Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site Description and Cropping History
2.2. Field Treatments and Experimental Layout
2.3. Fertilizer-P Source Characterization
2.4. Plot Management
2.5. Economic Analyses
2.6. Environmental Evaluation
2.6.1. Rice Production System
2.6.2. Struvite Production System
2.6.3. Evaluation Approach
3. Results and Discussion
3.1. Rice Yield Response
3.2. Economic Evaluation
3.3. Global Warming Potential Evaluation
3.4. Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouwenhorst, K.H.R.; Krzywda, P.M.; Benes, N.E.; Mul, G.; Lefferts, L. Chapter 4—Ammonia production technologies. In Techno-Economic Challenges of Green Ammonia as an Energy Vector; Valera-Medina, A., Banares-Alcantara, R., Eds.; Academic Press: London, UK, 2020; pp. 41–83. [Google Scholar]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Tiseo, I. Global Key Figures on Wastewater Generation. 2020. Available online: https://www.statista.com/statistics/1124488/key-facts-wastewater-generation-globally/ (accessed on 4 August 2021).
- Huang, H.; Song, Q.; Wang, W.; Wu, S.; Dai, J. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process. J. Environ. Manag. 2012, 101, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ryu, H.D.; Kim, M.S.; Kim, J.; Lee, S.I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 2007, 146, 81–85. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S.; Kwag, J.; Kim, J.H.; Kim, J.D.; Ra, C. Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater. J. Hazard. Mater. 2011, 195, 175–181. [Google Scholar] [CrossRef] [PubMed]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Managing Water under Uncertainty and Risk. The United Nations World Water Development Report 4. 2012. Available online: https://www.unesco.at/fileadmin/Redaktion/Publikationen/Publikations-Dokumente/2012_WWDR_Executive_Summary_en.pdf (accessed on 4 August 2021).
- Doyle, J.D.; Oldring, K.; Churchley, J.; Price, C.; Parsons, S.A. Chemical control of struvite precipitation. J. Environ. Eng. 2003, 129, 419–426. [Google Scholar] [CrossRef]
- Forrest, A.L.; Fattah, K.P.; Mavinic, D.S.; Koch, F.A. Optimizing struvite production for phosphate recovery in WWTP. J. Environ. Eng. 2008, 134, 395–402. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, G.K.; Jarvie, H.P.; Withers, P.J.; Doody, D.G.; Keeler, B.L.; Haygarth, P.M.; Johnson, L.T.; Mcdowell, R.W.; Miyittah, M.K.; Powers, S.M.; et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2016, 2, e01251. [Google Scholar] [CrossRef] [Green Version]
- Kruk, D.J.; Elektorowicz, M.; Oleszkiewicz, J.A. Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere 2014, 101, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Kékedy-Nagy, L.; Moore, J.P., II; Abolhassani, M.; Attarzadeh, F.; Hestekin, J.A.; Greenlee, L.F. The passivating layer influence on Mg-based anode corrosion and implications for electrochemical struvite precipitation. J. Electrochem. Soc. 2019, 166, E358. [Google Scholar] [CrossRef]
- Kékedy-Nagy, L.; Teymouri, A.; Herring, A.M.; Greenlee, L.F. Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode. Chem. Eng. J. 2020, 380, 122480. [Google Scholar] [CrossRef]
- Kékedy-Nagy, L.; Abolhassani, M.; Perez Bakovic, S.I.; Anari, Z.; Moore, J.P.; Pollet, B.G.; Greenlee, L.F. Electroless production of fertilizer (struvite) and hydrogen from synthetic agricultural wastewaters. J. Am. Chem. Soc. 2020, 142, 18844–18858. [Google Scholar] [CrossRef] [PubMed]
