Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro
Abstract
:1. Introduction
2. Operation Optimization Model of PSH
2.1. Power Curtailment and Objective Function after PSH Optimization
2.2. Constraints of PSH
2.2.1. Power Constraints of PSH Units
2.2.2. Single Working Condition Constraints of PSH Units and Stations
2.2.3. Constraint on the Number of Working Units
2.2.4. Constraints on Water Level of Power Station Reservoir and Its Fluctuation
2.2.5. Constraint on the Maximum Number of Start-Stop Switching Times of the Units
3. Operation and Configuration Optimization Model of EES
3.1. Power Curtailment after EES Optimization
3.2. Objective Function of EES Operation Optimization
3.3. Objective Function of EES Configuration Optimization
3.4. Constraints of EES
3.4.1. Power Constraints of EES
3.4.2. SOC Constraints of EES
3.4.3. Constraint of Expected Power Curtailment Rate
4. Operation and Configuration Optimization Algorithms of PSH and EES
5. Case Study
5.1. Case Parameters
5.1.1. Parameters of PSH
5.1.2. Parameters of Power Curtailment
5.1.3. Parameters of EES
5.2. Operation Optimization of PSH and EES
5.2.1. Scenario 1
5.2.2. Scenario 2
5.2.3. Scenario 3
5.2.4. Configuration Optimization of EES
5.2.5. Involvement of Variable Speed Units
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santika, W.G.; Anisuzzaman, M.; Bahri, P.A.; Shafiullah, G.M.; Rupf, G.V.; Urmee, T. From goals to joules: A quantitative approach of interlinkages between energy and the sustainable development goals. Energy Res. Soc. Sci. 2019, 50, 201–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, W.; Zheng, J.; Cappietti, L.; Zhang, J.; Zheng, Y.; Fernandez-Rodriguez, E. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Noto, V.D. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhou, B.; Yang, D.; Li, G.; Yang, B.; Xi, C.; Hu, B. Optimal operation strategy for wind–hydrogen–water power grids facing offshore wind power accommodation. Sustainability 2022, 14, 6871. [Google Scholar] [CrossRef]
- Che, L.; Liu, X.; Zhu, X.; Cui, M.; Li, Z. Intra-interval security assessment in power systems with high wind penetration. IEEE Trans. Sustain. Energy 2019, 10, 1890–1903. [Google Scholar] [CrossRef]
- Karavas, C.; Arvanitis, K.G.; Papadakis, G. Optimal technical and economic configuration of photovoltaic powered reverse osmosis desalination systems operating in autonomous mode. Desalination 2019, 466, 97–106. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Wu, X.; Hu, R.; Tang, F.; Zhang, W. Control strategy of a hybrid energy storage system to smooth photovoltaic power fluctuations considering photovoltaic output power curtailment. Sustainability 2019, 11, 1324. [Google Scholar] [CrossRef] [Green Version]
- Denholm, P.; Mai, T. Timescales of energy storage needed for reducing renewable energy curtailment. Renew. Energy 2019, 130, 388–399. [Google Scholar] [CrossRef]
- Solomon, A.A.; Bogdanov, D.; Breyer, C. Curtailment-storage-penetration nexus in the energy transition. Appl. Energy 2019, 235, 1351–1368. [Google Scholar] [CrossRef]
- Li, N.; Hedman, K.W. Enhanced pumped hydro storage utilization using policy functions. IEEE Trans. Power Syst. 2017, 32, 1089–1102. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Liao, X.; Qin, H. Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm. Appl. Energy 2017, 187, 612–626. [Google Scholar] [CrossRef]
- Alharbi, H.; Bhattacharya, K. Participation of pumped hydro storage in energy and performance-based regulation markets. IEEE Trans. Power Syst. 2020, 35, 4307–4323. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.I.; Jiménez, J. Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration. Energy 2016, 109, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tai, G.; Pei, J.; Pavesi, G.; Yuan, S. Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode. Renew. Energy 2022, 194, 719–733. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J.; Zhang, J.; Zheng, Y.; Zang, W.; Lin, X.; Fernandez-Rodriguez, E. Experimental investigation into effects of boundary proximity and blockage on horizontal-axis tidal turbine wake. Ocean Eng. 2021, 225, 108829. [Google Scholar] [CrossRef]
- Asef, P.; Milan, M.; Lapthorn, A.; Padmanaban, S. Future trends and aging analysis of battery energy storage systems for electric vehicles. Sustainability 2021, 13, 13779. [Google Scholar] [CrossRef]
