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Abstract: Structural health monitoring (SHM) has been widely used for the performance assessment
of bridges, especially the methods based on dynamic characteristics. Meanwhile, bridge modal
frequency is influenced significantly by environmental factors, such as temperature and humid-
ity. Combined with SHM, a reliability assessment of bridges with the temperature and humidity
effects eliminated is proposed. Firstly, the bridge deflection verification coefficient is adopted as
the evaluation indicator for bridge condition, which is the ratio of deflection-measured value to
deflection-calculated value. It is obtained from the relationship between verification coefficient and
modal frequency through theoretical derivation. Secondly, a back propagation (BP) neural network
is improved by using an artificial bee colony algorithm and employed as a surrogate model to
eliminate the effect of temperature and humidity on frequency. Thirdly, a dynamic Bayesian network
is applied to establish the reliability analysis model combined with the monitoring results, so that the
probability distribution of bridge parameters is updated to improve the accuracy of the reliability
analysis. Finally, a simply supported bridge is used as the case study, based on the proposed method
in this work. The results indicate that the proposed method can eliminate the temperature and
humidity effect on frequency precisely and effectively. With the effect of temperature and humidity
on frequency eliminated, the bridge condition assessment can be evaluated accurately through the
reliability analysis based on SHM and the dynamic Bayesian network.

Keywords: structural health monitoring; bridge reliability assessment; modal frequency; verification
coefficient; temperature and humidity effect elimination; dynamic Bayesian network

1. Introduction

As a key component of the transportation network, bridges make essential contribution
to social and economic development. However, with service time increasing, bridges
become deteriorated under the action of vehicle load and adverse environmental factors [1].
According to the report from the Ministry of Transport of China, 76,483 highway bridges
in China had structurally deficient ratings [2]. Moreover, in California, USA, structurally
deficient bridges increased from 6.2% to 7% of total bridges [3]. Therefore, structural
health monitoring (SHM) has been a hotspot in the research of bridge condition assessment
in recent years. The accurate evaluation of a bridge’s condition for the reliability and
sustainability of bridge service performance, which can be carried out by SHM, is of great
significance [4,5].

Having benefitted from the development of sensor and communication technology, the
SHM of bridges has developed rapidly, and is formed based on acoustic characteristics [6],
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graphic information [7], and static response [8] as monitoring indexes. Meanwhile, the ve-
hicle load action and external environmental factors can be obtained accurately [9,10]. The
SHM based on structural modal parameters becomes the main monitoring technology due
to the advantages of mature technology, higher accuracy, and continuous monitoring [11].
There are two categories of the vibration-based SHM, namely a direct type and an indirect
type. The direct method is based on the accelerometer arranged on bridges to extract the
dynamic parameter [12], and the indirect method is carried out through vehicle-assisted
techniques [13]. The damage identification and performance evaluation of bridges are
studied using SHM of modal frequency and mode shape. Lee et al. used time domain
decomposition techniques from vibration-based SHM to extract mode shape [14]. Liu et al.
established a baseline finite element model including material properties, spring bearing el-
ements, and the replacement of Mindlin plate elements, which is used for real-time damage
identification and SHM [15]. Li et al. proposed a new method to extract the time-dependent
characteristics of the bridge with vehicles moving, and it was validated through laboratory
and field tests that the proposed method evaluated the bridge condition accurately [16].
However, the above SHM technologies and methods based on dynamic performance are
only effective for the identification of local damage and dynamic characteristic assessment,
and they are prone to the interference of monitoring noise and external environment factors.

Among them, the influence of ambient temperature on the modal frequency is partic-
ularly significant, which affects the material and structural properties of bridges directly.
Even worse, it masks the changes caused by bridge damage, and leads to the distortion
of bridge performance analysis [17]. Therefore, it is very important to eliminate the effect
of temperature on bridge condition assessment. Based on research about the long-term
monitoring data of bridge frequency and ambient temperature, it was demonstrated that
temperature had a negative correlation with frequency [18]. The influence of temperature
on geometrical dimensions, boundary conditions, and the elastic modulus of a bridge was
analyzed through experimental analysis, numerical simulation, and a neural network. The
numerical relationship between structural elastic modulus and ambient temperature was
clarified, and the effect mechanism of temperature on bridge modal parameters was further
obtained [19–21]. On this basis, a neural network and regression analysis model were
employed to establish a method to eliminate the temperature effect on modal parameters.
It was obtained that a bridge frequency, with the ambient temperature effect eliminated,
made an accurate assessment of the bridge condition [22–24]. Nevertheless, the methods
mentioned above are mainly based on numerical model and monitoring data, of which the
elimination precision is easily affected by the model error and the humidity effect is not
taken into consideration. There is a certain difference between the bridge internal tempera-
ture and the ambient temperature. If the internal temperature influence is considered, the
elimination precision will be improved.

As one of the main methods for bridge condition assessment, reliability theory has been
widely used to evaluate the safety and serviceability of bridges [25–28]. When combined
with the SHM data of deflection, strain, stress, and so on, it can predict the time-dependent
reliability and residual life of a bridge [29–36]. As the most widely used parameter in
SHM, modal frequency is usually adopted to reflect the dynamic characteristics and to
identify structural damage. If the relationship between frequency and bridge safety is
obtained, bridge frequency can be employed as a structural safety indicator to estimate
bridge reliability. However, there is little research literature in this field. Some researchers
take advantage of modal theory to establish the safety reliability assessment method with
frequency monitoring data. Liu et al. proposed the bridge deflection calculation through
modal flexibility theory, which was combined with the mode shape and modal frequency
monitoring data. For the monitored bridge, the time-dependent reliability was evaluated
and analyzed by the proposed method [37]. Kaloop et al. implemented frequency domain
decomposition to estimate the bridge mode shapes and damping ratios and examined
the bridge performance reliability through Markov Chain Monte Carlo [38]. Jamali et al.
addressed the safety issues on an aging bridge by proposing a multi-tier assessment
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procedure, which was established through SHM techniques and probabilistic approaches.
The first four frequencies of a box-girder bridge were obtained by modal test, and the
bridge reliability was analyzed in part through a destructive experiment [39]. Meanwhile,
the Bayesian network can be adopted to propose the relationship among multiple SHM
parameters. In some references, it was combined with SHM and reliability theory to make
an accurate and comprehensive assessment for bridges [36,39,40]. However, the above
studies do not take into account the influence of temperature and humidity on reliability
analysis based on SHM. If the influence of temperature and humidity is eliminated, the
condition estimation for bridge service will be more effective and accurate.

