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Abstract: The Digital Transformation (DX) megatrend is fundamentally disrupting and changing the
nature of work, business, and industry at a rapid pace. Although the notion of DX has garnered much
research interest from practitioners, scholarship on this topic is somehow lagging behind, possibly
because of the lack of theoretical frameworks on DX. Recently, most Japanese firms have begun to
use diverse digital technologies to sustain their competitive advantages. However, the return of
investment on digital technologies has not been as high as expected for some firms. Furthermore, as
the visions of Industry 5.0 describe sustainable, resilient, and human-centered future factories that will
require smart and resilient capabilities both from next-generation manufacturing systems and human
operators, it is necessary to design resilient human–machine collaborations within factories. To this
end, this paper presents a research model between DX technologies and scientific problem-solving
in terms of deduction, induction, and abduction inference structures as an approach to resilient
human–machine collaborations. The purpose of this research is to analyze the difference in the
utilization pattern of the digital technology of American, German, and Japanese firms based on three
types of decision-making methods. Next, we apply this framework in a comparative case study of
two Japanese firms and one German firm, where we find that there is a difference in DX technologies
utilization among the Japanese and German firms. We assert that the utilization of IoT technology
in the United States and Germany is pursuing IoT with the aim of autonomous control, whereas
Japanese firms prioritize robot–human collaboration. Finally, we discuss how our findings contribute
to the burgeoning field of resilient human–machine collaborations by showing the distinct roles of
deduction, induction, and abduction inference structures. Furthermore, our research contributes to
international comparative studies to identify the difference in national IT utilization. Lessons and
implications are discussed.

Keywords: sustainable human–machine collaboration; Digital Transformation (DX) technologies;
case study; Japanese firms; German firm; international comparison

1. Introduction

The Digital Transformation (DX) megatrend, which means using data and digital
technologies to transform products, services, and business models based on the needs of
customers and society as well as transforming operations themselves to establish a sus-
tainable competitive advantage, is fundamentally disrupting and changing every industry,
business, and jobs at a rapid pace. In Japan, as in other countries, the effects of DX have
pervaded not only management but also all aspects of life. This is illustrated in the coun-
try’s Society 5.0 initiative that was launched in 2016, with plans that far exceed Germany’s
Industry 4.0 (the fourth industrial revolution) vision. The continuing integration of DX
technologies with business and organizational activities, processes, competencies, and
models are embodied in a wide range of digital technologies such as big data and robots as
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well as the Internet of Things (IoT) and Wearables, Artificial Intelligence (AI) and Machine
Learning (ML) [1,2]. Most Japanese firms also utilize diverse digital technologies to sustain
their competitive advantages in the digital era.

However, very often, the firms do not see a significant return of investment on their
investment in digital technologies. As discussed, DX is crucial in every industry. It is
also important at all manufacturing sites. In particular, an appropriate promotion of
digitalization in factories will also make it possible to improve work efficiency, streamline
production lines, and reduce defective products and inventories [3]. Furthermore, DX
facilitates the effective utilization of the earth’s limited resources, contributing to reducing
the environmental footprint. One study corroborates these concepts through case studies
and suggests that promoting the digitalization of operations through IoT investments is
essential to make production activities and supply chains sustainable in situations where
human mobility is limited [3]. Furthermore, they posit the potential for IoT implementation
and digitalization of operations to increase firms’ resilience to various risks. This is a
highly coveted capability, considering the increasing need to enhance the sustainability of
production activities and supply chains [4].

However, if top managers implement and push for DX to operators, there might be
resistance on the shop floor. CEOs might think this is simply resistance to change. But, if
a good site of the factory that has accumulated its own capabilities based on the Toyota
Production System (TPS) resists such a one-sided push, it cannot show its effectiveness. Fur-
thermore, as the visions of Industry 5.0, which is the next version of Industry 4.0, describe
sustainable, resilient, and human-centered future factories that will require smart and re-
silient capabilities both from next-generation manufacturing systems and human operators,
it is necessary to design resilient human–machine collaborations within factories [5,6].

Thus, this paper presents a research model integrating DX technologies and scientific
problem-solving in terms of deduction, induction, and abduction inference structures as an
approach to resilient human–machine collaborations.

