Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment Design
2.3. Sampling
2.4. Physicochemical Analysis
2.5. P Sorption Isotherm Experiment
2.6. P Desorption Experiment
2.7. Modeling of P Adsorption and Desorption
2.8. Statistical Analysis
3. Results
3.1. Yield and P Accumulation of Maize
3.2. P Uptake and Utilization Efficiency
3.3. Characteristics of P Adsorption in the Soils
3.4. Characteristics of P Desorption in the Soils
3.5. Adsorption and Desorption Efficiency
3.6. Soil Physicochemical Properties
3.7. Relationship between Soil Properties and P Adsorption-Desorption Content
4. Discussion
4.1. P Application Effect P Adsorption and Desorption
4.2. P Types Affects the Absorption and Desorption
4.3. Soil Properties Effect P Adsorption and Desorption Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Meng, J.; Jiang, L.L.; Yang, X. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 2017, 116, 12–22. [Google Scholar] [CrossRef]
- Grant, C.; Bittman, S.; Montreal, M.; Plenchette, C.; Morel, C. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 2005, 85, 3–14. [Google Scholar] [CrossRef]
- Miao, Y.X.; Stewart, B.A.; Zhang, F.S. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- van der Salm, C.; van Middelkoop, J.C.; Ehlert, P.A.I. Changes in soil phosphorus pools of grasslands following 17 yrs of balanced application of manure and fertilizer. Soil Use Manag. 2017, 33, 2–12. [Google Scholar] [CrossRef]
- Wang, L.Q.; Liang, T. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils. Chemosphere 2014, 103, 148–155. [Google Scholar] [CrossRef]
- Lair, G.J.; Zehetner, F.; Khan, Z.H.; Gerzabek, M.H. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 2009, 149, 39–44. [Google Scholar] [CrossRef]
- Quesada, C.A.; Liovd, J.; Andeson, L.O.; Fyllas, N.M.; Schwarz, M.; Czimczik, C.I. Soils of Amazonia with particular reference to the rain for sites. Biogeosciences 2011, 6, 1415–1440. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.E. Phosphorus transformations in acid light-textured soils treated with dry swine manure. Can. J. Plant Sci. 2005, 85, 75–87. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus forms and P sorption properties in three alkaline soils after long-term mineral and manure applications in northeastern Italy. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Boparai, H.K.; Sharma, K.N. Phosphorus adsorption and desorption characteristics of some soils as affected by clay and available phosphorus content. Investig. Ophth. Vis. Sci. 2006, 54, 111–114. [Google Scholar] [CrossRef]
- Fang, H.W.; Cui, Z.H.; He, G.J.; Huang, L.; Chen, M.H. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Sci. Total Environ. 2017, 605, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Bornø, M.L.; Müller-Stöver, D.S.; Liu, F.L. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci. Total Environ. 2018, 627, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Boers, P. The influence of pH on phosphate release from lake sediments. Water Res. 1991, 25, 309–311. [Google Scholar] [CrossRef]
- Gao, Y.; Mucci, A. Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem. Geol. 2003, 199, 91–109. [Google Scholar] [CrossRef]
- Ye, H.; Chen, F.; Sheng, Y. Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purif. Technol. 2006, 50, 283–290. [Google Scholar] [CrossRef]
- Chen, B.L.; Sheng, J.D.; Jiang, P.A.; Liu, Y.G. Study on characteristics of phosphorus adsorption and desorption of cotton field with different soil textures. Chin. J. Soil Sci. 2010, 41, 303–307. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Huang, S.M.; Guo, D.D.; Zhang, S.Q.; Song, X.; Yue, K.; Zhang, K.K.; Bao, D.J. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization. J. Soil Sediment. 2019, 19, 1306–1318. [Google Scholar] [CrossRef]
- Debicka, M.; Kocowicz, A.; Weber, J.; Jamroz, E. Organic matter effects on phosphorus sorption in sandy soils. Arch. Agron. Soil Sci. 2015, 62, 840–855. [Google Scholar] [CrossRef]