As an important transportation infrastructure, medium- and small-span bridges ac-
count for the largest proportion out of all kinds of bridges. They are widely used across the
world, notably under the adverse influence of vehicular and environmental factors. More-
over, the condition assessment for a bridge is restricted by the influence of temperature on
bridge frequency SHM. To overcome this drawback, a bridge reliability assessment method
based on bridge frequency SHM with the temperature and humidity effect eliminated
is proposed in this paper that. The verification coefficient of bridge deflection, namely
the ratio of deflection-measured value to deflection-calculated value, is employed as the
reliability evaluation indicator for reliability analysis. The verification coefficient calcula-
tion method based on frequency SHM is established through the theoretical derivation of
bridge deflection and modal frequency. Combined with the frequency, temperature, and
humidity SHM data, the BP neural network is used as a surrogate model to predict the
bridge frequency. The hidden layer neurons number, network weight, and threshold of BP
neural network is optimized through an artificial bee colony algorithm. A temperature and
humidity effect on frequency elimination method is proposed based on the frequency mea-
sured, predicted, and expected values. The relationship between the verification coefficient
and the SHM data is analyzed through the dynamic Bayesian network, and the posterior
probability distribution of the monitoring data is also obtained. Finally, the bridge reliability
is calculated and analyzed using a Monte Carlo method. A simply supported bridge was
built and monitored to verify the correctness and effectiveness of the proposed method.

2. Basic Theory of Verification Coefficient
2.1. Verification Coefficient of Deflection

The mid-span deflection of the simply supported beam bridge can be obtained
through Equation (1).

f =
Fl3

48EI
(1)

According to the Chinese specification [41], the verification coefficient of deflection is
defined as Equation (2), and the verification coefficient is dimensionless.

η f =
ftest

f0
(2)

where f0 and ftest are the theoretical and measured deflection values (m) of simply supported
bridges, respectively, and the theoretical deflection is computed based on Equation (1).

f0 =
Fl3

0
48E0 I0

(3)

where l0 is the design calculation span (m) of bridge, E0 is the theoretical value of elastic
modulus (Pa), I0 is the theoretical value of the bending moment of inertia (m4).

Based on the field test, the measured value ftest can be expressed as Equation (4).

ftest =
Fl3

1
48E1 I1

(4)
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where l1, E1, and I1 are the measured values of calculation span (m), elastic modulus (Pa),
and the bending moment of inertia (m4), respectively.

Substituting Equations (3) and (4) into Equation (2), the relationship between the
deflection verification coefficient, span, and flexural stiffness is expressed as Equation (5).

η f =
l3
1 E0 I0

l3
0 E1 I1

(5)

It is worth noting that the bridge deflection is proportional to the external force and
obeys the superposition principle within the range of elastic deformation [36]. In this study,
the simply supported bridge with a single load located at the mid-span section is taken as
an example. According to the superposition principle, the deflection verification coefficient
calculation method is still applicable for the condition of arbitrary loads imposed on any
position of the bridge. In other words, it is suitable for actual bridge engineering.

2.2. Verification Coefficient of Frequency

The frequency calculation equation of a simply supported bridge is defined in Equation (6).

Fren =
n2π

2l2 ·
√

EI
m

, (6)

where Fren is nth modal frequency (Hz), m is the mass per unit length (kg/m) of the simply
supported beam bridge.

The frequency verification coefficient of the simply supported bridge is expressed
as Equation (7).

ηFre =
Fretest

Fre0
=

Fretest

n2π
2l2

0
·
√

E0 I0
m0

, (7)

where ηFre is the frequency verification coefficient, which is dimensionless; Fre0 and Fretest
are the calculated and measured frequencies (Hz) of simply supported bridges, respectively;
m0 is the theoretical value of mass per unit length (kg/m).

With the calculation span, mass, and flexural stiffness obtained through field test, the
measured frequency of the bridge can be calculated according to Equation (8).

Fretest =
n2π

2l2
1
·

√
E1 I1

m1
. (8)

The frequency verification coefficient can be given by Equation (9).

ηFre =
Fretest

Fre0
=

l2
0

l2
1

√
m0E1 I1

m1E0 I0
. (9)

2.3. Deflection Verification Coefficient Based on Frequency

The relationship between the deflection verification coefficient and frequency verifica-
tion coefficient can be obtained according to Equations (5) and (9). Therefore, the deflection
verification coefficient based on frequency is expressed as Equation (10).

