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Abstract: Cities are hotbeds for the outbreak and spread of infectious diseases. In the process of
urban development, frequent interpersonal interactions are conducive to the spread of viruses. After
the outbreak of COVID-19 in Wuhan, China in 2019, it quickly spread to Europe, North America,
and Asia. This paper collects data on the number of COVID-19-infected cases per 100,000 people
in Taiwan from 1 January to 4 May 2022 and the researcher uses the spatial regression model to
analyze the spatial effect of the COVID-19 epidemic. The results of the study find that the hot zones of
COVID-19-infected cases per 100,000 people are distributed in Taipei City, New Taipei City, Keelung
City, Yilan County, and Taoyuan City, and the cold zones are distributed in Changhua County, Yunlin
County, Chiayi County, Chiayi City, Tainan City, and Kaohsiung City. There are three types of urban
development indicators: density, urbanization, and transportation system and means of transport,
all of which can significantly affect the spatial spread of COVID-19. There is a negative correlation
between the area of the “urban planning” district, the “road area” per person, the current status of
the urban planning district population “density”, and the number of infected cases of “COVID19”.
There is a negative correlation between “urban planning”, “road area”, “urbanization”, and “density”
of neighboring cities and “COVID19” in a certain city.

Keywords: COVID-19; spatial effect; spatial regression model; hot zones; urbanization

1. Introduction

As of today, much of the literature on urbanization and globalization focuses on the
movement of economies and populations within and between cities [1–3]. In recent years,
more and more of the literature has begun to focus on academic research and policy analysis
of urban health and disease by urbanization [4–7]. Urban epidemiology theory argues that
changes in geography affect urban health and disease, and a recent paper further argues
that the future of global health depends on urban health [8,9]. The process of spreading
infectious diseases should be closely related to the expansion of urbanization [2]. The flow
and destruction of social ecology leads to an increase in infectious diseases in suburban
and bordering areas. In this paper, the focus of the analysis is on the effects of urbanization
indicators and related variables on infectious and emerging infectious diseases. When an
animal first transmits an infectious agent to a new human host, the incidence of infectious
disease increases rapidly [10]. In particular, social ecology is accompanied by social and
spatial changes, which leads to the emergence of new forms of disease transmission, further
contributing to the increase of emerging infectious diseases. In examining the relationship
between urbanization and infectious diseases, it is suggested that the relationship can be
found in landscape political ecology analysis.

The twentieth century was an important milestone in the control and eradication of
infectious diseases in history. After World War II, the public health programs that were
needed for the questioning and use of new drugs, vaccines and treatments, and prevention
provided the effective tools needed for disease control. By the late 1960s, infectious disease
scientists and surgeons in the United States declared victory in the war against infectious
diseases [11]. However, after the 1960s, two world trends emerged. First, public resources
that were once used were redirected in the war against cancer [12]. Second, the 60 years
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of population growth that followed World War II led to the orderless urbanization, and
changes in agriculture, land use, and livestock, as well as accelerated globalization, became
the driving force behind the re-emergence of infectious disease outbreaks [13]. The first
evidence of the resurgence of infectious diseases was in the 1970s, but the spread of this
epidemic greatly accelerated in the second two decades of the twentieth century. Past
diseases that were once effectively controlled began to re-epidemic, such as dengue fever,
Japanese encephalitis, West Nile virus, epidemic polyarthritis, yellow fever, measles, plague,
cholera, tuberculosis, Leishmaniasis, malaria, etc. In addition, many newly discovered
diseases are beginning to cause epidemics, such as acquired immunodeficiency syndrome
(AIDS), hemorrhagic fever (Marburg, Ebola, Lhasa, Hantavirus, Crimean–Congo, Sartremic
virus, Dengue and yellow fever), avian influenza, Hendra and Nipah encephalitis, severe
acute respiratory syndrome (SARS), Lyme disease, Escherichiasis, and coronavirus disease
2019 (COVID-19) in 2019. In addition to these factors mentioned above, bacterial pathogens
resistance to antibiotics, malaria-resistant parasites, mosquito resistance to insecticides,
new medical technologies such as organ transplantation, and ecological encroachment
of humans and animals have all played a role in this situation, and infectious diseases
have once again become a global public health problem [12–14]. An estimated 26 per cent
of deaths worldwide in 2002 were attributable to infectious and parasitic diseases [15];
disability-adjusted life years (DALYs) are caused by infectious diseases [16].