Meanwhile, the Japanese firms have achieved their current level of manufacturing
excellence mostly by doing simple things (i.e., Kaizen) but doing them very well and slowly
improving them over time [7–9]. As a result, they have accumulated tacit knowledge in
the process of continually upgrading their manufacturing capabilities in factories from
analog times. In recent years, they have invested in DX technologies to accelerate such
problem-solving capabilities in their factories. In the environment of DX, the installation of
a vast number of sensors in global mobile networks allows firms to collect relevant data in
real time for value creation and productivity improvement. In addition, in a previous study,
the research group argues that the utilization of DX technology varies across countries,
industries, and companies [10]. The purpose of this research is to analyze the difference in
the utilization pattern of the digital technology of American, German, and Japanese firms
based on three types of decision-making methods. Thus, we hypothesize that there might
be a difference between IoT use of Japanese and western firms.

Although the notion of DX has garnered much research interest from practitioners,
academic achievements are somehow lagging behind, possibly because frameworks for
DX are still nascent and evolving [11]. Specifically, much less work has been performed
on sustainable human–machine collaborations. Though actor–network theory can help
understand how a dynamic human–machine team works and how it evolves over time,
currently, it has not been studied theoretically nor empirically [5]. Thus, in this article, we
tried to address that gap by conducting exploratory research to suggest a scientific problem-
solving model in terms of deduction, induction, and abduction inference structures as an
approach to resilient human–machine collaborations and to show national differences in
utilizing DX technologies. For this, we used exploratory case studies of two Japanese firms
and a German firm.



Sustainability 2022, 14, 10583 3 of 20

2. Literature Review
2.1. Toyota Production System (TPS) and Sustainable Human–Machine Collaborations

Integrating the effort of diverse players across the engineering and supply chain is
an important theme of value chain management (VCM) and supply chain management
(SCM) [12–14]. Suppliers and customers work as partners for the common objective
of enhancing competitiveness and profitability for the whole value and supply chain
network [15]. Thus, value creation in engineering and the supply chain depends on effective
information flows. Key success factors for a supply chain are effective management of
strategic alliances through an inter-organizational information system that enables more
accurate demand forecasting, inventory management, and other transactional activities
and procurement processes [12–14,16–18].

Increasingly, a turbulent business environment requires firms to integrate their internal
and external value/supply chain activities through strategic and operational information
sharing. The construction of an appropriate IT system is indispensable in the design and
implementation of corporate strategy [12–14].

In particular, the manufacturing industry is undergoing a transformation. It is no
longer true that developing countries are the world’s factories. Now the main roles are
played by developed countries which possess skills in production technology and IT utiliza-
tion, such as Japan, Europe, and the USA [19]. For example, in Germany, a manufacturing
reform project conducted by industry, government, and academia started in 2011 with
‘Industry 4.0’ as a slogan [19–21]. They are making efforts to establish ‘Smart Factories’
that manage supply chains efficiently and autonomously by connecting data from within
factories with enterprises.

However, the basis of Japanese integrated manufacturing is the collection of tacit
knowledge in the field. Hence, translating the tacit into explicit and codified knowledge is
one of the critical issues [10]. Skills and know-how that enable advanced matching from
product development to product production have been accumulated in Japanese firms
so far [9]. These skills and know-how have been passed on to junior staff from senior
staff in the company through on-the-job training (OJT). During the high-growth period,
it became established as a unique organizational skill transmission and organizational
learning system in Japan. A representative Japanese integrated manufacturing concept
is the Toyota Production System (TPS) [22–27] and lean manufacturing system or lean
production system [7,8,15,28–36]. TPS is based on the philosophy of the complete elimi-
nation of all waste in pursuit of the most efficient methods [19,23,26,27]. TPS has evolved
through many years of trial and error to improve efficiency based on the Just-in-Time (JIT)
concept developed by Kiichiro Toyoda, the founder (and second president) of Toyota Motor
Corporation. Waste can manifest as excess inventory, extraneous processing steps, and
defective products, among other instances. All these ‘waste’ elements intertwine with each
other to create more waste, eventually impacting the management of the corporation itself.