η f =
l3
1 E0 I0

l3
0 E1 I1

=
m1m0l0l4

1 E0 I0

m1m0l1l4
0 E1 I1

=
m0l0
m1l1

·
l4
1m1E0 I0

l4
0m0E1 I1

=
m0l0
m1l1

η−2
Fre =

m0l0
m1l1

·
(

Fretest

Fre0

)−2
, (10)

where m0l0 and m1l1 represent the theoretical value and the measured value of the overall
mass (kg) of bridge structure. It is assumed that the mass change of bridge structure is little
and can thus be ignored. As a result, Equation (10) is rewritten as η f = η−2

Fre.
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3. Temperature and Humidity Effect Elimination
3.1. BP Neural Network

The BP neural network [42] is a multilayer feedforward network, as shown in Figure 1.
The learning process consists of data forward propagation and error back propagation.
The measured data is imported through the input layer, processed by the hidden layer,
and exported by the output layer in the forward propagation process. If the error between
the output result and the expected result do not meet the requirements, the error back
propagation is carried out. At the same time, the error propagates from the output layer to
the input layer and modifies the weights and thresholds of each neuron. The process of
data forward propagation and error back propagation continuously alternates. When the
error is less than the allowable value, or if it reaches the termination condition, it stops the
neural network training process. The trained network can be used for prediction based on
the measured data.
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3.2. Artificial Bee Colony Algorithm

The artificial bee colony algorithm (ABC) is an optimization algorithm that simulates
the process of bee foraging to find the optimal solution, which consists of four stages:
initialization stage, employed bees phase, onlooker bees phase, and scout bees phase.
Compared with genetic algorithm (GA), particle swarm optimization algorithm (PSO), and
other swarm intelligence optimization algorithms, the ABC algorithm has the advantages
of simple structure, a strong ability to search for global optimal solutions, and is easy to
implement [43,44]. The main steps of the ABC algorithm are summarized as follows:

(1) Initialization phase

Firstly, the initial food source is generated according to Equation (11), and then the
adaptive value is calculated through Equation (12) to evaluate the quality of the food source.

θij = lbj +
(
ubj − lbj

)
· rand(0, 1), (11)

where θij is the jth parameter of the ith solution; lbj and ubj are the lower and upper bounds
of the jth parameter, respectively; rand(0, 1) represents a randomly generated real number
between 0 and 1.

f iti =

{
1

1+ f (θi)

1 + abs( f (θi))

i f f (θi) ≥ 0
otherwise

, (12)
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where f iti is the fitness of the ith solution; f (θi) is the target function value of the food
source θi.

(2) Employed bees phase

The employed bee will search for nearby food sources, and the forger bee correspond-
ing to the ith food source selects a new food source according to Equation (13) and retains a
better solution according to the greedy selection mechanism.

vij = θij + ψij ·
(

θij − θkj

)
, (13)

where vij is the jth parameter corresponding to the ith new solution; θij is a randomly
selected food source, k 6= i; ψij is random number on interval [–1, 1].

(3) Onlooker bees phase

The employed bees share the information of the food source with the onlooker bees
after returning to the nest, and the onlooker bees select the food source according to the
probability obtained by Equation (14). The best food source will be further exploited and
utilized by the onlooker bees.

pi =
f iti

FN
∑

j=1
f itj

. (14)

(4) Scout bees phase

If the exploitation number of a food source is more than the control parameter, it
indicates that the food source is exhausted. The employed bees will be converted to scout
bees and start to search for food sources randomly. The scout bee will turn back to the
employed bee when it discovers a new food source, and the counter is reset to 0. The
algorithm repeats from Step 2 to Step 4 until the termination condition is satisfied.

3.3. BP Neural Network Optimized by ABC Algorithm

The fitting accuracy of the BP neural network is mainly influenced by the number of
hidden layer neurons, network weight, threshold, and other parameters. The BP neural
network model in this paper is constructed with the bridge internal temperature, environ-
mental temperature, and humidity as the input parameters and the modal frequency as
the output parameter. The fitting function of the ABC algorithm is the Euclidean distance
between the frequency predicted by the BP neural network and the frequency SHM data.
The frequency SHM data cover the first three order frequencies. Therefore, three BP neural
networks for the first three frequencies in this work are established. The parameters of
the BP neural network are regarded as the food source in the ABC algorithm. The quality
of the food source is determined by the fitting function. Through the employed bees
phase, onlooker bees phase, and scout bees phase, the best combination of the parameter
of the BP neural network can be obtained. Considering the efficiency and accuracy of the
optimization process, the population size, iteration times, and exploitation limit of the ABC
algorithm, and the upper and lower bounds of the parameters, are determined according
to reference [36]. When the parameters’ combination of neurons number, network weight,
and threshold are optimized by the ABC algorithm, the BP neural network model with the
best accuracy can be obtained. The calculation flow of the BP neural network optimized by
the ABC algorithm is shown in Figure 2.
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3.4. Temperature and Humidity Effect Elimination of Bridge Modal Frequency

The optimized BP neural network model is used to analyze the temperature and
humidity effect on bridge frequency. The difference between the predicted frequency and
the measured frequency at the reference temperature is taken as the temperature and
humidity effect, which is eliminated from the measured frequency to obtain the modal
frequency without the effect of temperature and humidity. It is defined as Equation (15) [45].

fq = fm −
[

fp − fe
]
, (15)

where fq is modal frequency (Hz) with temperature effect eliminated; fm is the measured
frequency value (Hz); fp is the frequency value (Hz) predicted by the optimized BP neural
network model; fe is the expected value (Hz) of bridge modal frequency.

In addition, the prediction capacity of the BP neural network is related to the amount
of frequency SHM data. As for the SHM of the actual bridge, it can provide a sufficient
measured data, which can improve the prediction accuracy of the BP neural network
optimized by the ABC algorithm. Therefore, the effect of temperature and humidity on
frequency can be eliminated effectively for actual bridge engineering.