The book “Plagues and Peoples” describes the development of major urban centers
and the regional and even global trade chains through new trade routes, such as the Silk
Road connecting the Middle East and Asia, explaining the historical patterns of plague
emergence and the results of many key events in history [17]. Therefore, the relationship
between urbanization and infectious diseases is an ancient existential relationship. The
current global epidemic of infectious diseases is, to some extent, a continuation of this
model. Many of the variables that affect the risk of transmission of infectious diseases in
urban areas are known. Urban infectious disease outbreaks are at the greatest risk, not only
where population densities are highest, but also where public infrastructure and public
services are poor and where access to health care and basic public health plans keep pace.
Additionally, since all areas and neighborhoods in the metropolis are connected using
modern transportation systems, pathogens can spread easily. Even more ironically, the con-
struction of a modern transport system aimed at supporting modernization and economic
development has instead increased the mixing of infected and susceptible populations at
an unprecedented rate [18].

Infectious disease pathogens spread diseases to other hosts through the transmission
route of the host, and a great amount of the infrastructure, buildings in the city, residents,
and management methods of the clusters have a profound impact on the transmission of
infectious diseases and the epidemic of the disease [2].

Public transport is another important factor in the spread of infectious disease out-
breaks. Researchers conducted analysis of the relationship between London underground
network public transport and the spread of infectious diseases [19]. They used actual travel
data to infer connections between each station at any time of the day and the number
of passengers and compared them to influenza-like illness (ILI) incidences in London
boroughs. The results showed a correlation between underground use in London and the
number of ILI cases and, in particular, they also demonstrated a higher number of ILI cases
in boroughs in the USA that spent more time underground and/or incited more travel time
in contact areas. On the other hand, in areas with a small number of ILI cases, the use of
subways is also relatively limited. The use of public transport and other environmental
and demographic factors, such as population, density, employment, and income, can influ-
ence the spatial spread of infectious diseases [20–34]. These results are beneficial for both
scientists and policy makers. Other indicators influencing the spread of infectious diseases
include excessive population exposure due to overcrowding [35–42] and interpersonal
links for social networks [43–48].
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Emerging infectious diseases (EID) in groups that are considered pathogens in their
parasitic groups has increased over the past two decades or is likely to increase in the
near future [12]. In addition to describing the spread of newly evolved or previously
undiscovered pathogens (pathogens that are expanding their geographical distribution
to increase their impact, alter their clinical presentation, or migrate to human hosts for
the first time), the term “Emerging” can also be used to describe the re-emergence of
known infections after a decline in incidence [12]. It is estimated that 60 to 80 percent of
emerging disease infections are zoonotic, so these pathogens depend on the animal pool
for survival [49,50]. At least 70% of these emerging zoonotic diseases come from wild flora
and fauna infections, cross-species transmission and forward transmission, representing
a natural response to the ecological evolutionary pressures of pathogens [49,51]. While
both wildlife and domestic animal banks are considered important sources of EIDs, anthro-
pogenic impacts on ecosystems determine the level of risk of human–animal transmission
in zoonotic diseases [52].

In the process of urban development, interpersonal social activities are frequent and
close interaction is conducive to the spread of the virus. After the outbreak of COVID-19 in
Wuhan, China in 2019, it spread rapidly to Europe, North America, and Asia. As the virus
spread from one city to another, the number of COVID-19-infected people increased rapidly,
reaching 5,016,172,529 infected worldwide by 6 May 2022. (Please refer to the reported data
of the Coronavirus Resource Center from Johns Hopkins University and Medicine. Please
visit the website of https://coronavirus.jhu.edu/map.html). The purposes of the study are
as follows:

(1) Geographical distribution and thermal zone analysis of the number of confirmed
COVID-19 cases in Taiwan.

(2) Spatial regression model estimation of COVID-19 epidemic spread in Taiwan.
(3) The direct and indirect effects of COVID-19 epidemic spread in Taiwan.

The limitations of this study are as follows:

(1) The data on the number of confirmed cases of COVID-19 starts on 1 January 2022 and
the data is updated daily. Therefore, the distribution period is not a full year.

(2) The data source is the data published by the government on the website and some
data have missing values.

2. Materials and Methods

This research used the reported data on the number of confirmed cases of COVID-
19 in Taiwan released by the Ministry of Health and Welfare and collected county and
city indicators to divide urban development indicators into three categories. The study
contains information on density, urbanization, and transportation system and transport
implements, and the researcher constructed a spatial regression model for COVID-19
dispersion in Taiwan.