- Massey, M.S.; Davis, J.G.; Ippolito, J.A.; Sheffield, R.E. Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron. J. 2009, 101, 323–329. [Google Scholar] [CrossRef]
- Kern, J.; Heinzmann, B.; Markus, B.; Kaufmann, A.C.; Soethe, N.; Engels, C. Recycling and assessment of struvite phosphorus from sewage sludge. Agric. Eng. Int. CIGR J. 2008, X, 12–24. [Google Scholar]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J. Struvite: A slow-release fertilizer for sustainable phosphorus management? Plant Soil 2015, 401, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Everaert, M.; Da Silva, R.C.; Degryse, F.; McLaughlin, M.J.; Smolders, E. Limited dissolved phosphorus runoff losses from layered doubled hydroxides and struvite fertilizers in a rainfall simulation study. J. Environ. Qual. 2017, 47, 371–377. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.; Kekedy-Nagy, L.; Greenlee, L.; Gbur, E.; Roberts, T. Electrochemically precipitated struvite effects on extractable nutrients compared with other fertilizer-phosphorus sources. Agrosyst. Geosci. Environ. 2021, 4, e20183. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.R.; Greenlee, L.; Roberts, T.L.; Gbur, E. Wastewater-recovered struvite effects on total extractable phosphorus compared with other phosphorus sources. Agrosyst. Geosci. Environ. 2021, 4, e20154. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.R.; Kekedy-Nagy, L.; Greenlee, L.; Gbur, E.; Roberts, T.L. Total extractable phosphorus in flooded soil as affected by struvite and other fertilizer-phosphorus sources. Soil Sci. Soc. Am. J. 2021, 85, 1157–1173. [Google Scholar] [CrossRef]
- Ylagan, S.; Brye, K.R.; Greenlee, L. Corn and Soybean response to wastewater-recovered and other common phosphorus fertilizers. Agrosyst. Geosci. Environ. 2020, 3, e20086. [Google Scholar] [CrossRef]
- Omidire, N.S.; Brye, K.R.; Kekedy-Nagy, L.; Greenlee, L.; Roberts, T.L.; Gbur, E.E.; Mozzoni, L. Evaluation of electrochemically precipitated struvite as a fertilizer-phosphorus source in flood-irrigated rice. Agron. J. 2022, 114, 739–755. [Google Scholar] [CrossRef]
- Peng, P.H.; Ernst, W.R.; Bridger, G.L.; Hartley, E.M. Slow release fertilizer materials based on magnesium ammonium phosphate. Pilot-plant granulation studies. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 453–458. [Google Scholar] [CrossRef]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Ostara Nutrient Recovery Technologies, Inc. Game-Changing Technology: Leading Nutrient Management Solutions. 2021. Available online: https://ostara.com/nutrient-management-solutions/ (accessed on 20 August 2021).
- Ostara Nutrient Recovery Technologies, Inc. Agriculture: Crystal Green Provides Phosphorus When Roots Need It. 2021. Available online: https://crystalgreen.com/agriculture/ (accessed on 20 August 2021).
- Lyseng, R. Trials Testing Efficacy of New Fertilizer. The Western Producer. 2014. Available online: https://www.producer.com/crops/trials-testing-efficacy-of-new-fertilizer/ (accessed on 20 August 2021).
- Omidire, N.S.; English, L.; Brye, K.R.; Popp, J.; Greenlee, L. Struvite: Definition, Benefits, and Potential Application in Arkansas Agriculture; Factsheet FSA9542; University of Arkansas Cooperative Extension Service Printing Services: Little Rock, AR, USA, 2020. [Google Scholar]
- West Central Ag Services (WCAS). Fertilizer Pricing. 2020. Available online: https://storcoopmediafilesprd.blob.core.windows.net/atlasportals/all-media/wcas/west-central-ag-services/pdfs/fertilizer-price-guide-01-27-20.pdf (accessed on 30 July 2021).