4. Dynamic Bayesian Network Model

Based on the dynamic Bayesian network, the posterior distribution of bridge frequency
with the temperature and humidity effect eliminated is shown as Equation (16).

f ( FreUN |X) =
L(X|FreUN )π(FreUN)∫
Ω

L(X|FreUN )dFreUN
, (16)

where X = [XFre, XTem, XHum, XPC1, XPC2, XPC3]
T represents the SHM data of the frequency,

environmental temperature, humidity, and the internal temperature principal components;
L(X|FreUN ) is likelihood function; π(FreUN) is the prior distribution of modal frequency
with the effect of factors eliminated; Ω is the parameter space of FreUN .
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Equation (16) can be expressed by a statistical model, which is composed of re-
sponse variables, explanatory variables, and likelihood relations. Thus, it is shown
as Equation (17).

FreUN |X ∼ N
(
µFreUN , νFreUN

)
, (17)

where FreUN is the response variable; X is the explanatory variable as the non-statistical
part. This paper assumes that the response variable FreUN obeys a normal distribution of
expected value µFreUN and standard deviation νFreUN [36].

Generally, likelihood relation can be defined as a generalized linear model and non-
linear model [36,46], while the generalized linear model has a simple structure and high
applicability. Therefore, the linear model is adopted in this paper to establish the linear
regression model, with response variables and explanatory variables given. The mean
value of this model is equal to the expected value of the posterior distribution, therefore it
can be obtained as Equation (18).

E( FreUN |X) = µFreUN = β0 +βX, (18)

where β0 is the constant coefficient of the regression model;β = [βFre, βTem, βHum, βPC1, βPC2, βPC3]
represents regression parameters corresponding to each explanatory variable.

In addition to the relationship between the various SHM parameters of the bridge,
the SHM parameters also possess time property. The linear model mentioned above is
no longer applicable. However, the dynamic Bayesian network model can effectively
solve such problems, which is a directed acyclic graph (DAG). The nodes of the DAG
represent variables, and arrows represent the relationships between variables. The static
simplified model among variables in this paper is shown in Figure 3, where circular nodes
and rectangular nodes represent random variables and SHM data, respectively.
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humidity eliminated.

In order to analyze the dynamic Bayesian network model, the relationship between
variables and time-dependent characteristics should first be simplified. This kind of model
satisfies the characteristics of the Markov chain. Therefore, it can be assumed that the
probability distribution of any time slice t is only related to the adjacent previous time
slice t−1. The conditional probabilities of adjacent moments are homogeneous, and the
transition probability P(St+1|St) does not depend on time t. In addition, the dynamic
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Bayesian network can be divided into prior network N0 and transfer network N→. As a
result, the joint probability of all time slices can be expressed as Equation (19).

P(S0, S1, · · · , ST) = PN0(S0)
T

∏
t=0

PN→(St+1|St), (19)

where St = [V1,t, V2,t, · · ·Vn,t] is the set of variables in time slice t.
Then, the joint probability of any node in the dynamic Bayesian network model is

shown as Equation (20).

P(X1:n,0:T) =
n

∏
i=1

PN0(Vi,0|Pa(Vi,0))
T

∏
t=1

n

∏
i=1

PN→(Vi,t|Pa(Vi,t)), (20)

where Pa(Vi,t) represents the father node of the ith variable at time t.
The node VerCo is calculated by Equation (10) according to the result of node FreUN .

Therefore, the dynamic Bayesian network model of the bridge verification coefficient based
on SHM is shown in Figure 4. WinBUGS software is employed in this paper to calculate
and analyze the dynamic Bayesian network model.
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5. Experimental Test
5.1. Simply Supported Bridge

In this paper, a simply supported bridge was established in the laboratory as the
research object (as shown in Figure 5). The bridge is 4 m long, the calculated span is 3.7 m
long, and the cross-section is a rectangle with a width of 0.6 m and a height of 0.15 m.
Portland cement of grade 42.5, river sand with fineness modulus of 2.7, and aggregate with
maximum nominal size of 31.5 mm were used for bridge construction. The mix proportions
are illustrated in Table 1. There are 6 × Φ12 steel reinforcements longitudinally arranged
in the beam, and the concrete cover thickness is 4 mm. The beam is simply supported on
concrete piers by plate rubber supports. The deflection verification coefficient of the simply
supported bridge was obtained through the static load test. The load level of the static load
test was divided into four grades, namely if the load P equals 0.5 kN, 1.0 kN, 1.5 kN, and
2.0 kN, respectively. The deflection at the midspan of four load conditions was measured
by the dial gage.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 24 
 

kN, 1.5 kN, and 2.0 kN, respectively. The deflection at the midspan of four load conditions 
was measured by the dial gage. 

  
Figure 5. The simply supported bridge. 

Table 1. Mix proportions of the bridge. 

Material Unit Proportions 
Cement kg/m3 378 

Coarse aggregate kg/m3 1230 
Fine aggregate kg/m3 607 

Water kg/m3 185 
Water/cement ratio — 0.49 

5.2. Structural Health Monitoring System 
5.2.1. Modal Frequency Monitoring System 

In this paper, a DH5922 dynamic signal test and analysis system (as shown in Figure 
6) manufactured by Donghua Testing Technology Co., Ltd. was used to monitor the 
modal frequency of the bridge. The test system includes a signal analysis system, DH131E 
acceleration sensor, and an impulse hammer with a piezoelectric force sensor. The accel-
eration sensor has the advantages of small size (Φ10 × 16 mm), light weight (5.5 g), and 
large test range (1 Hz~8000 Hz). The force hammer pressure test range is 0 kN~60 kN. The 
sensor and force hammer can withstand an operating temperature of −40 °C to 80 °C and 
meet the field experimental environmental conditions. The dynamic test system includes 
two modal analysis test modes, which are force measurement method and no-force meas-
urement method. Because the force-measured method possesses better performance and 
accuracy, it was used to collect and analyze the modal frequency to validate the effective-
ness and accuracy of the verification coefficient method proposed in this study. Through 
the Modal Analysis Module in the DH5922 dynamic signal test and analysis system, it can 
measure the frequency more accurately, of which the frequency resolution was 0.001 Hz. 

