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Abstract: In recent years, the access of various distributed power sources and electric vehicles
(EVs) has brought more and more randomness and uncertainty to the operation and regulation
of microgrids. Therefore, an optimal scheduling strategy for microgrids with EVs based on Deep
Q-learning is proposed in this paper. Firstly, a vehicle-to-grid (V2G) model considering the mobility
of EVs and the randomness of user charging behavior is proposed. The charging time distribution
model, charging demand model, state-of-charge (SOC) dynamic model and the model of travel
location are comprehensively established, thereby realizing the construction of the mathematical
model of the microgrid with EVs: it can obtain the charging/discharging situation in the EV station,
so as to obtain the overall output power of the EV station. Secondly, based on Deep Q-learning, the
state space and action space are set up according to the actual microgrid system, and the design
of the optimal scheduling reward function is completed with the goal of economy. Finally, the
calculation example results show that compared with the traditional optimization algorithm, the
strategy proposed in this paper has the ability of online learning and can cope with the randomness
of renewable resources better. Meanwhile, the agent with experience replay ability can be trained
to complete the evolution process, so as to adapt to the nonlinear influence caused by the mobility
of EVs and the periodicity of user behavior, which is feasible and superior in the field of optimal
scheduling of microgrids with renewable resources and EVs.

Keywords: renewable energy; electric vehicles; deep Q-learning; microgrid scheduling; V2G

1. Introduction

A microgrid is a micropower system oriented to terminal energy users such as build-
ings, communities, industrial parks or towns and is one of the main forms of energy in
the future human society [1]. Its operation stability is usually maintained by various mi-
crosources [2,3]. In recent years, the application of distributed power sources in power
systems has become more and more extensive, which brings more and more randomness
and uncertainty to the operation and regulation of microgrids [4].

Nowadays, a large number of scholars at home and abroad have completed mature
research on the optimization and dispatching technology of a microgrid. In [5], the uncer-
tainty of photovoltaic power generation is modeled based on probabilistic constraints, so
that an optimal scheduling method using chance-constrained programming to minimize
the operating cost of microgrids is proposed. In [6], a genetic algorithm based on a memory
mechanism is proposed to solve the problem of minimizing the operating cost of a micro-
grid. In [7], for a microgrid system combining renewable energy and traditional power
generation, an energy management strategy for a hybrid thermoelectric island microgrid
is proposed based on a multi-objective particle swarm optimization (MOPSO) algorithm.
In [8], based on the chaotic search particle swarm optimization algorithm, with the goal of
minimizing the total cost, the economic operation optimization model of the microgrid is
constructed from three aspects: operating cost, environmental impact and system safety,
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so as to effectively reduce the operating cost of the microgrid and ensure the safety and
stability of the power supply and electricity consumption. However, the above research
methods are prone to falling into a local optimum when dealing with nonlinear or noncon-
vex problems, their computation time is long, and the generalization learning ability of
the algorithm is insufficient. Therefore, in the face of the strong uncertainty of distributed
power and load, the existing traditional optimization algorithms have difficulties meeting
the requirements of microgrid optimal scheduling due to the above limitations.

Meanwhile, with the continuous development of new energy vehicles, the EVs in-
dustry has gradually become large-scale and market-oriented, and V2G technology has
become more mature [9,10]. Therefore, the research of EVs in participating in power grid
peak shaving and valley filling, and smoothing power fluctuations has also become more
and more in-depth [11], but their mobility and randomness of user behavior also bring
greater challenges to maintaining the economic operation of microgrids. In [12], based on
the MPC algorithm, EVs are used as a mobile energy storage to participate in microgrid
regulation, but the output power in the control model is constrained to a fixed value. In [13],
the randomness of user travel demand is considered in the V2G model, and the EVs state
of charge is modeled, but the impact of EV mobility on the controllable capacity of EV
stations is not considered. In addition, the above V2G models are all modeled with the EV
station as a complete output, which cannot reflect the internal charging and discharging of
the EVs. In practice, the controllable capacity of the EV station would change randomly
due to the user’s charging behavior and the mobility of EVs.