- University of Arkansas Division of Agriculture (UADA), Cooperative Extension Service. Crop Enterprise Budgets for Arkansas Field Crops Planted in 2019; UADA: Little Rock, AR, USA, 2019. [Google Scholar]
- Durand-Morata, A.; Nalley, L.L.; Thoma, G. The implications of red rice on food security. Glob. Food Secur. 2018, 18, 62–75. [Google Scholar] [CrossRef]
- Shew, A.M.; Nalley, L.L.; Durand-Morat, A.; Meredith, K.; Parajuli, R.; Thoma, G.; Henry, C.G. Holistically valuing public investments in agricultural water conservation. Agric. Water Manag. 2021, 252, 106900. [Google Scholar] [CrossRef]
- Barak, P.; Stafford, A. Struvite: A recovered and recycled phosphorus fertilizer. In Proceedings of the 2006 Wisconsin Fertilizer, Aglime and Pest Management Conference, Madison, WI, USA, 17–19 January 2016; pp. 201–202. [Google Scholar]
- Chauhan, C.K.; Vyas, P.M.; Joshi, M.J. Growth and characterization of Struvite-K crystals. Cryst. Res. Technol. 2011, 46, 187–194. [Google Scholar] [CrossRef]
- Kataki, S.; West, H.; Clarke, M.; Barauh, D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA), Environmental Resources Service (ERS). Rice Yearbook: Arkansas. USDA-ERS, 2021. Available online: https://www.ers.usda.gov/data-products/rice-yearbook/ (accessed on 28 May 2021).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. 2015. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 5 March 2021).
- Roberts, T.; Slaton, N.; Wilson, J.C.; Norman, R. Soil fertility. In Arkansas Rice Production Handbook; Cooperative Extension Service, Division of Agriculture, University of Arkansas: Little Rock, AR, USA, 2016; pp. 69–102. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Data Tools: 1981–2010 Normals, Arkansas. 2020. Available online: https://www.ncdc.noaa.gov/data-access/land-basedstation-data/land-based-datasets/climate-normals/1981-2010-normals-data (accessed on 4 March 2021).
- United States Environmental Protection Agency (USEPA). Method 3050B: Acid Digestion of Sludges, Sediments, and Soils; USEPA: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf (accessed on 30 July 2021).
- Provin, T. Total carbon and nitrogen and organic carbon via thermal combustion analyses. Soil test methods from the southeastern United States. South. Coop. Ser. Bull. 2014, 419, 149–154. [Google Scholar]
- Hardke, J.T. (Ed.) Arkansas Rice Production Handbook; Cooperative Extension Service, Division of Agriculture, University of Arkansas: Little Rock, AR, USA, 2021; Available online: https://www.uaex.edu/publications/pdf/mp192/mp192.pdf (accessed on 30 July 2021).
- Hardke, J.; Stiles, S. Arkansas Rice Update; No. 2020-25; University of Arkansas Division of Agriculture, Cooperative Extension Service: Little Rock, AR, USA, 2020; Available online: https://www.uaex.edu/farm-ranch/crops-commercial-horticulture/rice/Arkansas%20Rice%20Update%209-11-20.pdf (accessed on 30 July 2021).
- Department of Agricultural Economics, Mississippi State University (MSU). Rice 2019 Planning Budgets. Budget Report 2018-04. 2018. Available online: https://www.agecon.msstate.edu/whatwedo/budgets/docs/19/MSURICE19_11_14_18.pdf (accessed on 30 July 2021).
- Department of Agricultural Economics, Mississippi State University (MSU). Rice 2020 Planning Budgets. Budget Report 2019-04. 2019. Available online: https://www.agecon.msstate.edu/whatwedo/budgets/docs/20/MSURICE20.pdf (accessed on 30 July 2021).
- Quinn, R. DTN Retail Fertilizer Trends. Progressive Farmer. 2020. Available online: https://www.dtnpf.com/agriculture/web/ag/crops/article/2020/03/25/tfi-fertilizer-industry-essential-3 (accessed on 30 July 2021).
