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Abstract: The crowd in a metro system can cause inconvenience and even safety problems to
passengers. The study of crowded propagation in metro systems can identify where and when
crowds occur, ensuring travel quality and safety. Based on this, a modified susceptible–infected-
susceptible (SIS) crowded propagation model is proposed to estimate the risk probability of crowding
(RPC) in the metro network. Each station’s real transport capacity is considered. Infection rate
and the recovery rate are proposed considering the traffic difference between stations. Using the
Beijing metro network as a case study, the spatial and temporal patterns of crowded propagation are
analyzed, and the types of nodes suitable for regulation are further discussed. This proposed model
can provide a reference for RPC identification and regulation and promote sustainable development
of metro operations.

Keywords: metro network; crowded propagation; risk probability of crowding; passenger flow

1. Introduction

Urban rail transit can be divided into three categories: metro, light rail, and tram.
Among them, the metro, with the characteristics of fast, high frequency, and punctuality,
meets the travel demands of many passengers. Some developing countries promote the
construction of the metro to meet passengers’ commuting or other travel. For example,
almost 700 km of metro and tram lines were opened in 15 Chinese cities during the closing
weeks of 2020 [1]. The high frequency makes it possible to transport a large number of
passengers in a short time; however, the large number of passengers puts pressure on the
operation of the network. Then, the crowd occurs when the carrying capacity and the
transportation capacity are not sufficient to meet passenger demand. Luo et al. found out
that big passenger flows spread continuously in time and space and that huge passenger
flows at a single station will affect the journey at succeeding stations [2]. Crowding has
a negative impact on passenger travel and metro operations [3] and, in serious cases, can
even lead to safety accidents. Higgins et al. noted that reducing travel in crowded situations
could increase travel satisfaction [4]. Therefore, investigating the propagation of crowding
in metro systems is of great significance.

Many scholars have studied the propagation of the crowd in transportation networks.
Nagy and Simon predicted the congestion propagation by Markoc chains; the approach
accurately predicted the probability of congestion occurring many times per day and the
duration of congestion propagation periods [5]. Shang et al. estimated the passenger
flow state by integrated Lagrangian and Eulerian observations [6]. Ding et al. studied the
duration and spread of the delay in the metro system [7]. Li studied the cascade dynamics
of passenger flow crowding and found that the factors of spreading scope contained the
load of the nodes and the distance from the initial congested nodes [8]. Some scholars
have combined complex networks and epidemic models to explore the propagation of
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crowds [9,10]. Ye et al. investigated the transmission in a tightly linked network using a
deterministic susceptible–infected-susceptible (SIS) metapopulation model, where each
node represented a huge population. They pointed out that increasing mobility helps the
system return to a healthy balance [11]. Wu et al. developed an integrated flight-based
SIS model to analyze the flight delay process [12]. Shi et al. studied the passenger flow
crowding in the metro network by a susceptible–infected–recovered (SIR) model [13].

When studying crowding spread through the epidemic model, the initial setting of
the model, as well as the infected rates and recovery rates, affect the outcome of the spread.
The initial value of the model means the initially infected nodes, which can be interpreted
here as the initial crowding node. There are two components that cause congestion to the
nodes, one is the external entrance traffic, and the other is the inflow of passengers through
the trains in the network. The former can be obtained through big data statistics. The latter
is to be obtained by means of passenger flow assignment. Everyone has an origin and
a destination when traveling. Origin–destination (OD) data can reflect the distribution
of passengers’ trips [14]. There is a certain randomness in passengers’ choice of paths
between ODs during travel. Different paths will bring flow pressure on different stations,
and thus the inter-OD traffic is often allocated to efficient paths by means of passenger
flow allocation. Huang found that the crowd can be relieved by sharing the passengers to
the alternative routes [15]. Peng et al. divided the passenger flow into different types and
created a dynamic assignment model to reflect the real passenger flow state [16]. Sun et al.
explored the travel path of passengers by an integrated Bayesian approach [17]. Alexis
considered both train circulation models and passenger assignment models to provide
an improving quality of metro service [18]. Deng et al. used an improved C-Logit muti-
path assignment model to calculate the ratio of each path to be selected [19]. All in all, a
closer approximation to the actual crowding situation can be obtained by passenger flow
allocation. However, it is not suitable for dynamic crowding prediction due to its slow
calculation speed. Moreover, dynamic demand flow obtained by passenger flow allocation
cannot characterize the process of crowded propagation.

As for the infection and recovery rates, Zeng proposed a grey system model to measure
the propagation rate considering the passenger flow, initial congested station, and train
capacity [20]. Wu pointed out that the average rate of infection, the average recovery
rate, and the network topological will influence the spread of the crowd [21]. However,
the propagation rate of crowds varies from station to station due to the passenger class
and the capacity of each station. When Baspinar et al. constructed the air transportation
delay propagation model, the effect of inter-route passenger flow was incorporated into
the infection rates [22]. The difference between the metro system and the airline system is
that the airline network is a direct propagation from O to D, while the crowd of passengers
in the metro is propagated through each stop between O and D.