According to Toyota Motor Corporation, TPS is a way of making things that are
sometimes referred to as a ‘Lean Manufacturing System (or Lean Production System)’ or a
‘JIT system’ and has come to be well known and studied worldwide [22–27]. According to
the results of the international comparative analysis of the production system of automobile
companies that a research group compared the original attitude of Japanese companies
(typically TPS) with those of European and American companies, the characteristics of high-
performance firms were identified and conceptualized as a ‘Lean Production System’ [18].
In the sluggishness of the American manufacturing industry in the 1980s, interest in the
Monozukuri (Japanese manufacturing) of growing Japanese companies increased, and
simultaneously studies on the ‘Lean Production System’ supporting its success shown in
European and American firms increased [24,25,28]. Even within the automobile industry,
there are differences in the complex system of products, and there is difficulty in correcting
performance error data [24,25]. Womack et al. (1990) had a great influence on subsequent
research and suggested the concept of a Lean Production System [28]. Notably, these works
have demonstrated that differences in the management and strategy of development and
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production organizations contribute to differences in performance (even after controlling
for the predictive power of country and culture).

This production control system in Toyota was established based on many years of
continuous improvements, with the objective of making the vehicles ordered by customers
in the quickest and most efficient way to deliver vehicles as swiftly as possible [23,27]. TPS
was established based on two concepts: (i) ‘Jidoka’, which can be loosely translated as
“automation with a human touch” and (ii) the ‘JIT’ concept, in which each process produces
only what is needed for the next process in a continuous flow. Based on these foundational
philosophies of Jidoka and JIT, TPS can efficiently and quickly produce vehicles of sound
quality, one at a time, that fully satisfy customer requirements. TPS and its approach to cost
reduction are the wellsprings of competitive strength and unique advantages for Toyota.

For Toyota, Jidoka means that a machine must stop safely whenever an abnormality oc-
curs. Hence, achieving Jidoka requires building and improving systems by hand until they
are reliable and safe [27]. First, human engineers meticulously build each new line compo-
nent by hand to exacting standards, then, through incremental Kaizen, steadily simplify its
operations. Eventually, after the value added by the line’s human operators disappears, the
Jidoka mechanism is incorporated into actual production lines. Through the repetition of
this process, machinery becomes simpler and less expensive, while maintenance becomes
less time-consuming and less costly, enabling the creation of simple, slim, flexible lines that
are adaptable to fluctuations in production volume. For Toyota, machines and robots do not
think for themselves or evolve on their own. Rather, they adapt as skillful workers transfer
their skills and craftsmanship to machines. In other words, craftsmanship is achieved by
learning the basic principles of manufacturing through manual work, then applying them
on the factory floor to steadily make improvements. This cycle of improvement in both
human skills and technologies is the essence of Toyota’s Jidoka. At the TPS, human wisdom
and ingenuity are indispensable to delivering ever-better cars to customers [27]. Toyota
constantly tries to develop human resources who can think independently and implement
Kaizen. Most Japanese manufacturing firms adopt the TPS philosophy, and they build
their own TPS philosophy. For example, Fujitsu calls its own TPS FPS (Fujitsu Production
System), and Omron also calls its own TPS OMPS (Omron Production System).

However, after 2007, the mass retirement of engineers who had accumulated such
manufacturing know-how at development and production sites brought about a crisis
in the transmission of tacit knowledge skills in most Japanese firms. One factor that has
accelerated this trend is the low ratio of young employees, who are expected to lead the next
generation, as new hires have been curtailed since the collapse of the bubble economy [9].
As a result, the traditional Monozukuri learning system based on “transmission of skills
within organizations” (OJT) has been shaken. One possible response is the use of artificial
intelligence (AI). AI machine learning methods include deep learning with neural networks,
multiple regression analysis, and decision trees that were used as powerful AI methods
until just before the advent of deep learning, random forests, and Bayesian networks [37].

Manufacturing industries in Germany are facing issues similar to those in Japan,
including a shrinking, aging work force and difficulties in transferring skills from skilled
workers to the next generation [19,21].