Therefore, in order to cope with the randomness and uncertainty caused by the access
of EVs and various distributed power sources to the economic dispatch of microgrids,
reinforcement learning algorithms have been applied in the field of power systems [14,15].
In [16], the reinforcement learning theory is introduced to construct a mathematical model
suitable for microgrid energy management, which solved the economical optimal schedul-
ing optimization problem of a microgrid better. In [17], the model of reinforcement learning
agent is applied to a microgrid system with distributed energy, which can formulate the
optimal strategy for energy management and load scheduling among the three main bodies
of a power source, distributed energy storage and user. In [18], facing the economic dis-
patch problem of microgrids with distributed energy resources, based on the reinforcement
learning framework, an optimal equilibrium selection mechanism is proposed, which can
improve the operation performance of microgrids in terms of economy and independence.
However, the above research does not focus on the V2G modeling of EVs and cannot truly
reflect the process of EVs participating in the optimal scheduling of microgrids. Mean-
while, [16–18] are mainly based on traditional reinforcement learning algorithms, which
cannot solve the dimensionality disaster of policy sets in the face of complex environments
or continuous actions. It is difficult to deal with the influence of the random change of the
controllable capacity of the EV station and the uncertainty of the distributed power and
load on the economic dispatch of the microgrid.

In summary, an optimal scheduling strategy for microgrids with electric vehicles based
on Deep Q-learning is proposed in this paper. The main contributions are as follows:

(1) A V2G mathematical model considering the mobility of EVs and the randomness
of user charging behavior is proposed. The user charging time distribution model,
charging demand model, EV state-of-charge (SOC) dynamic model and the model
of travel location are comprehensively established, so that the agent can obtain the
charging/discharging situation in an EV station to obtain the overall output power of
the EV station.

(2) A microgrid optimization scheduling strategy based on Deep Q-learning is proposed.
The strategy has the ability of online learning and can cope with the randomness
of renewable resources better. Meanwhile, the agent with experience replay ability
can be trained to complete the evolution process, so as to adapt to the nonlinear
influence caused by the mobility of EVs and the periodicity of user behavior, which
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is feasible and superior in the optimal scheduling of microgrids with renewable
resources and EVs.

The remainder of this paper is organized as follows: In Section 2, the mathematical
model construction of a microgrid with EVs is established. The microgrid dispatch model
based on Deep Q-learning is introduced in Section 3. The simulation results are presented
and analyzed in Section 4, and the conclusions are summarized in Section 5.

2. The Mathematical Model Construction of Microgrid with EVs

The high penetration of renewable energy into the power grid may affect a series of
problems such as the balance of supply and demand in the system and the stable oper-
ation of the power grid. Additionally, EVs are able to support large-scale integration of
renewable energy by absorbing excess energy and returning it to the grid when needed.
V2G technology can use the mobile energy storage characteristics of EVs to reasonably
adjust their charging/discharging behavior, thereby alleviating the impact of load fluctua-
tions [19,20]. Therefore, based on the randomness of user behavior and the mobility of EVs,
a charging/discharging model for EVs is constructed, and an optimal scheduling model
for microgrids with EVs is established.

2.1. The V2G Model of EVs

Firstly, it is assumed that the electric vehicle is fully charged before traveling, and
the battery power consumption of the electric vehicle has a linear relationship with the
daily mileage [21]. That is, after obtaining the probability distribution of the daily mileage
of the electric vehicle, the probability distribution of the battery state of charge SOC0 of
the electric vehicle when it returns to the charging station can be obtained. The return
time of different EVs within a day and the corresponding charging time are also important
components of the V2G model of the EVs station.

In the existing EV model, due to the regular travel behavior of users, the arrival time
and location of electric vehicles are relatively fixed. However, in the actual situation, EVs
have mobility due to the randomness of real-time road network. For example, in the case
of traffic congestion, users will adjust charging route decision, which will affect the arrival
time and location of EVs and then affect the power consumption of EVs when they enter
the station.