In summary, we proposed a modified SIS crowded propagation model to quickly
and simply predict the propagation and risk probability of crowding (RPC) in the metro
network, considering the actual carrying passenger flow and propagation rate of each
station. The method identifies the spatial and temporal distribution of crowding risk,
which helps metro operators optimally manage resource allocation and enhance the service
capacity of urban metro transit systems, thus promoting the development of green and
sustainable transportation systems.

2. Materials and Methods

The whole concept is shown in Figure 1. Based on the smart card data, the basic
information of passenger flow is extracted; subsequently, the passenger flow in the network
is obtained through passenger flow allocation. From this, the passenger demand within
the metro is acquired. The crowded stations are obtained by combining the capacity
information of the stations. This is fed into the SIS model as the initial value. The infection
and recovery rates in the SIS model are determined by the inflow and outflow. Finally, the
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spatial and temporal variation of crowding propagation is analyzed. Specific operations
will be shown in the following subsections.
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Figure 1. Flow chart of the method.

2.1. Notations and Definitions

The metro network is abstracted as an undirected graph G = (V, E), where
V = {1, 2, . . . , N} is the set of nodes, each station is regarded as a node, and E =

{
eij
∣∣i, j ∈ V

}
E is the set of edges. The uncertain factors of metro transit passenger flow spreading in the
network mainly include the number of entrance passenger flow and passing passenger
flow. The entrance and exit of node i can be obtained by Automatic Fare Collection (AFC)
system, denotes as Pen

i and Pex
i . The passing flow pij means the passenger flow between

node i and node j, is regarded as the edge weight. The passenger flow demand Pi of node
i is defined as entrance passenger flow plus passing flow minus exit passenger flow, as
shown in Equation (1).

Pi = Pin
i + Pen

i − Pex
i (1)

where Pin
i is the inflow of the node i, Pin

i =
N
∑

j=1
pij. A clearer representation is shown

in Figure 2.
When the passenger flow demand Pi within the departure interval is greater than the

train capacity C, part of the entrance passengers can not board the train. Therefore, the
phenomenon of detention occurs, which forms the platform crowding. Moreover, with the
new passenger flow entrance to the station, the crowding will increase. As a consequence,
how crowd spreads in the network and how it dissipates needs to be studied to prevent the
impact of large passenger flow.
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2.2. Passenger Flow Allocation

The passing flow pij can be obtained by allocating the origin–destination (OD) flow to
each link. The main process is as follows. Firstly, calculate the ridership between each OD
pair according to the AFC data. Second, the k effective path between any OD pair can be
found by the k short path algorithm. In this study, the value of k is 4. Third, the utility of
each path can be calculated. In this study, the utility Ui considers the path length, as shown
in Equation (2).

Ul = −∑
k∈l

dk (2)

where dk is the length of the link k.
Finally, the ridership is distributed to the link according to the proportion δl of each

path that be chosen. The proportion δl is shown as Equation (3).

δl =
eUl

∑
k

eUk
(3)

2.3. Passenger Flow Propagation Based on SIS Model

When crowding occurs at a few stations, passengers are transported by train, spreading
crowds to other stations and alleviating crowds at the current station. This is similar to the
SIS model in the infectious disease model. Nodes in the metro network are divided into two
categories: one is the crowded station, represented by I; the other is the normal operating
stations that can meet the needs of passengers, represented by S. In a metro network with
N stations, the sum of the two types of station is equal to N, that is nS + nI = N. The
transformation relationship is shown in Figure 3.
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The two types of stations can be converted into each other, and the stations that return
to normal may also be crowded again. The transformation relationship between the two
types in the metro network is shown in Figure 1. The propagation process is described by
Equation (4). { dx

dt = k(1− x)x− θx

x(0) = x0
(4)

where x is the probability that a station in the metro network becomes I-type. It describes
the risk probability of crowding (RPC). The probability of a station being of S-type is
represented as 1− x. x0 is the initial state of stations. For the entire network, the RPC at
each station can be written as the set X = {xi}, i = 1, 2, . . . , n. k represents the infected rate
between the stations, θ indicates the recovery rate of the station to normal.

In the metro network, the flow of passengers transferred from stations to stations is
different, which means the infected rate is different in stations. Similarly, the number of
passengers evacuated from station to station, and their rates of returning to normal are
also different.