- Aeai, Y.; Sparksd, L. Phoshpate reaction dynamics in soils and soil components: A multiscale approach. Adv. Agron. 2007, 94, 135–179. [Google Scholar] [CrossRef]
- Richard, M.D.; Leo, C. Influence of soil constituents on soil phosphorus sorption and desorption. Commun. Soil Sci. Plant Anal. 2001, 32, 2531–2547. [Google Scholar] [CrossRef]
- Bache, B.W.; Williams, E.G. A phosphate sorption index for soils. Eur. J. Soil Sci. 1971, 22, 289–301. [Google Scholar] [CrossRef]
- Yu, W.; Ding, X.; Xue, S.; Li, S.; Liao, X.; Wang, R. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. J. Soil Sci. Plant Nut. 2013, 13, 1003–1017. [Google Scholar] [CrossRef]
- Gou, X.M.; Cai, Y.; Wang, C.Q.; Li, B.; Zhang, Y.; Tang, X.Y.; Sheng, J.; Cai, Z.H. Effects of different long-term cropping systems on phosphorus adsorption and desorption characteristics in red soils. J. Soil Sediment. 2020, 20, 1371–1382. [Google Scholar] [CrossRef]
- Varinderpal, S.; Dhillon, N.S.; Brar, B.S. Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils. Nutr. Cycl. Agroecosyst. 2006, 75, 67–78. [Google Scholar] [CrossRef]
- Lv, H.Y.; Yang, H.T. Effects of long-term fertilization on the form of inorganic phosphorus and the characteristic of adsorption and desorption in black soil. Commun. Soil Sci. Plant Anal. 2019, 50, 763–771. [Google Scholar] [CrossRef]
- Fekri, M.; Gorgin, N.; Sadegh, L. Phosphorus desorption kinetics in two calcareous soils amended with P fertilizer and organic matter. Environ. Earth Sci. 2011, 64, 721–729. [Google Scholar] [CrossRef]
- Pratap, B.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Raja, R.; Panda, B.B.; Lal, B.; Gautam, P.; et al. Effects of 42-year long-term fertilizer management on soil phosphorus availability, fractionation, adsorption–desorption isotherm and plant uptake in flooded tropical rice. Crop J. 2015, 3, 387–395. [Google Scholar] [CrossRef]
- Susanta, K.P. Phosphorus sorption-desorption characteristics of soils under different land use patterns of eastern India. Arch. Agron. Soil Sci. 2011, 57, 365–376. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.V.; Bavaresco, J.; Barrón, V.; Torrent, J.; Bayer, C. Phosphorus adsorption and desorption in undisturbed samples from subtropical soils under conventional tillage or no-tillage. J. Plant Nutr. Soil Sci. 2016, 179, 198–205. [Google Scholar] [CrossRef]
- Johnson, C.M.; Ulrich, A. Analytical Methods for Use in Plant Analysis; Bulletin of the California Agricultural Experiment Station: Berkeley, CA, USA, 1959; Volume 766, pp. 25–78. Available online: https://www.researchgate.net/publication/303918692_Analytical_methods_for_use_in_plant_analysis (accessed on 5 June 2022).
- Soil Survey Staff. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report 42. 2004. Available online: https://www.researchgate.net/publication/255947599_Soil_Survey_Laboratory_Method_Manual (accessed on 5 June 2022).
- Schollenberger, C.J. Determination of soil organic matter. Soil Sci. 1931, 31, 483–486. [Google Scholar] [CrossRef]
- Olsen, R.S.; Sommer, L.E. Phosphorus. In Methods of Soil Analysis (Part 2); Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar] [CrossRef]
- Fu, Q.L.; Zhang, Y.H.; Huang, W.; Hu, H.Q.; Chen, D.Q.; Yang, C. Remaining dynamics of Cry1Ab proteins from transgenic Bt corn in soil. J. Food Agric. Environ. 2007, 10, 294–298. [Google Scholar] [CrossRef]
- Wagner, S.C.; Hanson, D.J.; Olness, A.; Voorhess, W.D. A volumetric inorganic carbon analysis system. Soil Sci. Soc. Am. J. 1998, 62, 690–693. [Google Scholar] [CrossRef]
- Pierzynski, G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. North Carolina State University. 2000. Available online: https://www.researchgate.net/publication/284634711_Methods_of_soil_phosphorus_analysis_for_sediments_residuals_and_waters (accessed on 5 June 2022).