Uncertain influences such as road network congestion are closely related to the type
of user distribution. For example, electric vehicles that are distributed in commercial areas
for a long time are more likely to experience congestion during their journey, and electric
vehicles in public areas have higher driving speed and lower unit power consumption.
Therefore, the main travel behaviors and the proportion of each activity trip of electric
vehicles can be obtained in this paper, as shown in Table 1 and Figure 1. Among them,
various distribution areas can be divided into residential areas, commercial areas and public
areas, abbreviated as R, C and P, respectively.

Table 1. Electric private car travel chain.

The User Types The Chain of Travel The Proportion/%

1 R→C→R 52.8
2 R→P→R 24.1
3 R→C→P→R 23.1
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Figure 1. Mobility of EVs and randomness of user habits.

Therefore, the daily mileage obeys a log-normal distribution L ∼ Log− N
(
µL, σL

2),
and its probability density function is shown in Formula (1):

f (L) =
1

LσL
√

2π
e
−(ln L−µL)

2

2σ2
L (1)

where µL and σL represent the mean and variance, respectively, which is determined by
different types of user behavior.

In addition, it is worth noting that according to the behavior data of electric vehicle
users, the vehicle owner charges every ε days on average, so the probability density function
of the total mileage of the electric vehicle when it enters the charging station can be obtained
as shown in (2) and obeys a log-normal distribution L ∼ Log− N

(
µL, σL

2).
f (L) =

ε

LσL
√

2π
e
−(ln L−µL)

2

2σ2
L (2)

Secondly, it can be assumed that the EV returns at time t, obeying the normal distribu-
tion t0 ∼ Log− N

(
µs, σs

2), and its probability density function is Formula (3).

f (t) =


1

σS
√

2π
e
− (t−µs)2

2σs2 µs − 12 < t < 24

1
σS
√

2π
e
− (t+24−µs)2

2σs2 0 < t < µs − 12
(3)

where µs and σs represent the mean and variance, respectively, which is determined by
different types of user behavior as well.

Furthermore, it can be assumed that the charging power of the EVs after entering the
charging station is constant. When the state of charge of the EV battery reaches SOCm,
the driving process expected by the user after the EV leaves the charging station can be
satisfied. Therefore, according to the daily driving mileage, the time for the battery capacity
to be charged to SOCm after the EV enters the station can be calculated as Tc:

Tc =
LQ100 −Wtotal + Wm

100Pc
(Tc ≥ 0) (4)
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where L is the daily driving distance of the EVs, Pc is the charging power and Q100 is the
power consumption per 100 km, Wtotal is the full power of the EVs, and Wm is the power of
the EVs when the state of charge is at SOCm.

The duration of EV stagnation in the electric vehicle station can be defined as ∆T, and
the departure time is defined as Tleave. It is easy to know that ∆T ≥ Tc. Therefore, ∆T and
Tleave satisfy the following formula.

∆T = (1 + σT)Tc (5)

Tleave = Tenter + ∆T (6)

where σT is a positive random number, and its value would be selected according to the
user’s travel habits on weekdays; Tenter is the EV inbound charging time.

As shown in Figure 2, when the state of charge reaches SOCm, or the state of charge is
greater than SOCm when entering the station, the EVs will be able to participate in the load
distribution optimization scheduling process of the microgrid. That is, it can be discharged
when the microgrid encounters peak power consumption, and this discharge process will
not make the EV power lower than SOCm. When the state of charge of the EV reaches
SOCmax, the EVs will no longer be charged to ensure battery life. At this time, the EVs will
automatically stop charging (maintain SOCmax) or discharge.

Figure 2. The charging/discharging constraint boundary of EVs. (a) The constraint boundary of EVs
when SOC0 < SOCm. (b) The constraint boundary of EVs when SOC0 > SOCm.