- ISO-14040; Environmental Management–Life Cycle Assessment–Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006; pp. 652–668.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Rogers, C.W.; Smartt, A.D.; Brye, K.R.; Norman, R.J. Nitrogen source effects on methane emissions from drill-seeded, delayed-flood rice production. Soil Sci. 2017, 182, 9–17. [Google Scholar] [CrossRef]
- Brye, K.R.; Rogers, C.W.; Smartt, A.D.; Norman, R.J.; Hardke, J.T.; Gbur, E.E. Methane emissions as affected by crop rotation and rice cultivar in the Lower Mississippi River Valley, USA. Geoderma Reg. 2017, 11, 8–17. [Google Scholar] [CrossRef]
- Humphreys, J.; Brye, K.R.; Rector, C.; Gbur, E.E.; Hardke, J.T. Water management and cultivar effects on methane emissions from direct-seeded, delayed-flood rice production in Arkansas. J. Rice Res. Dev. 2018, 1, 14–24. [Google Scholar]
- Tabatabai, M.A.; Burwell, R.E.; Ellis, B.G.; Keeney, D.R.; Logan, T.J.; Nelson, D.W.; Olson, R.A.; Randall, G.W.; Timmons, D.R.; Verry, E.S.; et al. Nutrient Concentrations and Accumulations in Precipitation over the North-Central Region; North-Central Region Research Publication 282; Iowa State University: Ames, IA, USA, 1981. [Google Scholar]
- National Research Council. Soil and Water Quality: An Agenda for Agriculture; The National Academies Press: Washington, DC, USA, 1993. [Google Scholar]
- Mayamulla, S.L.; Weerarathne, V.Y.; Marambe, B.; Sirisena, D.N.; Suriyagoda, L.D.B. Variation in seed nutrient content, seedling growth and yield of rice varieties grown in a paddy field without application of fertilisers for forty years. Crop Pasture Sci. 2017, 68, 337–348. [Google Scholar] [CrossRef]
- Rector, C.; Brye, K.R.; Humphreys, J.; Norman, R.J.; Gbur, E.E.; Hardke, J.T.; Willett, C.; Evans-White, M.A. N2O emissions and global warming potential as affected by water management and rice cultivar on an Alfisol in Arkansas, USA. Geoderma Reg. 2018, 14, e00170. [Google Scholar] [CrossRef]
- Rector, C.; Brye, K.R.; Humphreys, J.; Norman, R.J.; Slaton, N.A.; Gbur, E.E.; Willett, C.; Evans-White, M.A. Tillage and coated-urea effects on nitrous oxide emissions from direct-Seeded, delayed-flood rice production in Arkansas. J. Rice Res. Dev. 2018, 1, 25–37. [Google Scholar]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 2000, 5, 349–357. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T.; Blaser, S. Life Cycle Inventories of Agricultural Production Systems. Ecoinvent Report Version 2: No. 15. 2007. Available online: https://db.ecoinvent.org/reports/15_Agriculture.pdf (accessed on 24 September 2021).
- Nemecek, T.; Bengoa, X.; Lansche, J.; Mouron, P.; Riedener, E.; Rossi, V.; Humbert, S. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Version 3.0; World Food LCA Database (WFLDB): Lausanne, Switzerland; Zurich, Switzerland, 2015. [Google Scholar]
- Gysin, A.; Lycke, D.; Wirtel, S. The Pearl® and WASSTRIP® Processes (Canada). In Phosphorus: Polluter and Resource of the Future; Schaum, C., Ed.; IWA Publishing: London, UK, 2018; pp. 359–366. [Google Scholar]
- Theregowda, R.B.; González-Mejía, A.M.; Ma, X.; Garland, J. Nutrient recovery from municipal wastewater for sustainable food production systems: An alternative to traditional fertilizers. Environ. Eng. Sci. 2019, 36, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Kékedy-Nagy, L.; Abolhassani, M.; Sultana, R.; Anari, Z.; Brye, K.R.; Pollet, B.G.; Greenlee, L.F. The effect of anode degradation on energy demand and production efficiency of electrochemically precipitated struvite. J. Appl. Electrochem. 2022, 52, 205–215. [Google Scholar] [CrossRef]
- Mamakoa, E.; Fosso-Kankeu, E.; Masindi, V.; Neomagus, H.W.J.P. Sources of magnesium used in the synthesis of struvite from wastewater: A review. In Proceedings of the 17th Johannesburg International Conference on Science, Engineering, Technology & Waste Management (SETWM-19), Johannesburg, South Africa, 18–19 November 2019; pp. 75–78. [Google Scholar]
- Parajuli, R.; Løkke, S.; Østergaard, P.A.; Knudsen, M.T.; Schmidt, J.H.; Dalgaard, T. Life cycle assessment of district heat production in a straw fired CHP plant. Biomass Bioenergy 2014, 68, 115–134. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 5 September 2021).
