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Abstract: With the development of China’s economy, China is emitting more and more carbon. At
the same time, it has also exposed the problem of carbon emission efficiency differences caused by the
unbalanced development of resources and economy among regions. Based on the carbon emission
panel data of provinces and cities in China from 2009 to 2018, this paper studies carbon emission
efficiency and regional differences by constructing a three-stage data envelopment analysis (DEA)
model that eliminates the influence of environmental factors and random factors. The research shows
that: (1) Carbon emission efficiency in China is spatially distributed; carbon emission efficiency in
the western region is generally lower than that in the eastern region. (2) China’s carbon emission
efficiency is not entirely synchronized with economic development; carbon emission efficiency in
some underdeveloped western regions has reached the forefront of China, and some developed
regions in the east are in the middle position. (3) China’s carbon emission efficiency is restricted
by scale efficiency; many regions in China have high pure technical efficiency, but due to low scale
efficiency, overall efficiency is low. (4) Overall, China’s carbon emission efficiency is currently on the
rise, but the rising rate is relatively slow, and there is still plenty of room for improvement.

Keywords: three-stage DEA model; SFA; carbon emission efficiency; regional differences

1. Introduction

In recent years, with the melting of Arctic glaciers, rising sea, and global warming,
climate-related environmental problems have become increasingly severe, and the primary
factor that leads to such drastic climate change is the increase of carbon dioxide emissions.
The international community has already begun to pay attention to carbon dioxide emis-
sions. The Paris deal was born in 2016, and a total of 196 countries signed the agreement,
which promised global temperature would rise below 2 ◦C by the end of the century by
reducing the emission of carbon dioxide [1]. How to reduce carbon emissions and improve
carbon efficiency has become a problem that human society needs to face. Since 2006, China
has become the world’s largest carbon dioxide country; emission of carbon dioxide has
become a severe threat to human health and nature [2,3]. In response to the concerns of
carbon dioxide emission, on 7 October 2021, the Chinese government issued an opinion on
the pollution control battle, proposing that by 2025, carbon dioxide emissions per unit of
GDP (gross domestic product) should be reduced by 18%, compared to 2020.

Based on the above background, ”low-carbon” and “emission reduction” have become
hot topics in academic research. An increasing number of scholars have begun to estimate
the amount of carbon dioxide emissions [4,5], its influencing factors [6–8], strength [9,10],
and efficiency [11]. As an essential part of environmental performance evaluation, carbon
emission efficiency is the focus of many scholars who study the environment, and it can
effectively measure carbon dioxide emissions per unit of GDP [12]. A large number of
studies have shown that economic development can lead to an increase in carbon dioxide
emissions [13–15]. Therefore, governments and academia are committed to exploring the
influencing factors of carbon emission efficiency to find measures that can reduce carbon
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dioxide emissions, and improve carbon emission efficiency. Currently, the research on
carbon emission efficiency can be divided into two categories. The first category is single-
element indicators. Mielnik and Goldemberg first used carbon emissions per unit of energy
consumption to evaluate the carbon emission performance of developing countries [16].
Yamaji et al. defined the ratio of total CO2 emissions to GDP as carbon dioxide production,
in order to study the level of carbon emissions in Japan [17]. Since then, other single-
factor indicators have gradually emerged, including fossil energy consumption [18], CO2
emissions per capita [19], energy structure [20], and energy intensity [21]. The second
category is the total factor. Zhang et al. studied the change and decomposition of dynamic
CO2 emission performance in China from 2002 to 2010, and found the total factor carbon
performance of the transportation industry decreased by 32.8%, due to technological
decline [22]. Chen and Golley used CO2 emissions as unexpected output directly into
production technology to estimate the change in the ”green” total factor productivity (GTFP)
growth pattern of 38 industrial sectors, from 1980–2010 [23]. In addition, a large number
of scholars have studied carbon dioxide emission rates from spatial scales, such as Nassar
R et al., who discussed the temporal and spatial distribution of carbon emission efficiency
by collecting carbon dioxide emission data of fossil fuels in various countries around
the world; thus setting off a wave of research on the characteristics of carbon emission
efficiency on the space scale in the academic community [24]. Uddin and Smirnov analyzed
the geographical and spatial distribution of carbon dioxide emissions by observing satellite
data, and studied the impact and structural nature of regional, specific sector emissions
in the total carbon budget [25]. Yu Z calculated the carbon emissions generated by energy
consumption in China’s provinces, further calculated carbon emission efficiency, and also
studied the spatial distribution pattern of China’s carbon emission efficiency [26]. Different
from others’ research on the overall distribution of carbon emissions in China, Chen X et al.
refined their research scope to carbon dioxide produced by the transportation industry, and
investigated the spatial change of carbon dioxide emissions in East China [27]. Wang B
and Liu F et al. analyzed the driving factors of carbon dioxide emissions in the allocation
of industrial resources in various provinces of China, from the spatial perspective, and
found that improving the distribution of industrial resources can reduce carbon dioxide
emissions [28,29]. In terms of research methods, in order to strengthen the detailed research
on the single factor and total factor of carbon emission efficiency, scholars began to widely
use DEA as a research tool [30]. Iram et al. used DEA to explore the role of energy efficiency
in carbon dioxide emissions, and the results showed that there is a strong link between
energy efficiency and carbon emissions [31]. Wang et al. used DEA to estimate carbon
emission efficiency and emission reduction potential of Chinese provinces, from 2003 to
2016. The research results showed that there is a negative correlation between resource
richness and carbon emission efficiency; the richer the resources, the lower the emission
efficiency [32]. Ke et al. used the DEA method to assess regional energy and emission
efficiency in 30 major cities in China, from 2006 to 2010, and found the highest in coastal
cities [33]. Zhang and Choi studied the dynamic changes in CO2 emission performance
of fossil fuel power plants, from 2005 to 2010, and the results showed that CO2 emissions
improved by 0.38% over the sample period [34].

