% | 1.08 ± 0.05 a | 0.40 ± 0.05 b | |
100% | 1.42 ± 0.07 a | 0.94 ± 0.04 b | |
TDS (mg/L) | Control | 513.42 ± 6.77 a | 187.25 ± 5.37 b |
50% | 902.71 ± 5.10 a | 94.28 ± 5.02 b | |
100% | 1162.49 ± 5.04 a | 547.27 ± 6.13 b | |
BOD (mg/L) | Control | 4.27 ± 0.05 a | 1.60 ± 0.06 b |
50% | 235.60 ± 4.06 a | 51.35 ± 5.08 b | |
100% | 392.50 ± 4.36 a | 147.78 ± 5.78 b | |
COD (mg/L) | Control | 13.20 ± 0.96 a | 5.85 ± 1.02 b |
50% | 708.89 ± 6.07 a | 145.95 ± 2.52 b | |
100% | 1171.20 ± 3.60 a | 445.57 ± 5.87 b | |
TKN (mg/L) | Control | 15.72 ± 2.05 a | 4.83 ± 1.73 b |
50% | 61.24 ± 2.07 a | 8.28 ± 1.22 b | |
100% | 86.74 ± 2.97 a | 24.50 ± 2.10 b | |
P (mg/L) | Control | 8.10 ± 0.98 a | 3.31 ± 0.23 b |
50% | 34.74 ± 2.02 a | 8.21 ± 0.07 b | |
100% | 52.50 ± 1.74 a | 18.48 ± 1.90 b | |
Cd (mg/L) | Control | Bdl | Bdl |
50% | 1.18 ± 0.01 a | 0.35 ± 0.08 b | |
100% | 1.98 ± 0.04 a | 1.14 ± 0.01 b | |
Cu (mg/L) | Control | 0.03 ± 0.01 a | 0.01 ± 0.02 b |
50% | 1.34 ± 0.03 a | 0.19 ± 0.07 b | |
100% | 2.22 ± 0.04 a | 1.16 ± 0.06 b | |
Cr (mg/L) | Control | Bdl | Bdl |
50% | 1.37 ± 0.02 a | 0.43 ± 0.05 b | |
100% | 2.26 ± 0.02 a | 1.062 ± 0.07 b | |
Fe (mg/L) | Control | 1.14 ± 0.01 a | 0.50 ± 0.01 b |
50% | 5.60 ± 0.02 a | 1.52 ± 0.02 b | |
100% | 8.57 ± 0.02 a | 3.25 ± 0.02 b | |
Pb (mg/L) | Control | Bdl | Bdl |
50% | 0.13 ± 0.02 a | 0.03 ± 0.07 b | |
100% | 0.23 ± 0.08 a | 0.11 ± 0.02 b | |
Zn (mg/L) | Control | 0.47 ± 0.04 a | 0.16 ± 0.02 b |
50% | 6.08 ± 0.09 a | 1.55 ± 0.04 b | |
100% | 10.14 ± 0.03 a | 4.92 ± 0.02 b |
Heavy Metals | Treatments | Before Phytoremediation (mg/kg) | After Phytoremediation (mg/kg) | BCF | TF | |||
---|---|---|---|---|---|---|---|---|
Roots | Leaves | Roots | Leaves | Roots | Leaves | |||
Cd | Control | 0.34 ± 0.09 a | 0.37 ± 0.04 a | 0.34 ± 0.09 a | 0.37 ± 0.04 a | na | na | na |
50% | 0.73 ± 0.06 b | 0.75 ± 0.02 b | 2.10 | 2.14 | 1.02 | |||
100% | 0.72 ± 0.06 b | 0.70 ± 0.10 b | 0.64 | 0.62 | 0.97 | |||
Cu | Control | 4.37 ± 0.05 a | 4.43 ± 0.08 a | 4.38 ± 0.02 a | 4.38 ± 0.04 a | 273.80 | 273.90 | 1.00 |
50% | 4.77 ± 0.03 b | 4.99 ± 0.02 b | 11.99 | 12.55 | 1.05 | |||
100% | 4.95 ± 0.04 b | 5.14 ± 0.01 b | 4.25 | 4.42 | 1.04 | |||
Cr | Control | 3.04 ± 0.08 a | 3.90 ± 0.08 a | 3.70 ± 0.05 b | 3.90 ± 0.08 b | na | na | na |
50% | 4.42 ± 0.96 b | 4.69 ± 0.11 b | 10.20 | 10.81 | 1.06 | |||
100% | 4.22 ± 1.06 b | 4.33 ± 0.14 b | 3.98 | 4.08 | 1.02 | |||
Fe | Control | 26.25 ± 3.83 a | 27.24 ± 4.00 a | 26.54 ± 6.90 a | 27.16 ± 3.90 a | 53.31 | 54.55 | 1.02 |
50% | 28.00 ± 0.99 b | 29.96 ± 0.43 a | 18.43 | 19.71 | 1.07 | |||
100% | 28.68 ± 1.62 a | 28.79 ± 1.75 a | 8.83 | 8.86 | 1.00 | |||