Therefore, with limited unique organizational skill transmission and organizational
learning systems in Japan after 2007, most Japanese firms are trying to utilize digital
technologies such as IoT and AI. For example. Shimane Fujitsu is doing an entire process
from assembly and testing to packing on one production line, such as the fully automatic
integrated line for printed circuit boards [19]. Humans and machines are working together
on the assembly line for PCs. Robots work on fastening screws and attaching stickers.
Workers customize each PC according to ID codes given to each model. In this way, the lead
time is cut to one-fifth of the time it took under the previous system. It is production based
around a conveyor belt, yet each product can be customized. Large-item, small-volume
and mixed-flow production is supported by data sharing and manufacturing based on
full interaction between humans and machinery that uses IoT technology such as RFID
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tags. This example shows visions of the future of designing a factory floor where humans,
collaborative robots, and autonomous agents form dynamic teams capable of reacting to
changing needs in the production environment [5]. The human actors have personally
defined roles based on their current skills. However, they can also continue to develop
their skills and change their role in the team. Simultaneously, autonomous agents and
collaborative robots are able to learn through AI capabilities. Like actor–network theory, all
the actors are in continuous interaction by communicating, collaborating, and coordinating
their responsibilities, focusing on describing sociotechnical networks and interaction via
empirical, evidence-based analyses [5]. Though actor–network theory can help understand
how a dynamic human–machine team works and how it evolves over time, to date, no
study has examined this notion empirically. Thus, to address this gap, we aim to propose a
new model to design sustainable human–machine collaborations.

2.2. Comparison of Manufacturing IT System of Japan and Other Countries

Japanese integrated manufacturing (Monozukuri) is based on factory-level embedded
system knowledge, and Japanese Monozukuri capabilities in terms of technological depth
and quality processes are well documented [10,38,39]. Yet, the existing IT systems are
not well suited for the global expansion of Japanese Monozukuri system capabilities due
to the large amounts of embedded knowledge in these systems at the factory level. An
Integrated Manufacturing IT System (IMIS) responds to both the known existing needs
and the emerging needs (new customer requirements) through the strategic planning
of design information [40]. It also identifies the key processes in terms of (1) frontend
development; (2) product planning integrating customer needs—expressed or unspoken—
and design information; (3) product design visualizing design information; (4) procurement
and manufacturing transferring design information through media choices; (5) sales and
marketing engaging customers by design information; and (6) maintenance activities
managing design information as process routes [40].

However, the implementation of a Global Standard IT System (GSIS) such as CAD
and ERP allows firms to immediately adopt the best business processes of top global
firms. However, due to the rapid development of IT technologies, all IT systems, without
exceptions, keep upgrading their internal capabilities [10,38,39].

In view of such breathtaking speed in technological change, it is unreasonable to overlook
global IT standards. Naturally, Japanese firms are more likely to adopt global standard IT
systems (e.g., ERP and SCM packages) that go beyond firm-specific IT system development.

In Japan, during the post-World War II period, a historical context of “shared destiny”
among people led firms as a whole to own value-added flows in the form of integrated
manufacturing work environments [10]. The Japanese style of IT support for IMIS put
emphasis on IMIS-centered IT systems and enabled Japanese factories to attain outstanding
field-level productivity and flexibility. However, the focus on IMIS did not promote
standards that could be shared by both corporate strategic divisions and factory field
operations, thus creating relatively weak global system linkages.

On the other hand, the concept of GSIS, with its strong emphasis on the needs of
specialized functional segments, is not necessarily compatible with an approach based on
IMIS [38]. As current Japanese manufacturing firms focus on sustainable competitiveness,
implementing GSIS by sacrificing field-level productivity performance is able to bring
worse results.