Spatial regression analysis is applied in multiple fields [53–57]. Subsequently, spatial
models have been applied in many fields, such as crime, population, economics, epidemiol-
ogy, politics, and public health [58–68].

In this work, the spatial regression model was used to analyze the influence on the
spread of COVID-19 from urban characteristics and the spatial effects of the epidemic in
Taiwan. The information comes from the cumulative number of COVID-19 confirmed cases
from 1 January 2022 to 4 May 2022 published on the official website of the Ministry of
Health and Welfare. (The COVID-19 confirmed data during this period is selected because
the official release date started on 1 January 2022 and the information is updated daily. The
epidemic during this period already contained preliminary virus variants).

The spatial effect of urban development on the spread of COVID-19 is as follows:

COVID19 = δWCOVID19 + αiN + Xβ + WXθ + u (1)

https://coronavirus.jhu.edu/map.html
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where COVID19 is the number of confirmed cases of COVID-19 in Taiwan in 2022; W is
the spatial weight of adjacent cities; N is the number of observation, that is, the number of
counties and cities; and iN is the N × 1 unit vector. X is the variable vector related to urban
development; δ, α, β, θ are the parameters; and u~N(0,σ2,I). Rearranging the variables,
Formula (1) can be changed into Formula (2):

(iN − δW)COVID19 = αiN + Xβ + WXθ + u (2)

The partial derivatives of COVID19 with respect to the explanatory variables xk can
be expressed in Equation (3) as follows:

∂COVID19
∂xk

=
(

∂COVID19
∂x1k

∂COVID19
∂x2k

· · · ∂COVID19
∂xNk

)
=


∂COVID191

∂x1k
· · · ∂COVID191

∂xNk
...

. . .
...

∂COVID19N
∂x1k

· · · ∂COVID191
∂xNk


= (iN − δW)−1

 βk · · · w1Nθk
...

. . .
...

wN1θk · · · βk


(3)

where COVID19N is the number of COVID-19 confirmed cases of city N and xNk is the
explanatory variable k of city N. ∂COVID19

∂xk
is a N × N marginal effect matrix. The direct

effect is the average of the diagonal elements of the matrix ∂COVID19
∂xk

, while the indirect

effect is the average of the non-diagonal elements of the matrix ∂COVID19
∂xk

.

3. Descriptive Statistics

In this paper, data of the number of confirmed COVID-19 cases in 2022 in each county
and city in Taiwan are collected as dependent variables for the spatial regression model
(Table 1 and Appendix A). Table 1 lists relative urban development variables with descrip-
tions and provides the units of calculation, variable scales, and numerical types. Urban
development variables can be divided into three types including density, urbanization, and
transportation systems and transport tools. Table 2 shows the descriptive statistics of the
relevant variables.

Table 1. Variables used in the spatial regression model.

Variable Variable Type Description Unit Variable Scale/
Numeric Type

COVID19 – Number of COVID-19-infected cases
per 100,000 people

Number of
COVID-19-infected

cases/100,000 people
Ratio/Continuous

urban planning urbanization Area of the urban planning area Square kilometers Ratio/Continuous

forest urbanization Forest area Hectare Ratio/Continuous

car
transportation
systems and

transport tools
Number of the car registered Vehicle Ratio/Discrete

road density Road density km/km2 Ratio/Continuous

road area
transportation
systems and

transport tools
Road area each person assigned Square meters/person Ratio/Continuous
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Table 1. Cont.

Variable Variable Type Description Unit Variable Scale/
Numeric Type

density density Population density of the current
situation in the urban planning area

People/square
kilometers Ratio/Continuous

urbanization urbanization Population of the urban area/total
population of the municipality % Ratio/Continuous

Table 2. Descriptive statistics of the variables in the spatial regression model.

Variable Average Standard Deviation Minimum Maximum

COVID19 514.3806 586.4232 92.77316 2251.217
urban planning 230.4198 282.3826 10.7864 1228.457

forest 109,462.3 110,347.8 773.42 372,780.6
car 343,929.4 307,666.3 27,623 953,063