Due to the complex testing process of the force-measured method, it is not suitable 
for the SHM of bridge frequency. The spectral analysis was employed for the frequency 
SHM, which was excited by rubber hammer. The accelerometer was used to monitor vi-
bration. The sampling frequency was set as 5120 Hz. The rectangular window was used, 
and the frequency resolution was 0.156 Hz. The bridge frequencies were calculated and 
extracted by frequency spectral analysis using fast Fourier transform. The monitoring test 
was carried out from October 2015 to September 2016, and the modal test was performed 

Figure 5. The simply supported bridge.

Table 1. Mix proportions of the bridge.

Material Unit Proportions

Cement kg/m3 378
Coarse aggregate kg/m3 1230

Fine aggregate kg/m3 607
Water kg/m3 185

Water/cement ratio — 0.49

5.2. Structural Health Monitoring System
5.2.1. Modal Frequency Monitoring System

In this paper, a DH5922 dynamic signal test and analysis system (as shown in Figure 6)
manufactured by Donghua Testing Technology Co., Ltd. was used to monitor the modal
frequency of the bridge. The test system includes a signal analysis system, DH131E acceler-
ation sensor, and an impulse hammer with a piezoelectric force sensor. The acceleration
sensor has the advantages of small size (Φ10 × 16 mm), light weight (5.5 g), and large test
range (1 Hz~8000 Hz). The force hammer pressure test range is 0 kN~60 kN. The sensor
and force hammer can withstand an operating temperature of−40 ◦C to 80 ◦C and meet the
field experimental environmental conditions. The dynamic test system includes two modal
analysis test modes, which are force measurement method and no-force measurement
method. Because the force-measured method possesses better performance and accuracy,
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it was used to collect and analyze the modal frequency to validate the effectiveness and
accuracy of the verification coefficient method proposed in this study. Through the Modal
Analysis Module in the DH5922 dynamic signal test and analysis system, it can measure
the frequency more accurately, of which the frequency resolution was 0.001 Hz.
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Figure 6. Bridge dynamic characteristic monitoring system: (a) accelerometer; (b) hammer;
(c) DH5922 type dynamic test system.

Due to the complex testing process of the force-measured method, it is not suitable
for the SHM of bridge frequency. The spectral analysis was employed for the frequency
SHM, which was excited by rubber hammer. The accelerometer was used to monitor
vibration. The sampling frequency was set as 5120 Hz. The rectangular window was used,
and the frequency resolution was 0.156 Hz. The bridge frequencies were calculated and
extracted by frequency spectral analysis using fast Fourier transform. The monitoring test
was carried out from October 2015 to September 2016, and the modal test was performed
to measure the bridge frequencies every two hours from 8:00 a.m. to 10:00 p.m. on every
day of monitoring.

5.2.2. Temperature and Humidity Monitoring System

The temperature and humidity monitoring system manufactured by Shenzhen TOPRIE
Electronics Co., Ltd. (Shenzhen, China) Was used to monitor the ambient temperature and
humidity of the bridge and the bridge’s internal temperature. The system is composed of a
TP-2307 digital temperature and humidity sensor and a TP700 multi-channel data recorder
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with a temperature and humidity input module, as shown in Figure 7a,b. The temperature
measurement ranges of the temperature and humidity sensor are −40 ◦C ~125 ◦C and 0%
to 99%, respectively. The temperature resolution is 0.3 ◦C, and the humidity resolution
is 0.3%.
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(b) temperature and humidity sensor; (c) layout of temperature-monitoring sensors inside the bridge.

Omega T-type thermocouple was used to test the internal temperature of the bridge.
The two poles of the Omega T-type thermocouple are composed of copper-constantan.
According to the Seebeck effect, the temperature of the measuring point was measured
through the thermoelectric electromotive generated in the circuit. The temperature mea-
surement range omega T-type thermocouple is −250 ◦C to 260 ◦C. Next, 38 measuring
points were arranged at the midspan cross-section of the bridge, and one thermocouple
was buried at each measuring point. The layout is shown in Figure 7b.

6. Results and Discussion
6.1. Validation of Bridge Verification Coefficient Based on Modal Frequency

The deflection values of the mid-span section of the simply supported bridge and the
first three modal frequencies were obtained through static and dynamic load tests. The
temperature and humidity of the field test condition were 13.3 ◦C and 33.7%. The results
were used to verify the effectiveness and accuracy of the method proposed in this paper,
which is used for calculating the bridge verification coefficient based on modal frequency,
and the bridge deflections and frequencies were measured for four times to reduce the
influence of a test error. Then, the corresponding theoretical values were obtained through
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a finite element model established by ANSYS software. The theoretical values and actual
test results are shown in Tables 2 and 3.

Table 2. The theoretical values and measured values of deflections.

Load P
Level (kN)

Theoretical
Values (mm)

Measured Values (mm)

1 2 3 4 Mean Coefficient
of Variation

0.5 0.111 0.10 0.10 0.09 0.08 0.093 0.1035
1.0 0.223 0.17 0.20 0.19 0.19 0.188 0.0671
1.5 0.329 0.26 0.29 0.28 0.28 0.278 0.0453
2.0 0.432 0.35 0.37 0.38 0.37 0.368 0.0342

Table 3. The theoretical values and measured values of the first three order frequencies.