It can be seen that some scholars have explored single factors related to economic
development, energy consumption, and urban population size [35]. Some scholars have
combined them to examine the performance of whole factor carbon emissions, while adding
spatial elements and DEA methods to explore carbon dioxide, which makes research on
carbon emissions more and more diverse. Although many scholars have explored the
influencing factors of carbon emission efficiency from different angles, there are few studies
on the regional impact of carbon emission efficiency, and most of these use the traditional
DEA method for research, which is prone to be disturbed by random factors. Therefore,
first, this paper adopts the three-stage DEA method excluding other factors, and studies
carbon emission efficiency from the perspective of total factors. Second, according to
the traditional regional classification, China is divided into eastern, central, and western
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regions, in order to more accurately examine the differences in carbon emission efficiency
among China’s inter-provincial regions. Finally, relevant policy recommendations are put
forward based on the research conclusions, so as to provide support for China to achieve
carbon peak faster.

2. Methodology
2.1. Introduction to the Research Methods
2.1.1. The First Stage of DEA

DEA was first proposed by Chames et al., then revised by Banker et al. and offered a
more rigorous model, which decomposes technical efficiency into pure technical efficiency
and scale efficiency, to solve the effectiveness of scale compensation under variable condi-
tions [36,37]. The traditional DEA model (namely the BCC model) can be used to obtain the
input difference value or output difference value. Referring to research on carbon emission
efficiency by domestic and foreign scholars, the input-oriented BCC model is constructed
as follows:

minθλ =
[
θ −

(
ets− + ets+

)]
n
∑

k=1
λiyrk − s+ = yok

n
∑

k=1
λiyrk + s− = θxok

n
∑

k=1
λk = 1

λk ≥ 0; s+ ≥ 0; s− ≥ 0

(1)

In Formula (1), i = 1, 2, ..., x; k = 1, 2, ..., n; r = 1, 2, ..., y. While n is the number of
decision units, x and y are the number of input and output variables, respectively, yik (i = 1,
2, ..., x) is the i-th input element of the k-th decision unit, yrk (r = 1, 2, ..., y) is the r-th output
element of the k-th decision unit, θ is the effective value of the decision unit. If θ = 1, and
s+ = s− = 0, the decision unit DEA is valid; if θ = 1, and s+ 6= 0 or s− 6= 0, it is weak DEA.
And if θ < 1, the decision unit is not a DEA and is valid.

2.1.2. The Second Stage of DEA

Carbon emission efficiency is disturbed by internal factors, external factors, and ran-
dom factors. The random factors refer to an error phenomenon that may occur randomly
in the process of formula calculation, and in the process of data collection. It includes:
statistical errors of data; omitted variables in regression models; some subjective and spon-
taneous behaviors of people in calculation; imperfect forms of established mathematical
model; combined errors between economic variables; and combined errors in measurement,
etc. [38]. Therefore, the stochastic frontier analysis (SFA) model is constructed to decompose
the relaxation variable into a function containing three independent variables: environmen-
tal factors; random factors; and management factors, to remove these influencing factors
and readjust the data for easy calculation [39,40]. Its expression is as follows:

Sni = f n(Zi; βn) + Vni + Uni (2)