road 2.305 2.11833 0.35 8.7
road area 31.3065 15.17759 6.91 60.82

urbanization 25.7941 31.14242 2.50452 101.216
density 4197.65 2152.103 1262 9818

4. Discussion

Using the spatial autocorrelation index, the interpretation of the geographical location
of COVID-19 in the urban area can be analyzed (Figures 1 and 2). Figure 1 shows that
hotspot zones of the number of COVID-19 confirmed cases in 2022 are distributed in Taipei
City, New Taipei City, Keelung City, and Taoyuan City in the northern region. The cold
zones are distributed in Yunlin County, Chiayi County, Chiayi City, and Kaohsiung City in
the southern region, and the threatened zone is distributed in Yilan County. Figure 2 shows
that the hotspot zones of the number of COVID-19 confirmed cases per 100,000 people
in 2022 are distributed in Taipei City, New Taipei City, Keelung City, Taoyuan City, and
Yilan County in the northern region. The cold zones are concentrated in Changhua County,
Yunlin County, Chiayi County, Chiayi City, Tainan City, and Kaohsiung City.
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The spatial regression model can analyze the spatial effects of urban development
indicators on the spatial dispersal of COVID-19 (Table 3). Table 3 shows that all urban
development indicators affect the spatial spread of COVID-19 (this study uses a linear
spatial regression model to estimate the spatial effects impacted from urban development,
even if rapid increase in the number of infected people in the result finds that urban
development indicators significantly affect the number of confirmed COVID-19 cases). The
chi-square statistics is supported to reject H0: i.i.d., indicating that the spread of COVID-19
is spatially autocorrelated. The overall adjustment of Pseudo R2 is moderate. The coefficient
of spatial lag variable “COVID19” is significantly greater than zero, indicating that the
spatial regression model has a significant explanation and is better than the ordinary
least square estimation. The coefficient of the error term is significantly not equal to zero,
showing the presence of spatial autocorrelation. The coefficients of “urban planning”, “road
area”, and “density” are negative, indicating that there is a negative correlation between
“urban planning”, “road area”, and “density” and “COVID19” (Figure 3). Figure 3 shows
that the higher the development indicators, such as “urban planning” and “road area”, the
greater the social distance between people, and the lower the risk of infection. The higher
the index of “density”, the smaller the social distance. However, the risk of infection among
the people depends on the overlap of activities and epidemic prevention measures. There is
a positive correlation between “forest”, “car”, “road”, and “urbanization” and “COVID19”.
“Forest” represents greenness and leisure, and during the spread of the epidemic, it has
become the alternative for indoor leisure shopping places and the risk of public infection
is relatively high. “Car” is an alternative to public transportation during the spread of
the epidemic. People’s use of cars increases mobility and social activities and the risk of
infection is relatively high. “Road” can be paths that provide social activities. People’s use
of roads increases social opportunities and reduce social distance and the risk of infection is
relatively high. “Urbanization” is an indicator of population concentration. The higher the
urbanization, the more social activities between people, and the higher the risk of infection.
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Table 3. COVID-19 spatial regression model in Taiwan, 2022.

COVID19 Coefficient Standard Error p-Value

urban planning −0.1263 *** 0.0150 0.0000
forest 0.0002 *** 0.00006 0.0008

car 0.0021 ** 0.0007 0.0030
road 295.9195 * 111.8993 0.0080

road area −42.9077 ** 13.3566 0.0010
urbanization 0.5104 *** 0.0635 0.0000

density −0.2909 *** 0.0661 0.0000
constant 2067.834 ** 662.8678 0.0020

W
urban planning −1.4507 * 0.5356 0.0067

forest 0.0400 *** 0.0050 0.0000
car 0.0054 *** 0.0011 0.0000

road 3583.105 *** 650.8499 0.0000
road area −224.1063 *** 27.3681 0.0000

urbanization −186.9376 *** 48.3417 0.0000
density −0.9433 *** 0.1083 0.0000

COVID19 1.1497 *** 0.1153 0.0000
e. COVID19 −14.4189 *** 1.8038 0.0000

Vair (e. COVID19) 165,414.3 58,576.38
Log likelihood −128.3633

Prob > chi2 0.0000
Pseudo R2 0.3629

note: * p < 0.01, ** p < 0.005, *** p < 0.001.
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Figure 3. Causal relationship between COVID-19 and urban development.