Modal Order
Theoretical
Values (Hz)

Measured Values (Hz)

1 2 3 4 Mean Coefficient
of Variation

1st order 18.304 19.688 19.750 19.375 19.688 19.625 0.0086
2nd order 76.617 82.511 82.900 83.132 82.133 82.669 0.0053
3rd order 174.330 187.769 188.408 188.927 186.481 187.896 0.0056

The mean values and theoretical values of the measured data were substituted into
Equation (2) to calculate the deflection verification coefficients of the simply supported
bridge, and the deflection verification coefficients based on modal frequencies were calcu-
lated according to Equation (10). The calculation results are shown in Figure 8.
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It can be seen from Table 2 that the COVs of the measured deflections of the bridge
are between 0.03 and 0.1, which indicates that the static load test can provide accurate
deflection values. The measured data in Table 3 were extracted and obtained through the
Modal Analysis Module in the DH5922 system. The frequency resolution of this method
is 0.001 Hz, and it can measure the bridge frequencies more accurately. However, the
test process is influenced by the electrical interference and human factor, which leads
to frequency variation between tests, and the modal test was controlled strictly in this
study to reduce the error caused by the adverse factors. The COVs of the measured
frequencies in Table 3 do not exceed 0.01, which demonstrates that the dynamic test
has higher accuracy and reliability. In Figure 8, the results of the deflection verification
coefficient calculated by the two methods are between 0.838 and 0.87, and the maximum
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relative error is 3.82%. This verifies the effectiveness and accuracy of the bridge deflection
verification coefficient calculation method based on modal frequency. It proves that the
first three modal frequencies can be used to calculate the bridge deflection verification
coefficient. With an increase in static load, the deflection verification coefficients increase
slightly. With an increase in modal frequency orders, the deflection verification coefficients
calculated by the method proposed in this paper decrease from 0.87 to 0.859.

6.2. Bridge Frequency with the Effect of Temperature and Humidity Eliminated

The temperature data of 38 measuring points inside the bridge were obtained from the
structural health monitoring system established in this paper. Due to the high correlations
between the internal temperature data, there will be unstable fitting parameter estimations
in the temperature effect elimination and dynamic Bayesian network analysis. The principal
component analysis method was used to process the temperature-monitoring data inside
the bridge. The principal analysis is an approach for linear data visualization and reduction.
The principal components obtained by the principal component analysis method are nu-
merical and contain most of the information of the original data and describe the maximum
and minimum variability in the data set [47]. Moreover, the obtained temperature principal
components can improve the generalization performance of the fitting model, avoiding
the over-fitting phenomenon caused by information overlap. The principal component
analysis was mainly calculated and analyzed according to Equations (21) and (22):

Y = ΨTX = [y1, y2, · · · , yn]
T , (21)

where Y is principal component vector; X is the original data vector; ΨT is orthogonal
transformation matrix, namely ΨT = Ψ−1. Through the singular value decomposition of
the covariance matrix of X, it can be expressed as Equation (22).

Λ = diag(λ1, λ2, · · · , λn), (22)

where Λ is a diagonal matrix composed of n eigenvalues; the eigenvalues satisfy
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0; λi is the contribution rate of the ith principal component.
The selected principal component must meet the condition that the cumulative contribution
rate is more than 85%.

The cumulative contribution rates of the principal components of the bridge’s internal
temperature are shown in Figure 9. The contribution rate of the first principal component
is 97.12%, which indicates that the temperature data obtained from the test have a signif-
icant correlation. Moreover, the cumulative contribution rate of the first three principal
components is 99.8%, therefore it can fully characterize the information of the original
internal temperature-monitoring data. The essence of the first three components is the
reconstruction of the original temperature-monitoring data, which cover the monitoring
data information with a smaller data size. Therefore, the first three principal components
were used for analysis in the BP neural network and the dynamic Bayesian network model.

The environment temperature, humidity, and the first three principal components of
bridge internal temperature were taken as the input parameters of the BP neural network
model. The first three order frequencies of the SHM data of the simply supported bridge
were taken as the output parameters. A total of 521 groups of monitoring data were
collected by the SHM system, in which the first 417 groups of data were used as training
samples and the last 104 groups of data were used as test samples. The monitoring process
lasted from October 2015 to September 2016, and the modal frequency, temperature, and
humidity monitoring test was preformed every two hours from 8:00 a.m. to 10:00 p.m.
for every day of monitoring. The duration of a single monitoring process was 15 min.
According to the temperature-monitoring data, the change of the internal temperature
lags behind that of the environment temperature. Before 2:00 p.m., the environment
temperature is greater than the internal temperature by about 1 ◦C to 4 ◦C. After 2:00 p.m.,
the environment temperature is less than the internal temperature by about 1 ◦C to 6 ◦C.
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The BP neural network model used in this paper has a three-layer structure, including an
input layer, hidden layer, and output layer. According to the process shown in Figure 1,
the bridge frequencies under the influence of temperature and humidity were fitted and
predicted. The population size, iteration times, and exploitation limit of the ABC algorithm
were set to 30, 300, and 150, respectively. Finally, the parameters’ combination of the hidden
layer neurons number, inter layer weights, thresholds, and other parameters in the BP
neural network were optimized by the ABC algorithm. The fitting error results of the
optimized BP neural network are shown in Figure 10.
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Figure 10. The relationships between the fitting error and the number of hidden layer neurons.