In Formula (2), n = 1, 2, . . . , N, N represents n inputs; i = 1, 2, . . . , I, I represents
i decision units. Sni is the relaxation variable of the i-th decision unit on the n-th input.
The difference between the ideal input and the actual input; fn(Zi;βn) is used to represent
the influence of environmental factors on Sni. Usually, take fn(Zi;βn) = Ziβn, the Zi is
the environmental variable of the observed k-dimension, the βn is the parameter vector
corresponding to the environment variable; Vni + Uni is known as the common error term εi;
The Vni reflects the random error, which is normally distributed, namely, Uni ∈ N (0, σ2

vn).
The Uni reflects the inefficiency of the management, with a truncated normal distribution,
namely, Uni ∈ N (µu, σ2

un), generally speaking µu = 0, Uni > 0. The Vni and Uni are not
associated with the independent. Estimates of the βn, and equal parameters are then
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calculated by maximum likelihood estimation. Then Vni is calculated i according to the
above parameters.

X∗ni = Xni + [max(Ziβ
n)− Ziβ

n] + [max(Vni −Vni)]
n = 1, 2, ..., N; i = n = 1, 2, ..., I

(3)

In Formula (3), X*ni is the new input value of the original input Xni adjusted after
homogenization, the first middle bracket adjusts the influence of environmental factors,
max(Ziβn) represents the is in the worst, environmental condition, and other decision
units are adjusted on their basis. If the effect is good, increase more input; if the effect is
poor, increase less input, so that all decision units are adjusted to the same environmental
level. The adjustment in the second middle bracket is the random error factor, on the same
principle, giving all decision units the same conditions.

2.1.3. The Third Stage of DEA

The DEA in the third stage and the DEA model used in the first stage adopt the input-
oriented DEA-BCC model. The difference is that the relative efficiency of each decision unit
is calculated similarly by substituting the environmental factors and random factors X∗ni
into the DEA-BCC model in the first stage, to obtain a more accurate value.

2.2. Data Description
2.2.1. Introduction of Related Variables

The input variables selected in this paper are the size of population, capital stock,
and energy consumption, which are associated with economic variables. Hao C et al.
proved that the rapid growth of the total population can promote the increase of carbon
emissions, through research on the carbon emissions of the BRICS countries; the growth
of the population and the economic benefits can affect the carbon emissions efficiency to
a certain extent [41]. Therefore, this paper selects the size of population as a secondary
variable in the selection of input indicators, and uses the total population at the end of the
year to represent the size of population [41]. The capital stock is expressed by the industrial
energy investment of each region. The use of industrial energy investment can most directly
reflect the economic input of carbon emissions of each region [42]. Xu et al. proposed
that energy consumption and industrial production emissions should be given priority
by studying the composition of carbon emissions [43], so the total energy consumption
of each region is selected as the energy consumption. Among the output variables, GDP
and carbon emissions are chosen, among which GDP, as an output variable, occupies
the mainstream position in current academic research on carbon emission efficiency. For
example, Zhu J believed that carbon emission efficiency is related to carbon emission and
economy, and GDP, as the best variable to measure the economy, should be regarded as
an output variable; therefore, this paper takes it as expected outputs [44]. Zhang W et al.
believed that carbon emissions are the accompaniment of economic development, with the
development of the economy, the rise of industry and energy industry inevitably bringing
a large amount of carbon emissions [45]. Therefore, this paper uses carbon emissions as an
output variable, accordingly.

The calculation of carbon emissions is based on the United Nations Intergovernmen-
tal Special Committee on Climate (IPCC) carbon emission coefficient, and collects the
provinces and cities of coal, coke, crude oil, natural gas, and another eight kinds of energy
consumption. Due to the carbon emission coefficient of resources such as water, wind and
light energy being 0, which does not produce carbon emissions, they are excluded from
the calculation. This paper uses the carbon emission coefficient method to calculate carbon
emission, and the estimation formula is as follows:

Qco2 = E× K (4)
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In Formula (4), E represents energy sources in different types, and its unit is standard
coal/ton. K is the carbon emission factor of various energy sources, as revised in 2019.
In addition, this paper takes the level of economic development, national consumption,
and scientific and technological progress as environmental variables. The changes in these
environmental variables affect the efficiency of carbon emissions to a certain extent. The
level of economic development is expressed by per capita GDP. If people’s living standards
improve, they will have more money to consume items that release carbon dioxide, such
as cars, air-conditioning, etc. In other words, the increase in per capital GDP will increase
carbon dioxide emissions; carbon emission efficiency is an output indicator, which is
composed of the ratio of unit GDP to carbon dioxide emissions. National consumption
uses the total amount of social consumer goods in various regions, which most intuitively
shows the consumption capacity. In the process of consumption, people will inevitably
consume energy consuming goods. The increase in per capital household consumption
can indirectly lead to a rise in carbon emissions [46]. Therefore, if people’s total social
consumption is more significant, carbon emissions in this region will increase accordingly;
the increase of carbon emissions will increase the local environmental pressure, and then
reduce the efficiency of carbon emissions. Technological innovation can effectively reduce
the intensity of carbon dioxide emissions from the source by improving the efficiency of
energy utilization, to enhance the efficiency of carbon emissions [47]. Therefore, this paper
selects the number of valid patents in each region this year, as an indicator of scientific
and technological progress. Based on this, the scientific index system is constructed (see
Table 1).