- Byers, C.; Botterud, A. Additional capacity value from synergy of variable renewable energy and energy storage. IEEE Trans. Sustain. Energy 2020, 11, 1106–1109. [Google Scholar] [CrossRef]
- Dawood, F.; Shafiullah, G.; Anda, M. Stand-alone microgrid with 100% renewable energy: A case study with hybrid solar PV-battery-hydrogen. Sustainability 2020, 12, 2047. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, S. Energy management and operational control methods for grid battery energy storage systems. CSEE J. Power Energy Syst. 2019, 7, 1026–1040. [Google Scholar] [CrossRef]
- Li, J.; Niu, M.; Wang, S.; Zhou, J.; Yuan, X. Operation and control analysis of 100 MW class battery energy storage station on grid side in Jiangsu power grid of China. Autom. Electr. Power Syst. 2020, 44, 28–35. [Google Scholar] [CrossRef]
- Pan, H.; Hu, Y.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Cheng, X.; Xia, M.; Zheng, R.; Peng, N.; Yu, H.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [Google Scholar] [CrossRef]
- Capron, O.; Samba, A.; Omar, N.; Coosemans, T.; Bossche, P.V.d.; Van Mierlo, J. Lithium-ion batteries: Thermal behaviour investigation of unbalanced modules. Sustainability 2015, 7, 8374–8398. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef]
- Xia, P.; Deng, C.; Chen, Y.; Yao, W. MILP based robust short-term scheduling for wind–thermal–hydro power system with pumped hydro energy storage. IEEE Access 2019, 7, 30261–30275. [Google Scholar] [CrossRef]
- Lin, L.; Yue, X.; Xu, B.; Sun, Y.; Wei, M. Sequence and strategy of pumped storage-thermal combined peak shaving considering benefits of pumped storage and deep regulation of thermal power. Power System Technol. 2021, 45, 20–32. [Google Scholar] [CrossRef]
- Dui, X.; Zhu, G.; Yao, L. Two-stage optimization of battery energy storage capacity to decrease wind power curtailment in grid-connected wind farms. IEEE Trans. Power Syst. 2018, 33, 3296–3305. [Google Scholar] [CrossRef]
- Zhang, Z.; Mishra, Y.; Dou, C.; Yue, D.; Zhang, B.; Tian, Y. Steady-state voltage regulation with reduced photovoltaic power curtailment. IEEE J. Photovolt. 2020, 10, 1853–1863. [Google Scholar] [CrossRef]
- Ye, Z.; Li, X.; Jiang, F.; Chen, L.; Wang, Y.; Dai, S. Hierarchical optimization economic dispatching of combined wind-PV-thermal-energy storage system considering the optimal energy abandonment rate. Power System Technol. 2021, 45, 241–251. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Chen, Y.; Li, D.; Sun, L. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook. J. Energy Storage 2020, 32, 1–30. [Google Scholar] [CrossRef]
- Jiang, K.; Li, H.; Li, W.; Cheng, S. On several battery technologies for power grids. Autom. Electr. Power Syst. 2013, 37, 47–53. [Google Scholar] [CrossRef]
Serial Number of the Power Station | Number of Units | Capacity of a Single Unit (MW) | Total Installed Capacity (MW) |
---|---|---|---|
1 | 3 | 90 | 270 |
2 | 4 | 200 | 800 |
3 | 12 | 300 | 3600 |
4 | 4 | 350 | 1400 |
Term | Date |
---|---|
Total curtailed power before optimization (MW·h) | 385,760 |
Total curtailed power after PSH optimization (MW·h) | 128,483 |
Percentage of drop in curtailed power | 66.69% |
Total renewable energy generation (MW·h) | 2,301,608 |
Power curtailment rate | 5.58% |
Power Curtailment Rate | Configured Power of EES (MW) | Configured Capacity of EES (MW·h) | Investment Cost of EES (Million Yuan) |
---|---|---|---|
5.58% | 0 | 0 | 0 |
5.3% | 673 | 1346 | 2557.4 |
5.1% | 1149 | 2298 | 4366.2 |
4.9% | 1665 | 3330 | 6327.0 |
4.7% | 2201 | 4402 | 8363.8 |
4.5% | 2955 | 5910 | 11,229.0 |
4.3% | 4426 | 8852 | 16,818.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Yang, F.; Li, Y.; Zheng, T.; Wu, F.; Lee, K.Y. Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro. Sustainability 2022, 14, 9713. https://doi.org/10.3390/su14159713
Shi L, Yang F, Li Y, Zheng T, Wu F, Lee KY. Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro. Sustainability. 2022; 14(15):9713. https://doi.org/10.3390/su14159713
Chicago/Turabian StyleShi, Linjun, Fan Yang, Yang Li, Tao Zheng, Feng Wu, and Kwang Y. Lee. 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro" Sustainability 14, no. 15: 9713. https://doi.org/10.3390/su14159713
APA StyleShi, L., Yang, F., Li, Y., Zheng, T., Wu, F., & Lee, K. Y. (2022). Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro. Sustainability, 14(15), 9713. https://doi.org/10.3390/su14159713