It can be seen from Figure 10 that the fitting errors of the first three frequencies of the
bridge decrease gradually with an increase in the hidden layer neurons number. When the
number of neurons is 7, the fitting error of the first order frequency reaches the minimum
value. Then, the fitting error fluctuates slightly with an increase in the neurons number,
and the minimum values of the fitting errors of the second and third order frequencies
occur when the number of neurons in the hidden layer is 6. Therefore, the number of
hidden layer neurons in the BP neural network models, for the first three order frequencies
in the monitoring data, were set to 7, 6, and 6, and the optimized BP neural network model
was established according to the optimal combination of layer weights, thresholds, and
other parameters determined by the ABC algorithm. The predicted value, expected value,
and monitored value of the SHM data were substituted into Equation (15) to calculate the
first three frequencies of the simply supported slab bridge, eliminating the influence of
temperature and humidity, as shown in Figure 11.
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As shown in Figure 11, the monitoring temperature minimum and maximum values
are in time slice 4 and time slice 10, respectively. At the same time, the corresponding
frequency monitoring values are maximum and minimum, respectively. The overall change
trend shows that the bridge frequency monitoring data has a negative correlation with the
temperature. However, the monitoring humidity has little impact on the frequency change
trend. The predicted value of the bridge frequencies is consistent with the monitored
values, which shows that the BP neural network optimized by the ABC algorithm can
accurately predict the bridge frequency. The frequencies with the effect of temperature and
humidity eliminated will no longer vary with the change of temperature, which is closer
to the expected value. Due to the influence of the test errors, human factors, and other
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interference factors, the frequencies with the effect of temperature and humidity eliminated
fluctuate slightly around the expected value.

6.3. Dynamic Bayesian Network Analysis

Using the dynamic Bayesian network established above, the uncertainty of SHM
data and bridge frequency with the effect of temperature and humidity eliminated were
analyzed. The relationship between the monitoring variables was established through
Equation (18). In this study, the SHM of the bridge was carried out from October 2015 to
September 2016. The SHM data in a month were analyzed and used for a time slice of
dynamic Bayesian network, and the time slice 1 to the time slice 12 corresponded to October
2015 to September 2016, respectively. According to the characteristics of the monitoring
data parameters [48], this paper assumed that the regression coefficient β and the mean
value of the bridge frequency with the effect of temperature and humidity eliminated
obey the normal distribution and that the standard deviation variable ν obeys the gamma
distribution. For time slice 1, it was regarded as non-prior information, and the prior
distribution mean and standard deviation of each variable are 0 and 104, so as to reduce
the influence of prior information. The WinBUGS software was adopted to calculate the
posterior distribution of the first three frequencies eliminating the effect of temperature
and humidity. A part of the posterior information results is shown in Table 4.

Table 4. Posterior distribution information of the dynamic Bayesian network.

Variables

First Order Second Order Third Order
Distribution

TypeMean Value Standard
Deviation Mean Value Standard

Deviation Mean Value Standard
Deviation

β0 34.5100 2.8180 146.400 25.5500 240.5000 37.4600

Normal
istribution

βFre −0.8250 0.1478 −0.8431 0.3032 −0.3431 0.2026
βTem −0.0093 0.0101 −0.0526 0.0508 −0.1116 0.1020
βHum 0.0021 0.0018 0.0229 0.0095 −0.0138 0.0188
βPC1 −0.0995 0.0321 −0.9589 0.1973 0.1528 0.3525
βPC2 2.7850 1.9560 −52.5800 9.6580 22.8300 19.2700
βPC3 −0.2917 0.1678 −0.9816 0.8333 −5.7380 1.6160

θFreUN 18.4800 0.0250 78.3200 0.1241 176.2000 0.2494

νFreUN 0.2218 0.0193 1.0990 0.0956 2.2080 0.1934 Gamma
distribution

The Markov chain error of each variable in the dynamic Bayesian network is less
than 1/20 of the posterior standard deviation, which indicates that the dynamic Bayesian
network model is convergent and has a high accuracy [36]. Through the K–S hypothesis
test, it demonstrated that the posterior distribution of each variable was the same as the
prior distribution. It can be seen from Table 4 that, except for the constant term coefficient
β0 and the second principal component coefficient of internal temperature βPC2, other
regression coefficients have small standard deviations. Thus, the relationships between the
first three order modal frequencies with the effect of temperature and humidity eliminated
and the SHM parameters are expressed from Equation (23) to Equation (25).

FreUN1,1 = 34.51− 0.825XFre − 0.0093XTem + 0.0021XHum
−0.0995XPC1 + 2.785XPC2 − 0.2917XPC3

(23)

FreUN2,1 = 146.4− 0.8431XFre − 0.0526XTem + 0.0229XHum
−0.9589XPC1 − 52.58XPC2 − 0.9816XPC3

(24)

FreUN3,1 = 240.5− 0.3431XFre − 0.1116XTem − 0.0138XHum
+0.1528XPC1 + 22.83XPC2 − 5.738XPC3

(25)
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The fitting coefficients in each time slice have similar posterior distribution parameters,
and this indicates that the change trend of environmental conditions and bridge dynamic
characteristics are stable during the monitoring period. Equation (23) to Equation (25)
show that the internal temperature of the bridge has the highest correlation with the
frequency with the effect of temperature and humidity eliminated. The second principal
component of the bridge’s internal temperature has the greatest influence, and the internal
temperature of the bridge will directly cause the change of the bridge frequency. The
ambient temperature and humidity will also affect the bridge frequency. The influence of
ambient temperature and bridge internal temperature are much greater than that of ambient
humidity, which demonstrates that the change of bridge frequency is mainly affected by
temperature. Therefore, a change in bridge frequency is not only related to structural
performance, but also affected by environmental factors. The accuracy of bridge service
condition assessment based on modal frequency will be reduced without the effect of
temperature and humidity first being eliminated. According to the analysis of the dynamic
Bayesian network, the probability densities of frequencies with the effects of temperature
and humidity eliminated are shown in Figure 12.
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It can be seen from Figure 12 that the minimum mean value and maximum standard
deviation of the first three frequencies are all in time slice 1. With the monitoring time
increasing, the bridge frequencies eliminating the effect of temperature and humidity
gradually tend to the same posterior mean value, and their standard deviations also
decrease. This indicates that the uncertainty of the bridge frequency with the effect of
temperature and humidity eliminated is reduced after the dynamic Bayesian network
analysis of monitoring data, which is closer to the real probability distribution parameters.