- Amman, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. 2013: Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green synthetic fuels: Renewable routes for the conversion of non-fossil feedstocks into gaseous fuels and their end uses. Energies 2020, 13, 420. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Energy (USDOE). Hydrogen Production and Distribution. 2021. Available online: https://afdc.energy.gov/fuels/hydrogen_production.html (accessed on 8 September 2021).
- Patterson, B.D.; Mo, F.; Borgschulte, A.; Hillestad, M.; Joos, F.; Kristiansen, T.; Sunde, S.; Van Bokhoven, J.A. Renewable CO2 recycling and synthetic fuel production in a marine environment. Proc. Natl. Acad. Sci. USA 2019, 116, 12212–12219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fertilizer-P Source | Nutrient Concentration (%) | Measured Fertilizer Grade † | |||
---|---|---|---|---|---|
Mg | N | P | C | ||
TSP | 0.6 (<0.1) | <0.1 (<0.1) | 18.2 (0.4) | 0.3 (<0.1) | 0-42-0 |
RP | 0.3 (<0.1) | <0.1 (<0.1) | 7.6 (0.1) | 0.4 (<0.1) | 0-17-0 |
MAP | 1.5 (<0.1) | 10.7 (0.1) | 20.9 (0.2) | 0.3 (<0.1) | 11-48-0 |
DAP | 0.7 (<0.1) | 18.1 (0.1) | 18.3 (0.1) | 0.5 (<0.1) | 18-42-0 |
CPST | 8.3 (0.2) | 5.7 (0.2) | 11.7 (0.2) | 0.2 (<0.1) | 6-27-0 |
ECST 2019 | 13.3 (0.1) | 3.3 (0.2) | 18.5 (0.1) | 0.1 (<0.1) | 3-42-0 |
ECST 2020 | 12.7 (0.3) | 5.1 (0.2) | 16.1 (0.3) | - | 5-37-0 |
Inputs/Outputs for Field Study | Unit | 2019 | 2020 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Con † | ECST | CPST | TSP | MAP | DAP | RP | Con | ECST | CPST | TSP | MAP | DAP | RP | ||
Farm outputs | |||||||||||||||
Rice yield 1 | Mg ha−1 | 10.78 | 11.47 | 10.93 | 11.69 | 11.67 | 11.41 | 11.66 | 9.52 | 8.22 | 8.90 | 9.84 | 9.53 | 9.25 | 9.14 |
Crop residue 1 | Mg ha−1 | 10.78 | 11.47 | 10.93 | 11.69 | 11.67 | 11.41 | 11.66 | 9.52 | 8.22 | 8.90 | 9.84 | 9.53 | 9.25 | 9.14 |
Farm inputs | |||||||||||||||
Rice seeds 1 | kg ha−1 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Struvite applied 1 | kg ha−1 | - | 159.7 | 251.9 | - | - | - | - | - | 182.5 | 251.9 | - | - | - | - |
Total N input 1 | kg N ha−1 | 174.8 | 178.1 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 |
Urea | kg N ha−1 | 174.8 | 172.8 | 160.4 | 174.8 | 174.8 | 174.8 | 174.8 | 174.8 | 165.5 | 160.4 | 174.8 | 174.8 | 174.8 | 174.8 |
Struvite | kg N ha−1 | - | 5.3 | 14.4 | - | - | - | - | - | 9.3 | 14.4 | - | - | - | - |
Total P input 1 | kg P2O5 ha−1 | - | 159.7 | 251.9 | 161.3 | 140.6 | 160.6 | 386.5 | - | 182.5 | 251.9 | 161.3 | 140.6 | 160.6 | 386.5 |
P fertilizer | kg P2O5 ha−1 | - | - | - | 67.6 | 67.6 | 67.6 | 67.6 | - | - | - | 67.6 | 67.6 | 67.6 | 67.6 |
Struvite | kg P2O5 ha−1 | - | 67.6 | 67.6 | - | - | - | - | - | 67.6 | 67.6 | - | - | - | - |
Total K input 1 | kg K2O ha−1 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 |
KCl | kg K2O ha−1 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 | 100.4 |
Fuel (Diesel) 1 | L ha−1 | 74.4 | 74.4 | 74.4 | 74.4 | 74.4 | 74.4 | 74.4 | 69.6 | 69.6 | 69.6 | 69.6 | 69.6 | 69.6 | 69.6 |
Irrigation H2O 1 | m3 ha−1 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 | 7620 |