Pb | Control | 4.37 ± 0.06 a | 4.81 ± 0.03 a | 4.37 ± 0.06 a | 4.81 ± 0.03 a | na | na | na |
50% | 4.41 ± 0.07 b | 4.89 ± 0.04 a | 125.30 | 139.08 | 1.11 | |||
100% | 4.47 ± 0.01 b | 4.85 ± 0.02 a | 38.95 | 42.19 | 1.08 | |||
Zn | Control | 14.10 ± 0.05 a | 15.79 ± 2.83 a | 14.41 ± 0.04 b | 15.90 ± 0.31 a | 85.97 | 94.82 | 1.10 |
50% | 15.51 ± 0.12 b | 17.81 ± 1.14 a | 10.01 | 11.49 | 1.15 | |||
100% | 16.13 ± 0.47 b | 17.34 ± 1.06 a | 3.28 | 3.53 | 1.07 |
Parameters | Treatments | Changes | |
---|---|---|---|
Initial | Final | ||
Fresh Plant Biomass (g/plant; without flowers) | Control | 465.24 ± 7.25 a | 660.64 ± 4.71 b |
50% | 475.77 ± 8.63 a | 760.70 ± 8.77 b | |
100% | 470.84 ± 9.80 a | 670.40 ± 17.89 b | |
Chlorophyll content (mg/g fwt.) | Control | 2.90 ± 0.05 a | 3.77 ± 0.47 b |
50% | 2.88 ± 0.07 a | 4.30 ± 0.22 b | |
100% | 2.92 ± 0.05 a | 3.95 ± 0.06 b | |
Plant Height (cm) | Control | 82.60 ± 1.30 a | 113.54 ± 3.18 b |
50% | 82.80 ± 0.98 a | 154.05 ± 4.55 b | |
100% | 83.50 ± 2.04 a | 140.22 ± 2.81 b | |
Root Length (cm) | Control | 27.47 ± 0.25 a | 50.92 ± 1.50 b |
50% | 26.82 ± 0.70 a | 70.35 ± 2.42 b | |
100% | 25.30 ± 0.46 a | 65.20 ± 1.74 b | |
Leaf Spread (cm) | Control | 16.10 ± 0.12 a | 28.50 ± 0.35 b |
50% | 15.20 ± 0.15 a | 41.58 ± 0.26 b | |
100% | 14.39 ± 0.20 a | 32.14 ± 0.41 b | |
Number of Leaves (per plant) | Control | 3.00 ± 0.00 a | 6.00 ± 1.00 b |
50% | 3.00 ± 0.00 a | 10.00 ± 1.00 b | |
100% | 3.00 ± 0.00 a | 7.00 ± 2.00 b | |
Number of Flowers | Control | na | 7.00 ± 1.00 |
50% | na | 16.00 ± 2.00 | |
100% | na | 13.00 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Taher, M.A.; Kumar, P.; Adelodun, B.; Andabaka, Ž.; Mioč, B.; Držaić, V.; Bachheti, A.; et al. Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability 2022, 14, 9500. https://doi.org/10.3390/su14159500
AL-Huqail AA, Kumar P, Eid EM, Taher MA, Kumar P, Adelodun B, Andabaka Ž, Mioč B, Držaić V, Bachheti A, et al. Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability. 2022; 14(15):9500. https://doi.org/10.3390/su14159500
Chicago/Turabian StyleAL-Huqail, Arwa A., Piyush Kumar, Ebrahem M. Eid, Mostafa A. Taher, Pankaj Kumar, Bashir Adelodun, Željko Andabaka, Boro Mioč, Valentino Držaić, Archana Bachheti, and et al. 2022. "Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation" Sustainability 14, no. 15: 9500. https://doi.org/10.3390/su14159500
APA StyleAL-Huqail, A. A., Kumar, P., Eid, E. M., Taher, M. A., Kumar, P., Adelodun, B., Andabaka, Ž., Mioč, B., Držaić, V., Bachheti, A., Singh, J., Kumar, V., & Širić, I. (2022). Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability, 14(15), 9500. https://doi.org/10.3390/su14159500