- Habte, D.; Kebede, F.; Bedadi, B.; Wogi, L. Phosphorus sorptiondesorption properties of Luvisols and Vertisols, sorption kinetics and models comparison. Commun. Soil Sci. Plant Anal. 2020, 51, 527–540. [Google Scholar] [CrossRef]
- Lu, H.; Yang, L.; Shabbir, S.; Wu, Y. The adsorption process during inorganic phosphorus removal by cultured periphyton. Environ. Sci. Pollut. Res. 2014, 21, 8782–8791. [Google Scholar] [CrossRef]
- Campos, M.D.; Antonangelo, J.A.; Alleoni, L.R.F. Phosphorus sorption index in humid tropical soils. Soil Till. Res. 2016, 156, 110–118. [Google Scholar] [CrossRef]
- Holford, I.C.R. Evaluation of soil phosphate buffering indices. Soil Res. 1979, 17, 495–504. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C. A phosphorus sorption index and its use to estimate leaching of dissolved phosphorus from agricultural soils in Ontario. Geoderma 2016, 274, 79–87. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N.; Moyer, B.G.; Elwinger, G.F. Effect of mineral and manure phosphorus sources on runoff phosphorus. J. Environ. Qual. 2002, 31, 2026–2033. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zhu, P.; Huang, S.; Wang, B.; Zhao, L.; Xu, M. Characterizing differences in the phosphorus activation coefcient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS ONE 2017, 12, e0176437. [Google Scholar] [CrossRef]
- Huang, W.; Weber, W.J. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol. 1997, 31, 2562–2569. [Google Scholar] [CrossRef]
- Du, Y.; Han, H.Y.; Wang, Y.F.; Zhong, M.; Hui, D.; Niu, S.; Wan, S. Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade. Funct. Ecol. 2018, 32, 1117–1127. [Google Scholar] [CrossRef]
- De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil. 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Balemi, T.; Negisho, K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. J. Soil Sci. Plant Nut. 2012, 12, 547–561. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, X.Y.; Zhang, S.X.; Peng, C.; Gao, H.J.; Zhang, X.Z.; Zhu, P.; Cilles, C. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Sci. Agric. Sin. 2019, 52, 3866–3877. [Google Scholar] [CrossRef]
- Gong, Z.P.; Du, T.T.; Yan, C.; Ma, C.M.; Dong, S.K.; Sun, H.H.; Li, H.R. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil. Trans. Chin. Soc. Agric. Eng. 2019, 35, 161–169. [Google Scholar] [CrossRef]
- Lai, D.Y.F.; Lam, K.C. Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water runoff. Ecol. Eng. 2009, 35, 735–743. [Google Scholar] [CrossRef]
- Vu, D.T.; Tang, C.; Armstrong, R.D. Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil. 2007, 304, 21–33. [Google Scholar] [CrossRef]
- Yan, X.; Wang, D.; Zhang, H.; Zhang, G.; Wei, Z. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agr. Ecosyst. Environ. 2013, 175, 47–53. [Google Scholar] [CrossRef]
- Barrow, N.J.; Debnath, A. Effect of phosphate status on the sorption and desorption properties of some soils of northern India. Plant Soil. 2014, 378, 383–395. [Google Scholar] [CrossRef]
- Li, M.; Hou, Y.L.; Zhu, B. Phosphorus sorption-desorption by purple soils of China in relation to their properties. Soil Res. 2007, 45, 182–189. [Google Scholar] [CrossRef]
- Djodjic, F.; Börling, K.; Bergström, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual. 2004, 33, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Chen, X.W.; Yang, X.T. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Till. Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Wang, R.; Guo, S.L.; Li, N.N.; Zhang, Y.J.; Jiang, J.S.; Wang, Z.Q.; Liu, Q.F.; Wu, D.F.; Sun, Q.Q.; Du, L.L.; et al. Phosphorus Accumulation and sorption in calcareous soil under long-term fertilization. PLoS ONE 2015, 10, e0135160. [Google Scholar] [CrossRef]
- Casson, J.P.; Bennett, D.R.; Nolan, S.C. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta. J. Environ. Qual. 2006, 35, 2212–2221. [Google Scholar] [CrossRef]
- Ma, L.; Xu, R.K. Effects of regulation of pH and application of organic material on adsorption and desorption of phosphorus in three types of acid soil. J. Ecol. Rural Environ. 2010, 26, 596–599. [Google Scholar] [CrossRef]