Table 1. Index system of carbon emission efficiency.

Level 1 Indicators Secondary Indicators Level 3 Indicators

Input indexes
Size of population Total population at the end of the year (/10,000)

Stock of capital Industrial energy investment (/RMB 100 million)
Energy use Total regional energy consumption (/Million tons)

Output indexes Carbon emission Carbon emissions from each region (/Ton)
GDP Total GDP (/100 million yuan)

External environment
variables

Economic development Per capita GDP (/Ten thousand yuan)
National consumption Total social consumer goods (/100 million yuan)

Scientific and technological Patent valid (/Piece)

2.2.2. Data Source

The data in this paper are from China Statistical Yearbook, China Energy Statistical
Yearbook [48], China Environmental Statistical Yearbook [49] and China Science and Technology
Statistical Yearbook [50]. The period is from 2009 to 2018. In this period, China has just passed
the financial crisis, which was in a period of rapid economic development. Due to the lack
of data in Hong Kong, Macao, Taiwan, and the Tibet region, we selected 30 provinces and
cities outside of those four regions. For convenient comparison, this paper divides the
30 province and cities into eastern, central, and western regions.

3. Results
3.1. The First Stage of the Traditional DEA Analysis

In the first stage, original data on the input and output of carbon emissions from
30 provinces and cities were collected, and MaxDEA 5.2 (It was created by Mr. Cheng Gang
of China.) was used to build a DEA-BCC model for calculation. The average efficiency of
carbon emissions, from 2009 to 2018, is shown in Table 2. The 30 provinces and cities were
divided into eastern region, central region and western region, and their carbon emission
efficiency are shown in Figure 1.
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Table 2. Average carbon emission efficiency from 2009 to 2018.

Area
Carbon

Emission
Efficiency

Pure
Technical
Efficiency

Scale
Efficiency Area

Carbon
Emission
Efficiency

Pure
Technical
Efficiency

Scale
Efficiency

Beijing 1.000 1.000 1.000 Henan 0.775 0.813 0.923
Tianjin 0.992 0.998 0.990 Hubei 0.761 0.765 0.953
Hebei 0.839 0.858 0.975 Hunan 0.693 0.708 0.934
Shanxi 0.985 0.998 0.987 Guangdong 0.857 1.000 0.846

Nei Monggol 1.000 1.000 1.000 Guangxi 0.715 0.720 0.946
Liaoning 0.992 1.000 1.000 Hainan 0.975 1.000 0.983

Jilin 0.877 0.878 0.980 Chongqing 0.696 0.675 0.974
Heilongjiang 0.821 0.834 0.964 Sichuan 0.616 0.619 0.928

Shanghai 0.992 1.000 1.000 Guizhou 0.738 0.756 0.947
Jiangsu 0.986 1.000 0.988 Yunnan 0.608 0.609 0.944

Zhejiang 0.891 0.916 0.969 Shaanxi 0.961 0.967 0.986
Anhui 0.834 0.905 0.912 Gansu 0.714 0.712 0.971
Fujian 0.865 0.869 0.972 Qinghai 0.524 1.000 0.477
Jiangxi 0.819 0.838 0.955 Ningxia 0.999 1.000 0.997

Shandong 0.965 1.000 0.973 Xinjiang 0.807 0.821 0.991
Average Carbon emission efficiency: 0.843 Pure technical efficiency: 0.875 Scale efficiency: 0.949
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Figure 1. The change of carbon emission efficiency, from 2009 to 2018, in the first stage.