The urban development indicators of adjacent districts have external effects, which
affect the “COVID19” of a certain city. Figure 3 shows that there is a negative correlation
between “urban planning”, “road area”, “urbanization”, and “density” of neighboring
cities and the “COVID19” of a city, indicating that when the “urban planning” of neigh-
boring cities has increased, “road area” increases, “urbanization” increases, and “density”
increases, and “COVID19” in one city spills over to neighboring cities to increase. The “for-
est”, “car”, and “road” of neighboring cities are positively correlated with the “COVID19”
of a certain city, which means that when the “forest” of neighboring cities increases, the
“car” and “road” increase, and a certain city absorbs “COVID19” and increases.
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Urban development indicators can be divided into two spatial effects on the spread
of COVID-19: direct effect and indirect effect. indirect effect is equal to dCOVID19A

dxB
+

dCOVID19A
dxB

+ · · · (in both equations, COVID19A is the number of confirmed cases of
COVID-19 per hundred thousand people of the city A and, in the former, xA is the ur-
ban development indicator of the city A). The marginal impact of COVID-19 per 100,000
confirmed cases decreases gradually to the marginal impact on neighboring cities (Table 4).
Table 4 shows that urban development indicators significantly affect the number of con-
firmed cases of COVID-19 per 100,000 people, and COVID-19 has the effect of cross-city
spread. Overall, “urban planning”, “road area”, “urbanization”, and “density” positively
affect the spread of COVID-19, while “forest”, “car”, and “road” negatively affect the
spread of COVID-19.

Table 4. Direct and indirect effect of space spread of COVID-19 in Taiwan, 2022.

COVID19 Direct Effect Indirect Effect Total Effect

urban planning −0.0458084 7.323299 7.27749
forest 0.0017822 −0.1882867 −0.1865045

car 0.0016994 −0.0359325 −0.0342331
road 98.12325 −18,003.52 −17,905.4

road area −29.12226 1254.76 1225.637
urbanization 9.905361 855.1364 865.0417

density −0.2264669 5.863354 5.636887

5. Conclusions

Urban development indicators that are divided into density, urbanization, and trans-
portation system and modes of transport significantly affect the spread of COVID-19.
Density shows that the social distance between people is short and the risk of infection from
interpersonal contact is high. Urbanization shows that interpersonal frequent activities and
close contact make the risk of infection high. Transportation systems and transport mode
show the feasibility and possibility of mobility, which affect the risk of infection. The path
of urban development and the spread of COVID-19 change to an either positive or negative
marginal effect due to the spillover and the adsorption effects.

In the process of urban development, interpersonal social activities have increased, and
interaction between them is frequent, providing a way to facilitate the spread of the virus.
Urban development is closely linked to the spread of COVID-19, and when the outbreak
occurs, it spreads across cities, so no city can stay out of the way. The spreading effect of
COVID-19 is nothing more than the spillover or adsorption effect. Therefore, in addition to
personal epidemic prevention, the goal of disaster reduction must be achieved through the
adjustment of urban development. The policy adjustment of urban development indicators
can also be achieved through the spatial effect of spillover and adsorption.
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Appendix A

Table A1. Original data used in this study.

County
Variable

Urban
Planning Forest Car Road Road Area Urbanization Density

Yilan County 76.5865 168,384 136,253 0.62 37.01 3.57291 3656
Changhua County 133.797 10,104.1 412,063 2.23 22.17 12.4265 4486

Nantou County 125.415 303,186 172,372 0.51 43.59 3.05423 2253
Yunlin County 97.8476 12,608.9 219,554 1.94 44.4 7.58039 2749

Pingtung County 165.123 156,194 233,371 0.9 37.98 5.94754 2624
Taitung County 88.0492 286,984 62,236 0.37 60.82 2.50452 1488
Hualien County 123.362 372,781 102,370 0.35 58.65 2.66238 1854
Penghu County 10.7864 3242.1 27,623 2.25 27.42 8.50544 4126

Keelung City 74.0575 9395.37 88,345 4.75 18.37 58.3007 4998
Hsinchu City 46.256 2804.21 142,537 5.71 13.23 44.4167 7918

Taipei City 271.8 11,490.8 729,043 4.53 6.91 100 9818
New Taipei City 1228.46 155,483 904,621 1.79 11.36 59.8937 3050
Taichung City 539.177 113,963 953,063 1.96 23.26 24.3189 4208

Tainan City 522.041 54,148.5 588,919 2.09 33.43 23.8834 3055
Taoyuan City 322.431 47,134.1 697,807 2.7 18.4 26.4081 5146
Miaoli County 75.9467 125,946 190,549 1.04 36.73 4.17237 4316

Hsinchu County 54.4983 104,211 200,014 0.79 25.57 3.81776 6453
Chiayi City 60.7557 773.42 82,733 8.7 37.7 101.216 4570

Chiayi County 169.458 79,888.3 160,985 1.21 48.93 8.88561 1262
Kaohsiung City 422.552 170,523 774,130 1.66 20.2 14.3148 5923
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