To sum up, different EVs will have different entry time Tenter,i and the necessary
charging time ∆Ti and will automatically participate in scheduling or continue charging
according to the load status of the microgrid after the charge reaches SOCm, and leave
the charging station when Tleave,i. The specific scheduling process is shown in Figure 3:
EV1 enters the station at time T1, and its state of charge is less than SOCm at this time,
so it enters the state of charge and participates in the scheduling of feeding at time T3
until T4, at which time the state of charge of the vehicle is greater than SOCm; EV2 enters
the station at time T2, and its state of charge is greater than SOCm at this time, so it can
immediately participate in dispatching and distribution when the microgrid is at peak load
power consumption until T4; EV3 is extremely low in battery power when entering the
station, so it is always kept charged, and it is always kept charged until time T5.
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Figure 3. The specific scheduling process of V2G.

Therefore, it can be assumed that there are n EVs in the station at time t, including i
vehicle in a state of nonchargeable and dischargeable (SOC = SOCmax), including j vehicle
in a state of rechargeable and non-dischargeable (SOC < SOCm), and the remaining vehicles
in both charging and discharging states (SOCm < SOC < SOCmax). It can be obtained that
at time t, the boundary of the overall charging power of the EV station is shown in (7):

P+
EV(t) = (n− i) · Pch

P−EV(t) = (n− j) · Pdis

0 ≤ ∆P+
EV(t) ≤ P+

EV(t)

0 ≤ ∆P−EV(t) ≤ P−EV(t)

(7)

where P+
EV(t) and P−EV(t) are the boundaries of the interactive power output by the charging

station. ∆P+
EV(t) and ∆P−EV(t) represent the interactive power between the electric vehicle

charging station and the microgrid at time t, which are determined by the agent: the agent
can select the optimal action according to the actual situation and economic benefits of the
microgrid and obtain the charging/discharging situation in the EV station at the current
moment, so as to obtain the overall output power of the EV station, as shown in (8):

∆PEV(t) = −∆P+
EV(t) + ∆P−EV(t) (8)

2.2. The Optimal Dispatching Model of Microgrid

The microgrid structure considered in this paper is shown in Figure 4. The microgrid
consists of wind turbines, photovoltaics, micro-gas turbines, an EVs station and other units.
Therefore, the optimal dispatching model of a microgrid including EVs is constructed.
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Figure 4. The structure of the microgrid with an EVs station.

Where PL is the load disturbance power, Pwt is the wind disturbance power, Ppv is the
photovoltaic power generation power, PMT is the power variation of MT, ∆PEV is the power
variation of EVs and Pe is the power between the microgrid and the large grid.

2.2.1. Objective Function

Considering the randomness of wind and solar loads, an optimization model is
established with the goal of minimizing the expected total economic operating cost during
the optimization period. Its objective function is shown in (9):

F = min
T

∑
t=1

(Cgas(t) + Ce(t) + CEV(t)) (9)

where Cgas represents the cost of purchasing natural gas for the micro-gas turbine,
Ce represents the cost of purchasing and selling electricity generated by the interaction be-
tween the microgrid and the power grid and CEV represents the cost of purchasing and
selling electricity generated by the charging and discharging of EVs.

Cgas(t) = cgas
PMT(t)

ηMTqNG

Ce(t) = ebPbuy,e(t)− esPsell,e(t)

CEV(t) = cb∆P+
EV(t)− cs∆P−EV(t)

(10)

where PMT represents the output of the micro-gas turbine at time t, η represents the
conversion efficiency of the micro-gas turbine, qNG represents the low calorific value of
natural gas and cgas represents the gas purchase cost coefficient of the micro-gas turbine.
Pbuy,e, Psell,e represent the power purchase and sale between the microgrid and the large
grid, eb and es represent the cost coefficient of purchasing and selling electricity. ∆PEV

+

and ∆PEV
− represent the charging power and discharging power of the electric vehicle

charging station, and cb and cs represent the cost coefficient of charging and discharging.
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2.2.2. Constraints

(1) Power Balance Constraints:

Pwt(t) + Ppv(t) + PMT(t) + Pbuy,ev(t) + Pbuy,e(t)

= L(t) + Psell,ev(t) + Psell,e(t)
(11)

where Pwt(t), Ppv(t) represent the output power of winds and photovoltaics in the
t period, and L(t) represents the load in the t period.