From the results of Table 2, without considering the influence of external environ-
mental factors and other random factors, the overall carbon emission efficiency of China
over the years has been relatively stable; but the carbon emission efficiency gap is notice-
able, and needs controlling in the future. The results show that from 2009 to 2018, the
average carbon emission efficiency of 30 provinces and cities was 0.843, the average pure
technical efficiency was 0.875, and the average value of scale efficiency was 0.949. The
average annual carbon emission efficiency is 16 percentage points different from that of the
highest, among the 30 provinces and cities; the average yearly pure technical efficiency is
13 percentage points further; and the scale efficiency is increased by 6 percentage points.
There is much room for improvement in these regions. By comprehensively analyzing the
carbon emission efficiency of the two stages, this paper divided 30 provinces and cities into
three regions: high, medium, and low, according to their efficiency. At the same time, in this
study, the carbon emission efficiency is in the field of 0–1. Therefore, 0.6 and 0.9 are taken
as the dividing points: the carbon emission efficiency of 0~0.6 is the low-efficiency area;
the carbon emission efficiency of 0.6 to 0.9 is the medium efficiency area; and the carbon
emission efficiency of 0.9~1 is the high-efficiency area. It can be seen from Table 2, that the
11 provinces with high carbon emission efficiency levels are: Beijing, Tianjin, Shanxi, Inner
Mongolia, Liaoning, Shanghai, Jiangsu, Shandong, Hainan, Shaanxi, and Ningxia. There
are 18 provinces with medium efficiency, including: Hebei, Jilin, Heilongjiang, Zhejiang,
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Anhui, Fujian, Jiangxi, Hunan, Hubei, Henan, Guangdong, Guangxi, Chongqing, Sichuan,
Yunnan, Guizhou, Gansu, and Xinjiang. Only Qinghai province is in the low-efficiency
area. The results show that carbon emission efficiency is not entirely synchronized with
economic development; carbon emission efficiency of backward provinces is not necessarily
low, and carbon emission efficiency of developed provinces is not necessarily high. It can
be seen that although carbon emission efficiency is primarily linked to the economy, it is not
entirely dependent on the economy. It is affected by other factors, such as population [51],
terrain [52], policies [53], and scientific and technological levels [54], which can impact
carbon emission efficiency to some extent.

As shown in Figure 1, there are significant differences in carbon emission efficiency
among the eastern region, central region, and western region, from 2009 to 2018. The
average carbon emission efficiencies in the eastern region, central region, and western
region are 0.941, 0.841, and 0.738, respectively. The reason lies in the relatively developed
economy and mature concept of environmental protection in eastern coastal areas. The local
governments attach more importance to environmental protection, and invest more in it [55].
Since the reform and opening up in Western China, energy-consuming industries have
dominated the region. In addition, in recent years, many factories in central and eastern
regions have been relocated to the western region, resulting in increased environmental
pressure and low carbon emission efficiency. In addition, it can be seen from Figure 1, that
from 2010 to 2016 the average carbon efficiency was relatively stable and slow to change. In
addition to the central region, eastern and western regions were vaguely declining. Until
2017, national carbon efficiency improved rapidly. This may be due to the Chinese release
of a series of policies, such as the 13th Five-Year Plan for National Environmental Protection
Standards, and the Regulations on the Implementation of the Environmental Protection
Tax Law, which helped to improve the efficiency of fossil energy utilization, increased
the production of renewable energy, and increased investment in environmental pollution
protection. It is worth noting that carbon emission efficiency of the central region was
consistent with the whole country. Therefore, it can be considered that, to some extent, the
internal management level of carbon emission efficiency in the central region is roughly
equivalent to the internal management level of national carbon emissions.

In addition, because of resource endowments and different economic development,
carbon emission efficiency among different provinces and cities are also inevitably disturbed
by the environment, and other random factors [56]. The areas with better geographical
location and economic conditions have higher carbon emission efficiency. In contrast, areas
with poor geographical environment, weak economic development and foreign investment,
have lower carbon emission efficiency. The results of Table 2, therefore, cannot truly reflect
the level of carbon emission efficiency in China. It is necessary to make adjustments and
calculations to obtain more accurate and reliable results.

3.2. The Second Stage of the SFA Analysis

Taking the labor force, capital stock, and energy consumption of 30 provinces and
cities in China from 2009 to 2018 as dependent variables, and external environmental
variables, we established the SFA regression analysis model. Through R language software,
the relaxation variable values of the three input variables in the first stage were regressed
and analyzed, by using the maximum likelihood method. The results are in Table 3.

It can be seen from Table 3 that, in addition to per capita GDP, the total retail sales
of consumer goods, and the number of valid patents, are significantly related to the
population, energy consumption, and the slack in energy-industry investment, which
shows that the level of per capita GDP has no effect on the improvement of carbon emission
efficiency. However, the one-sided error tests, for final LR (likelihood) all passed the 1%
test, so all environmental variables should be considered when correcting for input outputs.
According to the analysis of Table 3, it can be seen that the economic development level,
national consumption, and scientific and technological progress selected in this paper have
positive or negative effects on input variables. Therefore, this paper adjusted the input
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variables such as labor force, capital stock, and energy consumption in 30 provinces and
cities in China from 2009 to 2018, to removing the environmental factors and random
factors that affect the results. The adjusted variable results are in Table 4.