6.4. Bridge Reliability Analysis Based on Verification Coefficient

According to the Chinese specification [41], the deflection verification coefficient
cannot be greater than 1, otherwise the bearing capacity of the bridge will be identified a as
failure. Through the calculation method of bridge deflection verification coefficient based
on modal frequency in this paper, the performance function for bridge-bearing capacity
evaluation can be defined as Equation (26). The reliability is calculated and analyzed by the
Monte Carlo method. According to the analysis results of the dynamic Bayesian network,
this paper assumes that the mean value and the standard deviation of the bridge frequency
with the effect of temperature and humidity eliminated obey the normal distribution and
the gamma distribution, respectively.

Z = 1− η−2
Fre. (26)

Then, the failure probability and reliability index [26] are defined as:

FP = Pr(Z < 0), (27)

RI = −Φ−1[Pr(Z < 0)]. (28)

According to the posterior distribution information of bridge frequency after elim-
inating the effect of temperature and humidity, the Monte Carlo sampling method was
used to calculate Equation (28). Based on the posterior distribution of the first three order
frequencies, the reliability index and failure probability of the bridge-bearing capacities
before and after eliminating the effect of temperature and humidity were computed and
are shown in Figure 13.
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According to the results shown in Figure 13, the temperature and humidity have
a significant influence on the reliability evaluation of the bridge deflection verification
coefficient. There is a significant difference between the reliability index before and after
eliminating the effect of temperature and humidity. In Figure 13a, the reliability index
without the effect of temperature and humidity eliminated is opposite to the variation trend
of temperature. From the time slice 4 to 10, the reliability index values decrease from 5.99
to −4.18. The reliability index calculated by the first three order frequencies’ SHM data
possess the same variation trend. The calculation results based on the first order and the
third order are basically consistent, while the reliability index based on the second order is
slightly higher. In Figure 13b, the variation trends of reliabilities based on the first three
frequencies are consistent after the effects of temperature and humidity are eliminated. The
minimum of the reliability index appears in time slice 1. As time increases, the reliability
index is gradually stable at 5.1 and fluctuates slightly. As seen from Figure 13c,d, the
variation trend of the failure probability differs from the change in the reliability index. Due
to the influence of non-prior information in the dynamic Bayesian network, the error of the
probability distribution parameters in time slice 1 is large. Therefore, the reliability index
in time slice 1 is much less than those of other time slices. With the continuous updating
of monitoring data, the frequency probability distribution information after eliminating
the influence is closer to the real value. The bridge-bearing capacity evaluation based on
reliability theory can reflect the real condition of the structure. In this paper, the monitoring
data were collected in a whole year, which was from October 2015 to September 2016. Both
the reliability index and failure probability were gradually stable in time slice 9 to time slice
12, and the change of the reliability results from time slice 1 to time slice 3 was influenced by
the accuracy provided after temperature and humidity effect elimination. The temperature
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and humidity effect elimination method is related to the amount of monitoring data. If
more monitoring data are obtained, the reliability results will converge to a point, which is
the real reliability index and failure probability of the bridge. Taking the reliability index
of time slice 10 as an example, the evaluation result indicates a failing grade when the
temperature and humidity effects are not eliminated. If the effects are eliminated, the
reliability result reveals that the bridge is safe and reliable. This verifies the effectiveness
and accuracy of the method established in this paper.

7. Conclusions

A verification coefficient calculation method of bridge deflection was proposed based
on modal frequency. As a safety indicator, it was used to evaluate bridge condition in com-
bination with SHM techniques and reliability theory. Considering the effect of temperature
and humidity on frequency monitoring data, the temperature and humidity elimination
method was established based on the BP neural network, which was improved by the
ABC algorithm. The dynamic Bayesian network was adopted to analyze the probabilistic
distribution information of the SHM data and the frequency with the effect of temperature
and humidity eliminated. This improved the reliability assessment accuracy of the bridge’s
condition. The main conclusions are drawn as follows:

(1) The relationship between modal frequency and verification coefficient was obtained
through theoretical derivation. Through the comparation between static test and
dynamic test, it verified the verification coefficient calculation method based on modal
frequency. The results demonstrated that the verification coefficient computed by the
proposed method coincided with that obtained through the static test. The first three
modal of frequencies can be used for deflection verification coefficient calculation;

(2) The BP neural network optimized by an artificial bee colony algorithm has high fitting
precision, which is adopted for the influence of temperature and humidity on the
monitoring frequency elimination method. The bridge frequency does not change
with temperature and humidity; rather, it only fluctuates slightly near the expected
frequency and gradually approaches the expected value;

(3) According to the results analyzed using the dynamic Bayesian network, bridge inter-
nal temperature possesses the greatest influence on the bridge frequency, and ambient
temperature and humidity also clearly affect the bridge frequency. However, the
change of bridge frequency is mainly influenced by temperature. With more mon-
itoring data, the posterior information of bridge frequency demonstrated that the
proposed method reduced the uncertainty of bridge frequency with the temperature
and humidity effect eliminated, and showed that it is closer to the real probability
distribution parameter;

(4) The bridge reliability calculation results reveal that the reliability indices have a great
difference before and after the temperature and humidity effects are eliminated. When
the temperature and humidity effects are eliminated, the variations of bridge reliability
are independent of temperature and humidity. The bridge performance cannot be
accurately estimated without the temperature and humidity effects being eliminated.
The proposed method in this paper provides a new theoretical basis and technical
support for bridge SHM.
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