- Xia, H.P.; Gao, Z.Q. Mechanisms of competitive adsorption and desorption of phosphate in soils. Chin. J. Appl. Ecol. 1993, 4, 89–93. [Google Scholar]
- Wang, E.L.; Wang, S.Q.; Wang, D.H. Effect of different organo-mineral complexes on adsorption characteristic of phosphorus on sandy soil. Acta Sci. Circumst. 2013, 33, 594–601. [Google Scholar] [CrossRef]
- Gan, H.H.; Xu, S.R. Study on P adsorption-desorption characteristics of red soil and organic-inorganic aggregates. Chin. J. Soil Sci. 1994, 25, 264–266. [Google Scholar]
Treatments | PPFP (kg kg−1) | PUTE (%) | PFPUTE (kg kg−1) | PAE (%) |
---|---|---|---|---|
SSP | 50.0 a | 30.7 a | 134.8 ab | 41.3 a |
CMP | 49.5 a | 24.0 b | 172.5 a | 40.8 b |
MAP | 29.9 b | 17.0 c | 125.1 b | 21.1 b |
DAP | 34.8 b | 15.3 c | 172.9 a | 26.0 a |
Treatments | Langmuir Equation | Freundlich Equation | Temkin Equation | ||||||
---|---|---|---|---|---|---|---|---|---|
C/Q = C/Qm + 1/K1Qm | R2 | Q = K2C1/n | R2 | K2 | 1/n | Q = a + K3lnC | R2 | a | |
CK | C/Q = 0.0016C + 0.0043 | 0.990 | Q = 73.682C0.511 | 0.993 | 73.682 | 0.511 | Q = −58.744 + 151.846lnC | 0.971 | −58.744 |
SSP | C/Q = 0.0017C + 0.0229 | 0.990 | Q = 31.421C0.600 | 0.986 | 31.421 | 0.600 | Q = −48.210 + 97.3087lnC | 0.883 | −48.210 |
CMP | C/Q = 0.0017C + 0.0532 | 0.990 | Q = 50.386C0.489 | 0.967 | 50.386 | 0.489 | Q = −106.318 + 118.431lnC | 0.987 | 106.318 |
MAP | C/Q = 0.0016C + 0.0424 | 0.970 | Q = 55.839C0.503 | 0.962 | 55.839 | 0.503 | Q = −101.507 + 129.425lnC | 0.961 | −01.507 |
DAP | C/Q = 0.0020C + 0.0084 | 0.990 | Q = 161.931C0.263 | 0.963 | 161.931 | 0.263 | Q = 142.185 + 78.725lnC | 0.989 | 142.185 |
Treatments | Qm (mg kg−1) | K1 | MBC (mg kg−1) | SPR (mg kg−1) | PSI | DPS (%) |
---|---|---|---|---|---|---|
CK | 626.5 a | 0.37 a | 232.9 a | 43.4 a | 16.7 a | 0.5 c |
SSP | 588.4 ab | 0.07 c | 43.6 c | 8.6 c | 11.1 b | 1.7 ab |
CMP | 579.1 ab | 0.03 c | 18.8 c | 3.7 c | 12.3 b | 1.5 b |
MAP | 634.9 a | 0.04 c | 23.6 c | 4.7 c | 13.9 ab | 1.2 b |
DAP | 494.5 b | 0.24 b | 119.4 b | 22.8 b | 14.4 ab | 2.4 a |
Treatments | Absorption (mg kg−1) | Desorption (mg kg−1) | Desorption Rate (%) | HI |
---|---|---|---|---|
CK | 343.0 a | 23.7 c | 6.9 b | 0.93 a |
SSP | 219.1 c | 51.0 b | 23.5 a | 0.77 b |
CMP | 252.5 bc | 57.4 ab | 22.8 a | 0.77 b |
MAP | 277.8 abc | 63.0 ab | 23.7 a | 0.77 b |
DAP | 329.3 ab | 70.2 a | 21.5 a | 0.79 b |
Treatments | pH | SOM (g kg−1) | Olsen-P (mg kg−1) | TP (g kg−1) | PAC (%) | Fe2O3 (g kg−1) | Al2O3 (g kg−1) | CaCO3 (g kg−1) |
---|---|---|---|---|---|---|---|---|
CK | 4.4 b | 4.3 c | 2.9 b | 0.21 b | 1.4 b | 146.7 a | 31.6 a | 1.75 d |
SSP | 4.6 ab | 5.5 bc | 10.1 a | 0.54 a | 1.9 ab | 130.4 b | 23.6 c | 2.68 bc |
CMP | 4.7 a | 5.7 bc | 9.0 a | 0.58 a | 1.5 b | 130.9 b | 28.4 ab | 3.51 a |
MAP | 4.5 ab | 6.8 b | 7.9 a | 0.49 a | 1.6 b | 128.5 b | 25.1 bc | 2.42 cd |
DAP | 4.6 ab | 10.7 a | 12.0 a | 0.48 a | 2.5 a | 135.9 ab | 28.4 ab | 3.15 ab |
Index | pH | SOM | Fe2O3 | Al2O3 | CaCO3 | Olsen-P | TP | SPR | PSI | DPS |
---|---|---|---|---|---|---|---|---|---|---|
Absorption | −0.190 | 0.192 | 0.184 | 0.636 * | −0.151 | −0.282 | −0.501 | 0.660 ** | 0.910 ** | −0.132 |
Desorption | 0.465 | 0.703 ** | −0.563 * | −0.315 | 0.669 ** | 0.709 ** | 0.658 ** | −0.610 ** | −0.281 | −0.667 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Su, L.; Zhang, L.; Zhang, L.; Zheng, Y.; Tang, L. Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China. Sustainability 2022, 14, 9973. https://doi.org/10.3390/su14169973
Zhou L, Su L, Zhang L, Zhang L, Zheng Y, Tang L. Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China. Sustainability. 2022; 14(16):9973. https://doi.org/10.3390/su14169973
Chicago/Turabian StyleZhou, Long, Lizhen Su, Lianya Zhang, Lu Zhang, Yi Zheng, and Li Tang. 2022. "Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China" Sustainability 14, no. 16: 9973. https://doi.org/10.3390/su14169973
APA StyleZhou, L., Su, L., Zhang, L., Zhang, L., Zheng, Y., & Tang, L. (2022). Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China. Sustainability, 14(16), 9973. https://doi.org/10.3390/su14169973