The infected rate and recovery rate are defined below. The infected rate kij between
node i and node j is equal to the ratio of passing flow pij to the flow out of the station, as
shown in Equation (5). It describes the direction of passenger flow at the station, that is.,
the direction and size of the spread of crowd. The recovery rate of node i is the ratio of the
flow out of the station to the sum of the in flow and out flow, as shown in Equation (6). It
describes the evacuation capacity of the train.

kij =
pij

Pout
i

(5)

θi =
Pout

i
Pout

i + Pin
i

(6)

3. Experiment and Results

The metro network data of Beijing in 2020 were used for the experiment. By the end
of 2020, Beijing had 339 stations. AFC data for Tuesday, October 13, were selected. No
emergencies occurred on the day, and the passenger flow on that day was close to the
average of that week, which can be used as an experimental representative. Aggregating
passenger flows by the hour, the following discussion will focus on passenger flows in the
morning rush hour (7:00–9:00) of the day.

3.1. The Initial Setting

Firstly, the passing passenger flow through the network is calculated, as shown in
Figure 4. The gray dots in figure represents the nodes, the riderships between the nodes
are shown in color. It can be seen that during the morning rush hour, some sections are
under great pressure, especially Line 6 and Line 13. This is due to the fact that these two
lines cover more office locations, and the concentration of passengers taking the metro to
work during the morning rush hour has caused some of the lines to have a larger flow of
passengers, and with time, the crowd is slowly dissipated.

In order to clearly see the difference in infection rates between stations, the crowd
infection rate k was calculated in the peak state, as shown in Figure 5. It can be seen that
the infected rate of the adjacent station is large. The large values of k between nodes can
be caused by two reasons, either there are fewer links connected between nodes, or the
passenger flow has a very uneven directional distributivity at a node. From the calculation,
the maximum value of k for the non-zero part is 1, which infers to the first reason mentioned
above, which occurs at leaf nodes at the edge of the network. The minimum value of k
is 0.001, and it can be presumed that the value of k in the other directions of the current
departure node will be large. It infers to the second reason mentioned above, where the



Sustainability 2022, 14, 9829 6 of 12

directional inhomogeneity is very serious. The mean value is 0.44, which reflects the
average propagation level.
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The recovery rate θ of each station is displayed in Figure 6. A larger recovery rate of a
node represents a larger share of ridership flowing out of this node, meaning that trains
departing from it can carry more passengers out, that is, having a high train evacuation
capacity. In addition, it indicates that the station has a larger inbound passenger flow, which
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is usually the starting node or middle node of the crowded section. From the passenger’s
perspective, such stations are mostly the origin of passenger travel during the morning
peak period. A lower recovery rate indicates a larger flow of passengers exiting the station
at that node, and such nodes are mostly destinations for passengers traveling during the
morning peak period. The average recovery value in the network is 0.52, and a node close
to the average means that its inflows and outflows are balanced.
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3.2. Spatiotemporal Analysis of Crowding Propagation

The crowding propagation will be analyzed in both temporal and spatial dimensions.
First, we analyzed the change in the time dimension. Considering that the average de-
parture interval of the morning peak is around 3 min, each time step is set as 3 min. For
example, 20 scale places represent one hour elapsed from point 0, and 40 scale places
represent two hours elapsed. The average infection probability of the whole network is
shown in Figure 7. After two hours of propagation, the average RPC across the network is
about 0.3. In order to obtain a clearer overview of the number of affected stations at each
time step, a statistical graph is presented in Figure 8. The initial number of infected nodes
was 7, and 22 more were affected in the first-time step. The highest number of stations was
spread at the third time step for 31 stations, and by the 10th time step, 73% of the stations
had been affected. The affected rate was faster in the early part of the process and leveled
off in the later part. An hour’s time spread to almost the entire network.

The propagation is centered on the initially infected node and spreads outward, as
shown in Figure 9. The color value of the node in the figure is the RPC of the node in a
given time step. The nodes closer to the initially infected node are more affected over time.
Figure 10 represents the average RPC of the nodes within 2 h. It is worth noting that the
transfer nodes encountered in the process of diffusion have a bigger average RPC than
others, which is consistent with reality and justifies the rationality of k value. Although the
entire network is known to be rippled, as depicted in Figure 8, it can be seen in Figure 10
that the RPC has been greatly diminished after it has propagated to a certain range. It does
not have much effect on stations far from the initial congested stations.
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Based on the above spatio-temporal analysis, the following can be summarized.

(1) After the crowd occurs at some stations, it will spread to the majority of the network
within half an hour. Then the propagation speed decreases and spreads throughout
the network for about one and a half hours.

(2) The propagation distance outward is limited, and the propagation strength decreases
as the distance increases. The transfer nodes are more affected during propagation.