Table 3. Results of the regression analysis of the 30 provinces and cities from 2009 to 2018.

Population Coefficient Standard Error T-Ratio p-Value

Cow distance item −944 158 −6 0
per capita GDP 4 20 0 1

Total retail sales of consumer goods 0 0 5 0
Number of valid patents 0 0 −3 0

sigmasq 34,900,000 1 3,490,000 0
gamma 1 0 524 0

Log- likelihood function −2190
LR test of the one-sided error 716

One-sided likelihood ratio test for p-values 0

Energy Consumption Coefficient Standard Error T-Ratio p-Value

Cow distance item −17,000 417 −4 0
per capita GDP 92 56 2 0

Total retail sales of consumer goods 0 0 4 0
Number of valid patents 0 0 −2 0

Sigmasq 79,600,000 1 7,960,000 0
Gamma 1 0 58 0

Log -likelihood function −26,000
LR test of the one-sided error 229

One-sided likelihood ratio test for p-values 0.000

Energy Industry Investment Coefficient Standard Error T-Ratio p-Value

Cow distance item −177 50 −4 0
per capita GDP 11 7 2 0

Total retail sales of consumer goods 0 0 3 0
Number of valid patents 0 0 −2 0

Sigmasq 868,000 1 841,000 0
Gamma 1 0 31 0

Log- likelihood function −1974
LR test of the one-sided error 143

One-sided likelihood ratio test for p-values 0

Table 4. Data adjusted for raw data by SFA method (take 2018 as an example).

Area Population Energy
Consumption

Investment
Amount in
Industrial

Energy
Sources

Area Population Energy
Consumption

Investment
Amount in
Industrial

Energy
Sources

Beijing 3480 11,600 1184 Henan 10,100 25,000 2320
Tianjin 2870 12,000 1220 Hubei 6600 19,200 1520
Hebei 8300 33,900 2550 Hunan 7660 18,300 1444
Shanxi 4890 24,600 1950 Guangdong 12,200 37,600 2320

NeiMonggol 3680 27,300 2770 Guangxi 5990 14,300 1400
Liaoning 5310 26,500 1510 Hainan 2330 6710 886

Jilin 3820 11,100 1280 Chongqing 4260 12,000 1090
Heilongjiang 4810 14,800 1360 Sichuan 9030 22,100 19,601

Shanghai 3570 15,600 907 Guizhou 4890 13,700 1230
Jiangsu 8850 35,600 2310 Yunnan 5960 14,800 1320

Zhejiang 6680 24,700 1700 Shaanxi 4980 17,100 2190
Anhui 7340 17,200 1670 Gansu 3950 11,700 1080
Fujian 4910 16,400 1520 Qinghai 2040 890 1190
Jiangxi 5792 13,100 1290 Ningxia 2120 11,700 1330

Shandong 10,700 44,400 4100 Xinjiang 3820 21,200 1970



Sustainability 2022, 14, 9731 9 of 14

3.3. Empirical Results of DEA after Adjustment in the Third Stage

In this paper, input variables such as population, energy consumption, and industrial
energy investment, which are affected by environmental factors and random factors, were
removed and reintroduced into the traditional DEA-BCC model, used in the first stage.
MaxDEA software was used to calculate the carbon emission efficiency of 30 provinces
and cities in China from 2009 to 2018. Compared with the efficiency value of the original
data directly in the first stage, the carbon emission efficiency value obtained in the third
stage has been eliminated from environmental factors, and other random factors. It more
truly reflects the real carbon emission efficiency of all provinces and cities in China. The
following are the changes in efficiency values in the third stage (see Figure 2), and the
comparison of average efficiency values in the first and third stages (see Table 5).
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As shown in Figure 2, the more realistic real value of carbon emission efficiency is
obtained by excluded the influence of internal, external, and random factors after processing
raw data. It is found that although the first stage is affected by various factors, only
preliminary data can be obtained from the traditional DEA model. Compared with average
carbon emission efficiency in the third stage, carbon emission efficiency in the whole
country has little change; carbon emission efficiency in the east is still the highest, reaching
0.877, the middle reaches 0.808, and it is still the lowest in the west, with an average carbon
emission efficiency of 0.617. By comprehensively comparing the first stage and the third
stage, it can be found that China’s carbon emission efficiency is spatially distributed as a
whole. The carbon emission efficiency of Eastern China is significantly higher than that of
Western China. With the increase of years, the carbon emission efficiency of Eastern China
is gradually opening up the gap with that of Western China. Akbar et al. also showed
that although the east region is more densely populated, more developed in industry and
commerce, and had more carbon emissions than the central and west regions, the eastern
region of China has significantly higher carbon emission efficiency than central and western
regions, because of its higher scientific, technological, and informatization levels [57].