Herbicides 1 | kg ha−1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Glyphosate N | kg ha−1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | - | - | - | - | - | - | - |
Pendimethalin | kg ha−1 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 |
Quinclorac | kg ha−1 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 | 2.4 × 10−2 |
Thibencarb | kg ha−1 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | - | - | - | - | - | - | - |
Propanil | kg ha−1 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−3 | - | - | - | - | - | - | - |
Halosulfuron-methyl | kg ha−1 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 |
Thifensulfuron-methyl | kg ha−1 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 |
Bentazon | kg ha−1 | - | - | - | - | - | - | - | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 |
Propanil | kg ha−1 | - | - | - | - | - | - | - | 4.0 × 10−3 | 4.0 × 10−3 | 4.0 × 10−3 | 4.0 × 10−3 | 4.0 × 10−3 | 4.0 × 10−3 | 4.0 × 10−3 |
Other chemicals 1 | |||||||||||||||
Zn-EDTA | kg ha−1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Emissions to air 2 | |||||||||||||||
NH3 | kg ha−1 | 14.59 | 14.87 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 | 14.59 |
NOx | kg ha−1 | 4.18 | 4.26 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 |
N2O | kg ha−1 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
CH4 | kg ha−1 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 | 131.3 |
N-emissions calculations 2 | |||||||||||||||
Total N input | kg ha−1 | 183.0 | 186.3 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 | 183.0 |
N uptake 2,a | kg ha−1 | 132 | 132 | 130 | 144 | 141 | 136 | 142 | 132 | 132 | 130 | 144 | 141 | 136 | 142 |
Field balance 2,b | kg ha−1 | 51 | 54 | 53 | 39 | 42 | 47 | 41 | 51 | 51 | 53 | 39 | 42 | 47 | 41 |
Total losses 2,c | kg ha−1 | 14.6 | 14.9 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 |
NH3-N | kg ha−1 | 12.06 | 12.29 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 | 12.06 |
NOx-N | kg ha−1 | 1.95 | 1.99 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 |
N2O-N | kg ha−1 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
NO3-N 2,d | kg ha−1 | 36.34 | 39.38 | 38.34 | 24.34 | 27.34 | 32.34 | 26.34 | 36.34 | 36.34 | 38.34 | 24.34 | 27.34 | 32.34 | 26.34 |
Water losses 2 | |||||||||||||||
NO3 2,d | kg ha−1 | 160.9 | 174.3 | 169.8 | 107.8 | 121.1 | 143.2 | 116.6 | 160.9 | 160.9 | 169.8 | 107.8 | 121.1 | 143.2 | 116.6 |
Residue incorporation | Mg ha−1 | 10.78 | 11.47 | 10.93 | 11.69 | 11.67 | 11.41 | 11.66 | 9.52 | 8.22 | 8.90 | 9.84 | 9.53 | 9.25 | 9.14 |
Struvite Precipitation Process Components | Units | Amount | ||
---|---|---|---|---|
CPST | ECST 1 | |||
2019/2020 | 2019 | 2020 | ||
Inputs | ||||
Sodium hydroxide | kg kg−1 struvite | 0.13 | ||
Magnesium oxide | kg kg−1 struvite | 0.3 | ||
Pure Mg plate (Mg 99.9%) | 0.31 | 0.31 | ||
Electricity | kW kg−1 struvite | 0.35 | 0.35 | |
Outputs | ||||
Struvite | kg kg−1 struvite | 1.0 | 1.0 | 1.0 |
Avoided fertilizers 2,3 | ||||
N fertilizer | kg N kg−1 struvite | 0.12 | 0.07 | 0.11 |
Phosphate fertilizer | kg P2O5 kg−1 struvite | 0.64 | 1.02 | 0.08 |
Fertilizer-P Source | Yield (Mg ha−1) | |
---|---|---|
2019 | 2020 | |
Triple superphosphate | 11.7 (0.14) a † | 9.8 (0.29) bc |