(2) Micro gas turbine operating constraints:

−Rd∆t ≤ PMT(t)− PMT(t− ∆t) ≤ Ru∆t

PMT,min ≤ PMT(t) ≤ PMT,max
(12)

where PMT represents the output power of the micro-gas turbine, Rd and Ru represent
the downward and upward ramp rates of the micro-gas turbine and PMT,min, PMT,max
represent the lower and upper output limits of the micro-gas turbine.

(3) Grid interaction power constraints:

0 ≤ Psell,e (t) ≤ Pex, max

0 ≤ Pbuy,e (t) ≤ Pex,max

Psell,e (t)× Pbuy,e (t) = 0
(13)

(4) EV station constraints:

The constraints on the overall charge/discharge power of the EVs station have been
given in Section 2.1, as shown in (7).

In addition, it can be considered that the main function of the EV station is to provide
charging services for the users, and the priority of ensuring that the user’s EVs is sufficient
is the highest. Therefore, the charging and discharging power constraints of each EV in the
EVs station can be obtained:

Pdis ≤ Pch (14)

Meanwhile, the interest relationship between EV users, microgrid operators and large
grids is considered, and the price constraints can be obtained, as shown in Figure 5:

es < eb
es < cs
cb < eb
cs < cb

(15)

Figure 5. The relationship between microgrid transactions.
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3. A Microgrid Dispatch Model Based on Deep Reinforcement Learning
3.1. Theory of Reinforcement Learning Algorithms

Reinforcement learning RL is a learning algorithm that maps from environmental
states to actions, and its goal is to maximize the cumulative reward of an agent during trial
and error with a given environment [22,23].

To achieve these functions, the reinforcement learning framework consists of agents,
which are able to take certain actions at based on the current state st, as shown in Figure 6.
After choosing an action at time t, the agent receives a scalar reward rt+1 and finds itself in
a new state st+1, which depends on the current state and the chosen action.

Figure 6. The schematic diagram of deep reinforcement learning.

As shown in Figure 7, the Markov decision process satisfies the Markov property and
is the basic formalism of reinforcement learning, which can be described as:

P(st+1|s0, a0, · · · , st, at ) = P(st+1|st, at ) (16)

where P is the state transition probability.

Figure 7. An illustration of a Markov decision process.

At each epoch, the agent takes actions to change its state in the environment and
provide rewards. To further process the reward value, a value function and optimal policy
are proposed. To maximize the long-term cumulative reward after the current time t, for a
finite time horizon ending at time t, the payoff Rt is shown in (17):

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞

∑
k=0

γkrt+k+1 (17)

where the Discount factor γ∈[0, 1], and γ can take 1 only in intermittent MDP.
To find the optimal policy, some algorithms are based on a value function V(s), which

represents how beneficial the agent is to reaching a given state s. This function depends on
the agent’s actual policy π:

Vπ(st) = E[Rt|st = s ] = E

[
∞

∑
k=0

γkrt+k+1|st = s

]
(18)
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Similarly, the action-value function Q expresses the value of taking action a in state s
under policy π as:

Qπ(st, at) = E[Rt|st = s, at = a ] = E

[
∞

∑
k=0

γkrt+k+1|st = s, at = a

]
(19)

In the Q-learning algorithm, the Q-function can be expressed in an iterative form by
the Bellman equation:

Qπ(st, at) = E[rt+1 + γQπ(st+1, at+1)|st, at ] (20)

The optimal policy π∗ is the policy that yields the largest cumulative reward in the
long run:

π∗ = argmax
π

Vπ(s) (21)

At this point, the optimal value function and action value function are shown in (22):{
V∗(s) = maxVπ(s)

Q∗(s, a) = max
π

Qπ(s, a) (22)

3.2. Design of Optimal Scheduling Strategy for Microgrid Based on Deep Q-Learning

Deep Q-learning has the advantage of being suitable for solving optimal decision-
making problems with uncertain factors and can be applied to solve the optimal scheduling
problem of a microgrid considering intermittent renewable energy generation and charging
uncertainty of EV users. Therefore, the established mathematical model of the optimal
scheduling problem for microgrids is transformed into a Deep Q-learning framework in
this section.