Fujimoto and Park (2015) highlight the strengths of IMIS and points out the need
for GSIS [10]. Specifically, they argue in favor of a Global Integrated Manufacturing IT
System (GIMIS) that integrates both IMIS and GSIS. Figure 1 shows an ideal GIMIS, which
might be a way to fulfill the dynamic requirements of the emerging IoT and Industry 4.0
and, at the same time, to achieve high levels of intelligent system specifications for IMIS
needs, focusing on a comparison of comparative advantage among countries [6,10,38,39].
Internet of Everything (IoE) consists of three layers; (1) ICT system, (2) FA-ICT system,
and (3) Factory Automation (FA). Fujimoto (2017) asserts that Western firms (in particular
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American firms) are strong at the ICT system level [41]. GAFAs (Google, Amazon, Facebook
(Meta), and Apple) are representative firms showing their presence in this ICT system [40].
However, Japanese firms strive to compete with rivals at the level of FA [41].
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Furthermore, there have been studies to show the difference in IT utilization among
nations [12,14,39,42]. For example, in an advanced comparative study, even implementing
the same types of technology, Japanese auto-manufacturers report their product develop-
ment time fewer than 18 months while American firms require more than 30 months [12,42].
In another study, the American and European firms (Chrysler as an example) adopted 3D
CAD three years earlier than Japanese firms, and the actual results show that Japanese
firms are still ahead in virtual digital mockup [12,42]. In the late 1990s, most American
firms adopted 3D CAD for drafting their 100% component parts, while Japanese counter-
parts drafted only 49% of their component parts. Although Japanese firms were lagging
behind American firms in terms of IT technology adoption, they somehow performed
better because their functional specialists are better accustomed to organizational routines
for innovative problem-solutions [14,39,42].

These results are a clear indication of the international differences in organizational
capability among companies using IT systems such as ERP and CAD. Especially in the
midst of an IoT boom, such as smart factories in recent years, there is a gap between the
Japanese firms in IT utilization capability. Perhaps when there is a lack of awareness of IoT
tools that utilize the existing Monozukuri tacit knowledge, which we define as knowledge
seen in the process of building various IT systems, it is likely that they will often fail [43].

Monozukuri of Japan originally had the philosophy of system thinking. As we dis-
cussed before, when we look at TPS, it has performed Monozukuri from the customer’s
point of view. Similarly, the philosophy of Sales, Production, and Stock of Komatsu, a
maker of construction machinery in Japan, came from the same spirit of thinking about
the integration of production and sales as many Japanese Monozukuri companies. Ko-
matsu’s Komtrax system started as a way of remotely monitoring and tracking equipment
for the purpose of improving operational efficiency and realized the integration of Sales,
Production, and Stock by utilizing DX technologies [44].

This case follows its evolution towards other uses, including demand forecasting for
its sales, marketing, and production operations. In order to realize this, many Japanese
firms have been conducting the Waigai (Brain Storming technique for creating ideas for
Honda) in Obeya (Big Room).

Through a case study, Enomoto (2019) also asserts that amongst Western manufactur-
ers, engineers in the production technology department and technicians in the production
line do not directly collaborate [20]. It is normal for technicians to only use it, and even if
there is a problem on the production line, figuring out solutions is the job of the production
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engineer, not the operation manager of the production line. The authority and duties
of the company are clearly separated, and mutual infringement is prohibited under the
employment contract. On the other hand, at Japanese manufacturers, production engi-
neers in the production engineering department and shop floor technicians collaborate to
hold discussions in order to produce better products and process reforms and production
equipment layers. Japanese firms compile concrete plans such as improvement of measures
against short stoppage by matching and coordination in the mass production preparation
stage, and even if they start mass production activities, they propose Kaizen so that the
factory site can use the production equipment more efficiently and make better ones. For
this reason, Western manufacturers have not succeeded in organizing a team that learns
independently and constantly performs Kaizen, which forms the basis of TPS at Toyota
Motor Corporation and other Japanese firms.

Thus, we can infer that IT usage patterns among global firms might be different
depending on their traditional accumulation in the age of analog.

2.3. Research Model: Deduction, Induction, and Abduction Reasoning

In this article, we consider that there is a difference in the way of using IoT that
utilizes Monozukuri’s tacit knowledge in Japan’s field in preparation for utilizing IoT
technologies. Given the relationship between the IoT tool and the existing Monozukuri tacit
knowledge, all tools must ultimately contribute to Monozukuri’s performance (productivity
improvement, high quality, low cost, fast delivery, low defect rate, etc.).

Furthermore, we examine this process in terms of ‘deduction, induction, and abduction’
reasoning. Around 1901, Peirce began to explain abduction as the first stage of scientific
inquiry when brand new ideas were discovered [45]. In comparison to deduction or
induction, abduction might seem accidental and instinctive because it is a form of reasoning
that activates one’s instinct or insight [45,46]. For example, if an agent were to observe that
some light was not working, it can hypothesize what is happening in the world to explain
why the light was not working.