4. Discussion

When crowding happens in the metro network, the entrance passenger flow can be
reduced by means of flow restrictions. Since the control will affect the travel of some
passengers, it is desirable that as few stations as possible take the measure of restricting the
flow in the shortest possible time. To address this issue, we use the above case study as
a basis to explore more deeply which stations can be taken measure to better reduce the
spread of the crowd. The number of affected stations and the average RPC of the network
at each time step are observed by applying traffic restriction measures to each of the initially
congested stations. The locations and the index of the initial congested stations are depicted
in Figure 11. The results are shown in Figure 12 and Table 1.

Table 1. The average risk probability of crowding at the network.

Intervention Station Number 14 23 25 35 43 44 116

Average RPC of the whole network
among two hours 0.185 0.190 0.184 0.190 0.191 0.189 0.190



Sustainability 2022, 14, 9829 10 of 12

Sustainability 2022, 14, 9829 10 of 12 
 

4. Discussion 
When crowding happens in the metro network, the entrance passenger flow can be 

reduced by means of flow restrictions. Since the control will affect the travel of some pas-
sengers, it is desirable that as few stations as possible take the measure of restricting the 
flow in the shortest possible time. To address this issue, we use the above case study as a 
basis to explore more deeply which stations can be taken measure to better reduce the 
spread of the crowd. The number of affected stations and the average RPC of the network 
at each time step are observed by applying traffic restriction measures to each of the ini-
tially congested stations. The locations and the index of the initial congested stations are 
depicted in Figure 11. The results are shown in Figure 12 and Table 1. 

 
Figure 11. The location of the initial infected stations. 

 
Figure 12. The number of new affected stations in each time step. 

Table 1. The average risk probability of crowding at the network. 

Intervention Station Number 14 23 25 35 43 44 116 
Average RPC of the whole net-

work among two hours 0.185 0.190 0.184 0.190 0.191 0.189 0.190 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

N
um

be
r o

f n
ew

 a
ffe

ct
ed

 s
ta

tio
ns

Time step
14 23 25 35 43 44 116

Figure 11. The location of the initial infected stations.

Sustainability 2022, 14, 9829 10 of 12 
 

4. Discussion 
When crowding happens in the metro network, the entrance passenger flow can be 

reduced by means of flow restrictions. Since the control will affect the travel of some pas-
sengers, it is desirable that as few stations as possible take the measure of restricting the 
flow in the shortest possible time. To address this issue, we use the above case study as a 
basis to explore more deeply which stations can be taken measure to better reduce the 
spread of the crowd. The number of affected stations and the average RPC of the network 
at each time step are observed by applying traffic restriction measures to each of the ini-
tially congested stations. The locations and the index of the initial congested stations are 
depicted in Figure 11. The results are shown in Figure 12 and Table 1. 

 
Figure 11. The location of the initial infected stations. 

 
Figure 12. The number of new affected stations in each time step. 

Table 1. The average risk probability of crowding at the network. 

Intervention Station Number 14 23 25 35 43 44 116 
Average RPC of the whole net-

work among two hours 0.185 0.190 0.184 0.190 0.191 0.189 0.190 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

N
um

be
r o

f n
ew

 a
ffe

ct
ed

 s
ta

tio
ns

Time step
14 23 25 35 43 44 116

Figure 12. The number of new affected stations in each time step.

It can be seen that the intervention is more effective for nodes 25 and 44, which can
reduce the spread of the crowd at the third time step and can reduce the RPC. Between
them, node 44 is the transfer node of three lines and is the node with the highest passenger
demand among these seven. Node 25, which has the second-last presence of the seven in
terms of passenger demand, is more on the sparse periphery compared to several other
nodes. Thus, its relief provides more carrying space for external flows into the city.

In addition to the above-mentioned restrictions on the station, the service capacity
of the station can also be changed, such as increasing the frequency of departures on the
line where the station is located during peak periods. Moreover, information technology is
introduced to transmit crowding information to passengers through station announcements,
etc., so that they can reconsider their travel paths when they depart. When the alternative
paths are fewer crowds and the travel time is within their acceptable range, passengers will
change their travel paths, thus spontaneously alleviating the crowd in the metro.
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5. Conclusions

In this paper, a modified SIS crowding propagation model is proposed to quickly and
simply predict the crowd propagation in the metro network, considering the actual carrying
passenger flow and infected rate of each station. The main contributions are as follows:

(1) Within half an hour, the majority of the network will become affected once it starts to
happen at some stations. Following then, the propagation speed slows down.

(2) The propagation strength diminishes with increasing distance. During propagation,
the transfer nodes are significantly impacted.

(3) Imposing control at the nodes with the highest demand or relatively peripheral nodes
is more effective than other nodes.

The method proposed in this paper is generalizable for metro systems in other coun-
tries and cities. It can provide a reference for metro operating companies to develop
regulation strategies, to reduce the probability of crowd occurrence and propagation in the
metro network. It ensures the reliability of people’s travel and promotes the sustainable
development of the metro operation. In future studies, the impact of land property near
metro stations on crowd propagation can be considered.
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