As can be seen from Table 5, excluded the influence of environmental impact factors,
and other random factors, the carbon emission efficiency of the third stage is significantly
different from the first stage. The carbon emission efficiency of Inner Mongolia is still at the
forefront of China, while other provinces and cities have changed. Among them, Beijing’s
carbon emission efficiency has decreased from 1.000 to 0.959, mainly caused by the decline
in the scale and efficiency of Beijing. As a megacity, Beijing has many enterprises and
factories, and it must formulate related carbon emission supervision policies to control
the carbon emissions of enterprises [58]. Hainan’s carbon emission efficiency dropped the



Sustainability 2022, 14, 9731 10 of 14

most, from 0.975 to 0.361. In addition, the carbon emission efficiency of Liaoning, Jiangsu,
Shandong, and Guangdong ranks first in China. The provinces with rising carbon emission
efficiency include Hebei, Shanxi, Liaoning, Zhejiang, Shan, Henan, Hunan, Guangdong,
and Sichuan. It shows that the carbon emission efficiency of these provinces, in the first
stage, is disturbed by external factors. The provinces with reduced carbon emission
efficiency include Beijing, Tianjin, Jilin, Heilongjiang, Shanghai, Anhui, Fujian, Jiangxi,
Guangxi, Hainan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang. This indicates that the previous high efficiency of these provinces is related to
certain external influence factors, rather than the actual situation.

Table 5. The first stage efficiency and the third stage efficiency are used for comparison.

The First Stage The Third Stage

Area
Carbon

Emission
Efficiency

Pure
Technical
Efficiency

Scale
Efficiency Area

Carbon
Emission
Efficiency

Pure
Technical
Efficiency

Scale
Efficiency

Beijing 1.000 1.000 1.000 Beijing 0.959 1.000 0.959
Tianjin 0.992 0.998 0.990 Tianjin 0.747 1.000 0.747
Hebei 0.839 0.859 0.976 Hebei 0.883 0.909 0.972
Shanxi 0.985 0.998 0.987 Shanxi 0.993 0.998 0.995

Nei Monggol 1.000 1.000 1.000 Nei Monggol 1.000 1.000 1.000
Liaoning 0.992 1.000 1.000 Liaoning 1.000 1.000 1.000

Jilin 0.877 0.878 0.980 Jilin 0.713 0.957 0.745
Heilongjiang 0.821 0.834 0.964 Heilongjiang 0.761 0.929 0.818

Shanghai 0.992 1.000 1.000 Shanghai 0.928 1.000 0.928
Jiangsu 0.986 1.000 0.988 Jiangsu 1.000 1.000 1.000

Zhejiang 0.891 0.913 0.969 Zhejiang 0.913 0.952 0.959
Anhui 0.834 0.905 0.912 Anhui 0.800 0.957 0.837
Fujian 0.865 0.869 0.972 Fujian 0.817 0.946 0.864
Jiangxi 0.819 0.838 0.955 Jiangxi 0.669 0.939 0.711

Shandong 0.965 1.000 0.973 Shandong 1.000 1.000 1.000
Henan 0.775 0.814 0.923 Henan 0.852 0.918 0.929
Hubei 0.761 0.765 0.953 Hubei 0.958 0.899 0.844
Hunan 0.693 0.708 0.934 Hunan 0.728 0.857 0.848

Guangdong 0.857 1.000 0.846 Guangdong 1.000 1.000 1.000
Guangxi 0.715 0.720 0.946 Guangxi 0.634 0.876 0.723
Hainan 0.975 1.000 0.983 Hainan 0.361 1.000 0.361

Chongqing 0.696 0.675 0.974 Chongqing 0.592 0.875 0.677
Sichuan 0.616 0.619 0.928 Sichuan 0.669 0.755 0.887
Guizhou 0.739 0.756 0.947 Guizhou 0.625 0.892 0.700
Yunnan 0.608 0.609 0.944 Yunnan 0.578 0.801 0.720
Shaanxi 0.961 0.967 0.986 Shaanxi 0.903 0.979 0.922
Gansu 0.714 0.712 0.971 Gansu 0.569 0.883 0.645

Qinghai 0.524 1.000 0.477 Qinghai 0.247 1.000 0.247
Ningxia 0.999 1.000 0.997 Ningxia 0.588 1.000 0.588
Xinjiang 0.807 0.821 0.991 Xinjiang 0.764 0.895 0.855

Average value 0.843 0.875 0.949 Average value 0.775 0.941 0.816

Based on the data excluding random factors and environmental factors in the third
stage, the carbon emission efficiency values of 0.9 and 0.6 are set as critical points. The
30 provinces and cities are classified according to carbon emission efficiency: carbon
emission efficiency is greater than 0.9 in areas of high efficiency; with medium efficiency
between 0.6 and 0.9; and in those below 0.6 they are low efficiency areas (see Table 6).