Thus, Peirce defined abduction as the only method of discovering new facts, among
other inferences [45,46]. Although questions have been raised by some logicians on the
validity of abductive reasoning, many psychologists have found abduction useful to explain
how creativity works, how the controlled and uncontrolled portions of the mind are linked,
and the fundamental source of one’s own decisions. Borrowing ideas from Aristotle, Peirce
examined three basic modes of inference—abduction, deduction, and induction—and also
characterized abduction as guessing and as inference to an explanatory hypothesis [45,46].
As shown in Table 1, deduction reasoning has a rule–case–result process, and induction
reasoning has a case–result–rule process. However, abduction reasoning has rule–result–
case process.

Table 1. Three Types of Decision-Making Methods.

Deduction Induction Hypothesis (Abduction)

Rule: All the solutions from
this system are right.
Case: These solutions are
from this system.
Result: These solutions
are right.

Case: These solutions are
[randomly selected] from
this system.
Result: These solutions are right.
Rule: All the solutions from this
system are right.

Rule: All the solutions from
this system are right.
Result: These solutions
[oddly] are right.
Case: These solutions are from
this system.

Relating to the modes of inference in deduction, induction, and abduction, the heuris-
tics concept has been studied, which characterizes abductive cognition [47]. Abductive
reasoning has gained increasing interest in many fields of AI research [48]. Its utility
was first observed for diagnostic tasks [49,50]. According to Paul (2000) [48], different
applications have been suggested including plan recognition [51], text understanding and



Sustainability 2022, 14, 10583 8 of 20

generation [52], program debugging [53], vision, planning [54], failure [55], user model-
ing [56,57], case-based reasoning [58,59], and learning [52,60,61].

Abduction, induction, and deduction are strictly related forms of defeasible reasoning,
but machine learning research is mainly focused on inductive techniques, leading from
specific examples to general rules, with applications to classification, diagnosis, and pro-
gram synthesis [55]. Though abduction has been used in machine learning, its use was
typically an aside technique to be integrated or added on top of the basic inductive scheme.
Bergadano et al. (2000) discuss the general relation between abductive and inductive
reasoning, showing that they solve different instantiations of the same problem [62]. After
they analyzed the specific ways of abduction used in machine learning, uses of abduction
in learning have been proved to be effective for their intended purposes [62]. Thus, in terms
of the use of digital technologies for problem-solving, deduction, induction, and abduction
are closely related to each other.

In this article, we will focus on the case of Japanese companies compared with a
German firm and discuss the ideal way of introducing IoT in order to recover Japan’s
Monozukuri strength. Table 1 describes the three types of decision-making methods, where
we focus on the third type, abduction, in the Japanese context.

We also discuss the organizational capability to utilize ideal external technologies in
terms of deduction, induction, and abduction inference structures when introducing new
IT systems or tools such as IoT. In particular, from the viewpoint of deduction, induction,
and abduction, we assume that Japanese companies start from the visualization of the
initial induction level and hypothesize that the most successful IT system introduction
sequence is for the model to evolve from deduction to abduction. However, based on
Fujimoto (2017), we assume that American and German firms start from the visualization
of the initial induction level and then evolve into autonomous control at the deduction
level [41]. The research model of this paper is shown in Figure 2.
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3. Case Study

This study conducted an exploratory case study of IoT introduction to Japanese
manufacturing firms [63]. We adopted a qualitative approach by conducting three case
studies to address our research objectives. As qualitative reasoning has been extensively
used in information systems research, a shift of interest has been made in the direction
of organizational issues of information systems science [11,64,65]. As such, a case study
approach is appropriate for answering questions that are not limited to what (descriptive
study) but also how or why (explorative design) a certain phenomenon occurs and for
obtaining a first-hand and in-depth understanding of the phenomena [11,63]. Therefore, a
case study design was chosen for fulfilling the objectives of this study, given our aim to
gain first-hand insights and clarify the utilization of DX technologies in companies in a
holistic manner.