The basic components of reinforcement learning include: the state space S representing
the environment, the action space A representing the action of the agent, and the reward
function r for training the agent.

(1) State space:

The state variables of the microgrid system include user electrical load demand,
photovoltaic power generation power, wind turbine power generation power, charging
and discharging power capability of EV stations and dispatching time period. Therefore,
the state space can be expressed as:

S =
[
PPV(t), PWT(t), L(t), P+

EV(t), P−EV(t), Γ+(t), Γ−(t), t
]

(23)

(2) Action space:

After the agent observes the state characteristics of the environmental system, it
generates actions based on the agent’s own strategy π Actions in the microgrid model with
EVs can be represented by the output power of the micro-gas turbine, the interaction power
between the EVs station and the microgrid and the power purchased and sold between the
microgrid and the grid. Therefore, the action space can be expressed as:

A =
[

PMT(t), ∆P+
EV(t), ∆P−EV(t), Pbuy,e(t), Psell,e(t)

]
(24)

In addition, when the power of MT and EV is known, the interaction power between
the microgrid and the grid can be calculated by the power balance constraint. Therefore,
the action space can be simplified as:

A =
[
PMT(t), ∆P+

EV(t), ∆P−EV(t)
]

(25)

(3) Reward function:

In the optimal scheduling model of the microgrid proposed in this paper, the goal is to
minimize the overall operating cost of the system, which includes the cost of purchasing
and selling electricity between the microgrid and the grid, the cost of purchasing and selling
electricity between the EVs station and the grid, and operating costs of micro-combustion
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engines. Therefore, in this paper, the minimization problem is transformed into the form of
reward value maximization under the reinforcement learning framework, and the reward
function expression of the agent can be expressed as:

r(t) = −
(
Cgas(t) + Ce(t) + CEV(t)

)
(26)

In addition, when the agent is in the early stage of exploration, the policy model is not
yet mature, and some actions may not meet the constraints. Therefore, it is necessary to set
up an early termination mechanism to construct a penalty term to improve the training
speed. From the action space (25), it can be known that the interactive power between
the microgrid and the grid is solved by derivation of the balance constraint. Therefore,
there is a problem that the interactive power crosses the line and the constraints cannot
be satisfied. To sum up, the reward function is constructed by stacking penalty terms, as
shown in Equation (27):{

r(t) = −
(
Cgas(t) + Ce(t) + CEV(t)

)
− fd

∣∣Pg(t)− Pex,max
∣∣

Pg(t) =
∣∣∣Pbuy,e(t)− Psell,e(t)

∣∣∣ (27)

where fd is the penalty term coefficient.

3.3. Neural Network Structure

In the optimization model of this paper, the random constraints of electric vehicles
and the output of new energy are strongly nonlinear data. Deep Q-learning combines
deep neural network and reinforcement learning, so it has the ability to effectively process
large-scale data: agent training can be completed through a large amount of data, so as to
output real-time decisions according to real-time state variables and obtain the optimal
scheduling scheme. Therefore, this paper takes the state vector S as the input sequence
through the neural network and finally gets the approximated Q value in the output layer.
The corresponding network structure is shown in Figure 8, which has h layers of hidden
layers, and each hidden layer is composed of u neurons, and the specific value of the (h, u)
parameter is affected by the actual calculation example. In the optimization model of this
paper, the neural network has a total of four hidden layers, and the ReLU (Rectified Linear
Unit) function is used as the activation function.

Figure 8. Schematic diagram of neural network structure based on Deep Q-learning.
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3.4. The Flow Diagram of Deep Q-learning Algorithm

The dispatch strategy of this paper is carried out in the following steps:
First, determine the state set of the system as S. Furthermore, the action space can be

defined as A.
Second, the parameters are adjusted according to the actual computing instance, and

the values of the reward function coefficients and hyperparameters are obtained.
Finally, the agent is trained, and after convergence, the known information of the

microgrid is input to the agent so as to obtain the optimal dispatch scheduling result of the
next day.