From Table 6, it can be seen that several provinces in high-efficiency areas have high
pure technical efficiency and scale efficiency, so that the overall comprehensive carbon
emission efficiency is not low. Economic development in most provinces is in good shape;
a few economically underdeveloped areas, such as Inner Mongolia, have maintained high
carbon emission efficiency. That is because since the 21st century, the rapid economic growth
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of Inner Mongolia has laid a solid foundation for the improvement of local carbon emission
efficiency [59]. Tianjin and Xinjiang are reduced from being original high-efficiency areas
to medium efficiency areas. In Tianjin, in recent years, economic growth is slowing down,
but energy consumption remains large. Large resource consumption is not supported by a
matching economy, which leads to the decline of scale efficiency and affects overall carbon
emission efficiency. The low carbon emission efficiency of Xinjiang is because Xinjiang
develops its economy mainly by mining coal resources and simple processing of products,
with a large proportion of secondary industry and insufficient investment in science and
technology. The low-efficiency areas are Hainan, Gansu, Yunnan, Chongqing, Qinghai,
and Ningxia. Most of these are underdeveloped areas, but their technical efficiency are
high, which shows that these regions pay more attention to the development of science and
technology, but their overall carbon efficiencies are affected by efficiency of scale.

Table 6. Classification of carbon emission efficiency values in Phase III.

High Efficiency Area

Beijing Shanxi Nei Monggol Liaoning

Shaanxi Hubei Zhejiang Shandong

Shanghai Guangdong Jiangsu

Medium Efficiency Area

Tianjin Hebei Jilin Henan

Jiangxi Guangxi Sichuan Guizhou

Heilongjiang Xinjiang Anhui Hunan

Low Efficiency Area
Hainan Chongqing Yunnan Gansu

Qinghai Ningxia

4. Conclusions and Suggestions
4.1. Conclusions

This paper studied the carbon emission efficiency of 30 provinces and cities in China,
from 2009 to 2018. The significance of this paper is the introduction of three stages of the
DEA method to calculate regional carbon emission efficiency, while analyzing the influenc-
ing factors of carbon emission efficiency in different regions of China. Our conclusions are
as follows: (1) There is a significant difference between the first stage and the third stage of
carbon efficiency; carbon emission efficiency of most regions in the third stage decreased
by about 10%, compared with carbon emission efficiency in the first stage. Hainan, with
the largest decline, decreased from 0.975 to 0.361, but the carbon emission efficiency of
a few regions has increased by about 5%. (2) China’s carbon emission efficiency is not
completely synchronized with economic development; carbon emission efficiency of some
underdeveloped regions has reached more than 0.9, while carbon emission efficiency of
some provinces in eastern and central regions are far lower than carbon emission efficiency
in some underdeveloped regions. (3) China’s carbon emission efficiency is constrained
by scale efficiency; when scale efficiency decreases by 10%, its carbon emission efficiency
also decreases by 5–10%. (4) On the whole, China’s carbon emission efficiency shows an
upward trend, but the speed is relatively slow, so there is still much room for improvement.

4.2. Suggestions

Based on the research findings of this paper, the following suggestions are put forward:
(1) Establish a carbon emission efficiency monitoring system network, which can control
carbon emissions below the peak, and restrain carbon emissions. Relying on internet
technology, establish a carbon emission efficiency monitoring network covering the whole
country, detecting carbon emission efficiency in real-time. (2) Expand the channels of talent
introduction and increase investment in technology. Technological innovation is an essential
driving force of carbon emission reduction. Talent introduction and improvement of carbon
emission technical efficiency can help to improve overall carbon emission efficiency [60].
(3) Local governments should make breakthroughs in the previously established emission
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reduction system. On the one hand, increasing the price of industrial energy, encouraging
consumers to use clean energy and new energy that does not produce carbon dioxide emis-
sions, then establishing a low-carbon environmental incentive mechanism in production
and consumption. On the other hand, controlling the use of industrial energy and carbon
dioxide products, strengthening the publicity of low-carbon environmental protection, and
making people aware of the harm of carbon dioxide to preserve the environment, so that
people can consciously protect the environment and reduce daily carbon dioxide emissions.
It also needs to promote carbon taxes, limit carbon emissions, develop carbon trading
licensing mechanisms, limit unscrupulous carbon dioxide emissions, and strictly regulate
them [61].
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