Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Stress-free boundary conditions on the flat surface and the inner surface of the lining
- (2)
- The continuity of both displacement and stress fields on the outer surfaces of the lining
- (3)
- The continuity of stress field on the circle O3
- (4)
- Assuming there is a unit-amplitude dislocation with out of plane motion, the boundary condition on the fault can be written as:
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a | inner radius of tunnel |
b | outer radius of tunnel |
d | burial depth of tunnel |
Ri | source-receiver distance |
μl | shear modulus of lining |
cl | shear wave velocity of lining |
μs | shear modulus of half-space |
cs | shear wave velocity of half-space |
kl | shear wave number of lining |
ks | shear wave number of half-space |
λs | wavelength of incident SH waves |
Jn, Yn, Hn(1), Hn(2) | Bessel function |
An, Bn, Dn, En, Fn | unknown coefficients |
η | dimensionless frequency |
References
- Wang, W.L.; Wang, T.T.; Su, J.J.; Lin, C.H.; Seng, C.R.; Huang, T.H. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunn. Undergr. Space Technol. 2001, 16, 133–150. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Gao, B.; Jiang, Y.; Yuan, S. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Sci. China Ser. E 2009, 52, 546–558. [Google Scholar] [CrossRef]
- Pao, Y.H.; Mow, C.C. Diffraction of Elastic Waves and Dynamic Stress Concentrations; Crane Russak: New York, NY, USA, 1973. [Google Scholar]
- Lee, V.W.; Trifunac, M.D. Response of tunnels to incident SH-waves. J. Eng. Mech. Div. 1979, 105, 643–659. [Google Scholar] [CrossRef]
- Lee, V.W.; Karl, J. Diffraction of SV waves by underground, circular, cylindrical cavities. Soil Dyn. Earthq. Eng. 1992, 11, 445–456. [Google Scholar] [CrossRef]
- Liang, J.W.; Luo, H.; Lee, V.W. Diffraction of plane SH waves by a semi-circular cavity in half-space. Earthq. Sci. 2010, 23, 5–12. [Google Scholar] [CrossRef]
- Tsaur, D.H.; Chang, K.H. Multiple scattering of SH waves by an embedded truncated circular cavity. J. Mar. Sci. Technol. 2012, 20, 9. [Google Scholar] [CrossRef]
- Gao, Y.F.; Dai, D.H.; Zhang, N.; Wu, Y.X.; Mahfouz, A.H. Scattering of plane and cylindrical SH waves by a horseshoe shaped cavity. J. Earthq. Tsunami 2017, 11, 1650011. [Google Scholar] [CrossRef]
- Gao, Y.F.; Chen, X.; Zhang, N.; Dai, D.H.; Yu, X. Scattering of plane SH waves induced by a semicylindrical canyon with a subsurface circular lined tunnel. Int. J. Geomech. 2018, 18, 06018012. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, N.; Gao, Y.F.; Dai, D.H. Effects of a V-shaped canyon with a circular underground structure on surface ground motions under SH wave propagation. Soil Dyn. Earthq. Eng. 2019, 127, 105830. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, X.; Gao, Y.F.; Dai, D.H. Analytical solution to scattering of SH waves by a circular lined tunnel embedded in a semi-circular alluvial valley in an elastic half–space. Tunn. Undergr. Space Technol. 2020, 106, 103615. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Dai, D.H. Dynamic response of a functionally graded cylindrical tube with power-law varying properties due to SH-waves. Waves Random Complex Media 2021, 1–19. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Gao, Y.F.; Dai, D.H.; Huang, C.X. Effect of imperfect interfaces on dynamic response of a composite lining tunnel with an isolation layer under plane P and SV waves. Soil Dyn. Earthq. Eng. 2021, 142, 106586. [Google Scholar] [CrossRef]
- Jin, L.; Zhu, J.; Zhou, W.; Liang, J.W.; Chen, G.X. 2D dynamic tunnel-soil-aboveground building interaction I: Analytical solution for incident plane SH-waves based on rigid tunnel and foundation model. Tunn. Undergr. Space Technol. 2022, 128, 104625. [Google Scholar] [CrossRef]
- Smerzini, C.; Aviles, J.; Paolucci, R.; Sánchez-Sesma, F.J. Effect of underground cavities on surface earthquake ground motion under SH wave propagation. Earthq. Eng. Struct. Dyn. 2009, 38, 1441–1460. [Google Scholar] [CrossRef]
- Gao, Y.F.; Zhang, N. Scattering of cylindrical SH waves induced by a symmetrical V-shaped canyon: Near-source topographic effects. Geophys. J. Int. 2013, 193, 874–885. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.F.; Yang, J.; Xu, C.J. An analytical solution to the scattering of cylindrical SH waves by a partially filled semi-circular alluvial valley: Near-source site effects. Earthq. Eng. Eng. Vib. 2015, 14, 189–201. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.Q.; Zhu, Y.Y.; Su, F.H.; Wei, F.Q.; Han, Y.S.; Liu, H.J.; Zhuang, J.Q. The Wenchuan earthquake (May 12, 2008), Sichuan province, China, and resulting geohazards. Nat. Hazards 2011, 56, 19–36. [Google Scholar] [CrossRef]
- Kara, H.F.; Trifunac, M.D. A note on plane-wave approximation. Soil Dyn. Earthq. Eng. 2013, 51, 9–13. [Google Scholar] [CrossRef]
- Kara, H.F.; Trifunac, M.D. Two-dimensional earthquake vibrations in sedimentary basins–SH waves. Soil Dyn. Earthq. Eng. 2014, 63, 69–82. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, J.S.; Gao, Y.F.; Chen, X.; Dai, D.H.; Zhang, Y. Surface motion of an arbitrary number of semi-circular viscoelastic alluvial valleys for incident plane SH waves. Geophys. J. Int. 2022, 228, 1607–1620. [Google Scholar] [CrossRef]
- Dai, D.H.; El Naggar, M.H.; Zhang, N.; Wang, Z.B. Rigorous solution for kinematic response of floating piles to vertically propagating S-waves. Comput. Geotech. 2021, 137, 104270. [Google Scholar] [CrossRef]
- Dai, D.H.; El Naggar, M.H.; Zhang, N.; Wang, Z.B. Rigorous solution for kinematic response of floating piles subjected to vertical P-wave. Appl. Math. Model. 2022, 106, 114–125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zhang, Y.; Dai, D.; Zhang, Y.; Sun, B.; Chen, X. Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel. Sustainability 2022, 14, 10127. https://doi.org/10.3390/su141610127
Zhang N, Zhang Y, Dai D, Zhang Y, Sun B, Chen X. Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel. Sustainability. 2022; 14(16):10127. https://doi.org/10.3390/su141610127
Chicago/Turabian StyleZhang, Ning, Yunfei Zhang, Denghui Dai, Yu Zhang, Baoyin Sun, and Xin Chen. 2022. "Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel" Sustainability 14, no. 16: 10127. https://doi.org/10.3390/su141610127
APA StyleZhang, N., Zhang, Y., Dai, D., Zhang, Y., Sun, B., & Chen, X. (2022). Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel. Sustainability, 14(16), 10127. https://doi.org/10.3390/su141610127