In summary, after applying the deep neural network to Q-learning, Deep Q-learning
introduces the experience playback mechanism and the freezing parameter mechanism
in order to reduce the correlation between samples and improve the stability of training.
Therefore, combined with the application scenarios of this paper, the training process of
Deep Q-learning in the microgrid with EVs can be obtained as shown in Figure 9.

Figure 9. The training process of Deep Q-learning in the microgrid with EVs.

4. Simulation Results

In order to verify the effectiveness of the economic dispatch strategy for microgrids
with electric vehicles based on Deep Q-learning proposed in this paper, the microgrid
system with EVs shown in Figure 4 was used as an example for simulation research. The
microgrid system includes a wind turbine WT, a photovoltaic PV, a micro-gas turbine
MT and an electric vehicle charging station. The equipment abbreviations and working
parameters in the system are shown in Table 2. During the operation of the system, the
range of the interactive power between the system and the grid is [−1000, 1000] kW, and
the PV and WT output according to the real-time maximum power generation. In this
paper, the purchase cost of natural gas is 0.059 USD/kWh, the electricity purchase price of
the system is 0.074 USD/kWh and the electricity selling price is 0.044 USD/kWh.

Table 2. Abbreviations and working parameters of each device.

Unit Parameter Meaning Value

MT
η generation efficiency 0.85

PMT capacity of MT 1000 kW

EV
Pch charge power for EV 5 kW
Pdis discharge power for EV 2.5 kW
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Therefore, the hyperparameter settings of the Deep Q-learning agent can be obtained
as follows: the discount factor γ is 0.9, the data sampling size is 256, the experience pool
size is 106, the network parameter learning rate α is 0.0001 and the Adam optimizer is
used to update the network weights. The iterative training times are 5 × 105 times. In this
paper, Python software and the computing unit of CPUi7-10700 are used in the simulation
experiment platform to construct and verify the simulation model.

4.1. Case1: Analysis of Electric Vehicle Mobility and User Behavior Habits

From the model in Section 2.1, it can be seen that the controllable capacity of the EV
station is affected by the mobility of EVs and the randomness of the user. Take the model
constructed in this paper to generate the distribution of EVs in the microgrid on a certain
day as an example, as shown in Figure 10.

Figure 10. Parking situation in an EV station within 24 h.

It can be seen that the number of EVs (maximum controllable capacity) in the EV
station during T1, T2 and T3 is quite different. Therefore, the ability of EV stations to
participate in microgrid regulation will also show obvious time peaks and valleys during
the day, which is closely related to the living habits of the user group: Between 8:00 and
12:00, a small number of EVs gradually entered the station. After 12:00, the number of
EVs entering the station began to increase rapidly and reached saturation at 23:00. In
addition, after 24:00, the power of most electric vehicles has exceeded SOCm. At this time,
the controllable capacity of the station reaches its peak and starts to gradually decrease
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at 4:00, and a large number of EVs leave the charging station at 8:00, which makes the
controllable capacity of the station plummeted.

The above situation has brought a strong nonlinear influence to the microgrid dis-
patching process, which makes the traditional algorithm without evolution ability unable
to adapt, thus posing a challenge to the dispatching of the power grid. Therefore, in order
to better reflect the superiority of the Deep Q-learning algorithm in the dispatching of
microgrids with EVs, the PSO algorithm will be introduced in this paper as a comparison.

4.2. Case2: Energy Dispatching Results of a Microgrid

After the Deep Q-learning agent completes the training process, it accumulates enough
experience to be able to complete the intelligent scheduling process of the microgrid [24].
The optimization comparison results of using Deep Q-learning and PSO algorithms solving
the same scheduling day scenario are shown in Figures 11 and 12 and Table 3. Among
them, the specific data of typical scheduling day scenario are shown in the yellow and pink
histograms and blue lines in Figures 11 and 12. It can be seen that:

(1) Between 8:00–12:00, because most of the vehicles were stranded outside the station,
the output of the EV station was small. Between 16:00–22:00, the EV station mainly acted
as the load. At this time, most of the EVs were charged in the station. After 22:00, the
controllable capacity of the EV station gradually reached its peak value and could be
discharged to participate in dispatching.