Electrochemically precipitated struvite | 11.5 (0.17) a | 8.2 (0.34) e |
Chemically precipitated struvite | 10.9 (0.34) a | 8.9 (0.53) de |
Monoammonium phosphate | 11.7 (0.22) a | 9.5 (0.41) cd |
Diammonium phosphate | 11.4 (0.30) a | 9.2 (0.73) cd |
Rock phosphate | 11.7 (0.06) a | 9.1 (0.10) cd |
Control | 10.8 (0.12) ab | 9.5 (0.32) cd |
Fertilizer-P Source † | Total Revenues | Total Treatment Costs | Net Revenues | |||
---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
TSP | USD 2951 | USD 2688 | USD 227 | USD 210 | USD 2724 | USD 2478 |
MAP | USD 2947 | USD 2603 | USD 197 | USD 198 | USD 2750 | USD 2405 |
Control | USD 2721 | USD 2600 | USD 142 | USD 142 | USD 2578 | USD 2458 |
DAP | USD 2881 | USD 2526 | USD 198 | USD 194 | USD 2682 | USD 2332 |
RP | USD 2944 | USD 2497 | USD 294 | USD 294 | USD 2650 | USD 2203 |
ECST | USD 2895 | USD 2246 | USD 282 | USD 292 | USD 2614 | USD 1954 |
CPST | USD 2759 | USD 2431 | USD 353 | USD 347 | USD 2406 | USD 2084 |
Fertilizer-P Source | Annual Net Revenues | Two-Year Net Returns | ||
---|---|---|---|---|
2019 | 2020 | Total | Average | |
Triple superphosphate | USD 2724 | USD 2478 | USD 5202 | USD 2601 |
Monoammonium phosphate | USD 2750 | USD 2405 | USD 5155 | USD 2577 |
Control | USD 2578 | USD 2458 | USD 5036 | USD 2518 |
Diammonium phosphate | USD 2682 | USD 2332 | USD 5014 | USD 2507 |
Rock phosphate | USD 2650 | USD 2203 | USD 4853 | USD 2426 |
Electrochemically precipitated struvite | USD 2614 | USD 1954 | USD 4568 | USD 2284 |
Chemically precipitated struvite | USD 2406 | USD 2084 | USD 4490 | USD 2245 |
Fertilizer-P Source | 2019 | 2020 | ||
---|---|---|---|---|
$ ha−1 | % Change | $ ha−1 | % Change | |
Triple superphosphate | -- | -- | -- | -- |
Monoammonium phosphate | 26 | 0.9 | −73 | −2.9 |
Control | −146 | −5.3 | −20 | −0.8 |
Diammonium phosphate | −42 | −1.5 | −146 | −5.9 |
Rock phosphate | −74 | −2.7 | −275 | −11.1 |
Electrochemically precipitated struvite | −110 | −4.0 | −524 | −21.1 |
Chemically precipitated struvite | −318 | −11.7 | −394 | −15.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brye, K.R.; Omidire, N.S.; English, L.; Parajuli, R.; Kekedy-Nagy, L.; Sultana, R.; Popp, J.; Thoma, G.; Roberts, T.L.; Greenlee, L.F. Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice. Sustainability 2022, 14, 9621. https://doi.org/10.3390/su14159621
Brye KR, Omidire NS, English L, Parajuli R, Kekedy-Nagy L, Sultana R, Popp J, Thoma G, Roberts TL, Greenlee LF. Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice. Sustainability. 2022; 14(15):9621. https://doi.org/10.3390/su14159621
Chicago/Turabian StyleBrye, Kristofor R., Niyi S. Omidire, Leah English, Ranjan Parajuli, Laszlo Kekedy-Nagy, Ruhi Sultana, Jennie Popp, Greg Thoma, Trenton L. Roberts, and Lauren F. Greenlee. 2022. "Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice" Sustainability 14, no. 15: 9621. https://doi.org/10.3390/su14159621
APA StyleBrye, K. R., Omidire, N. S., English, L., Parajuli, R., Kekedy-Nagy, L., Sultana, R., Popp, J., Thoma, G., Roberts, T. L., & Greenlee, L. F. (2022). Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice. Sustainability, 14(15), 9621. https://doi.org/10.3390/su14159621