(2) Compared with the PSO algorithm, the Deep Q-learning algorithm had the online
learning ability and could adapt better to the staged mutation of the capacity of the EV
station caused by the mobility of EVs and the randomness of user behavior based on
the experience accumulated in the training process, which significantly enhanced the
robustness and adaptability of the microgrid.

(3) The total operating cost of the microgrid under the Deep Q-learning algorithm was
801.07 USD, and the calculation time was 0.5 s. The total operating cost of the microgrid
under the PSO algorithm was 814.57 USD, and the calculation time was 7 min 23 s. In
detail, the natural gas cost of the microgrid under the PSO algorithm was 825.34 USD,
which was smaller than the 897.7 USD obtained by the Deep Q-learning algorithm, because
the total output of the MT in the solution result of the PSO algorithm was smaller than
that of the Deep Q-learning. In fact, the unit cost of power generation of MT is the lowest,
that is, the PSO algorithm needed to make up for the shortage of electricity by purchasing
a large amount of electricity from the grid: the electricity purchase cost of the microgrid
under the PSO algorithm was 159.07 USD, which was much greater than that of the Deep
Q-learning algorithm.

(4) As shown in Figure 11, the PSO could not adapt to the nonlinear effects brought
about by changes in the constraints of EVs, and its scheduling results were mostly in
the charging state. Although a small number of EVs participate in the discharge, the
charging station as a whole cannot discharge and is in a continuous charging state. As
shown in Figure 12, Deep Q-learning could adopt the most economical charging and
discharging strategy under the constraint conditions, could discharge properly to reduce
the power supply pressure when the load was high, and acted as a power source at night
to achieve economy.

In summary, it can be seen that the Deep Q-learning algorithm was better than the PSO
algorithm in all aspects. Among them, the advantage in flexible handling of randomness of
EV stations is particularly obvious.
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Figure 11. Microgrid scheduling results based on the PSO algorithm. (a) Microgrid schedule results
when EVs output is divided into charging and discharging. (b) Microgrid schedule results when the
output of EVs is the whole.
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Figure 12. Microgrid scheduling results based on the Deep Q-learning algorithm. (a) Microgrid
schedule results when EVs output is divided into charging and discharging. (b) Microgrid schedule
results when the output of EVs is the whole.
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Table 3. Comparative analysis of dispatch results’ data.

Index Operating Costs (USD) Gas Costs (USD) V2G Costs (USD) Grid-Connected Costs (USD) Calculation Time

PSO 814.57 825.34 −169.84 159.07 7 min 23 s
Deep Q-learning 801.07 897.70 −92.79 −3.84 0.05 s

5. Conclusions

In summary, an optimal scheduling model for microgrids with electric vehicles based
on Deep Q-learning is proposed in this paper. Through simulation analysis under various
scenarios, the following conclusions are drawn:

• As a mobile energy storage component with V2 G capability, EVs can participate well
in the dispatching control of the microgrid, providing a more flexible dispatching
scheme for the stable operation of the microgrid.

• Compared with traditional algorithms, Deep Q-learning with online learning ability
can better adapt to the strong nonlinear effects caused by the mobility of EVs, random-
ness of user behavior and renewable resources based on the experience accumulated in
the training process. The cost of the microgrid under Deep Q-learning was 801.07 USD,
and the calculation time was 0.05 s, while the total operating cost of the microgrid
under the PSO algorithm was 814.57 USD, and the calculation time was 7 min 23 s.
Therefore, Deep Q-learning was better than the PSO algorithm in all aspects, such as
operating total costs, micro-turbine output, V2G interaction situation, grid-connected
costs and operating time, which is explained in great detail in Section 4.2.
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