In this paper, to examine our research framework, we describe the situation and tasks
of the case of IoT introduction of Japanese manufacturing firms and propose the case of
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Automotive device firm-D and Healthcare device firm-F as a successful Japanese model
in the process. We select these case studies as the initial IoT factory in Japan, fitting our
research framework. Then we compare Japanese cases with German firm-B.

We visited each firm and obtained responses from each company regarding smart fac-
tory strategy. Specifically, after the factory tour, we conducted semi-structured interviews
with senior managers responsible for smart factory strategy at the case firms. Table 2 shows
the overview of case firms. The site visiting and the interviews were undertaken from
2017 to 2022, and each lasted 3 to 4 hours. In addition, the information was supplemented
based on publicly available information from companies and secondary sources. Further-
more, based on the information obtained therein, an additional discussion was conducted
through email to confirm, supplement, elaborate, and verify the interview data and our
interpretations.

Table 2. Overview of the Case Firms.

Type Firm-D Firm-F Firm-B

Nationality Japan Japan Germany

Production products Injectors Endoscopes and
related parts

Pharmaceutical
products

Target plant
Description

Automotive
device plants

Healthcare
device plants

Pharmaceutical
production plants

3.1. Firm D Case

Firm D has many factories worldwide, including domestic factories in Japan. It
develops and produces mainly automobile components such as injectors. Firm D’s main
domestic plant (Factory Z) began its operations in 1998. As of July 2018, there were
1735 employees, including 724 temporary employees. Firm D’s European oversea factory
has 7000 employees. In the case of high-performance, high-precision, and small-sized
components such as injectors, all of them are manufactured domestically and transported
worldwide. These products are small and easy to carry and, therefore, high in terms of
transportation efficiency. Thus, it is produced by a domestic factory.

Recently even if it is becoming harder to find people due to a shrinking, aging work
force, at present, 33% of workers are temporary workers, but since it is a lot, it plans to
reduce it to 20%. The wages of temporary workers are also increasing. As it is developing
materials in an integrated vertical system, they have begun to consider the utilization
of IoT technologies. Recently, however, the question of how to do something that is not
an integration has become an issue. Human resource development is the foundation of
manufacturing, and it tries to continuously improve its field capabilities.

Since the 1980s, it has been working on the computerization of factories. However,
since the government decided to promote globalization, the trend toward information
technology has slowed down. Since then, it has been recovering recently. Its basic idea
for introducing IoT is to develop its core strengths. Specifically, it is working on “JIT of
information” and “personalization of Andon (individual Andon)”. The latter makes it
possible for a specific person to obtain the information when someone needs it. Therefore,
it wants IoT to be able to tell them things it had not noticed before. People are an important
factor in using IoT. IoT and AI will be no better if it does not input quality information in a
good field. In particular, there are many challenges in the field overseas, so it is important
to practice excellent methods in the field in Japan, let the system learn, and expand globally.

As Firm D has various businesses, it is difficult to suddenly create a system that can
be used in common among wafer factories, air conditioner factories, and cylinder factories,
so it decided for each factory to try and create a system. In this case, we show its efforts in
the field of factory chains.

In reality, however, the plan is to extend IoT to include engineering chains, supply
chains, and market chains. Big data and features must be created according to the features
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of the processing equipment. It is stratified in order to consider the content connected by
IoT. The objective is to improve the competitiveness of each business and region. For each
business, product, factory/person, processing/facility, category, and features, the basic
policy of manufacturing to win and necessary IoT services are listed in more detail, and
a star list is made for each product business. It is very hard work, but it is working well
because it is necessary to improve its competitiveness. In addition, Firm D is working on
knowledge and wisdom, work style reform, management KPIs, and business continuity
planning (BCP) to improve the manufacturing capabilities of the entire company.

In considering the use of connected content, it focuses on both (1) inductive and
(2) deductive solutions. The level of utilization is divided into five levels. Inductive
solutions are the use of results, from visualizing the present (trend changes based on
factory information) to visualizing the future (Big data analytics, AI, and machine learning).
Next, it wants to proceed to the deductive solution, that is, the utilization of factors. It
advances from formal intelligence to intelligence. Once the logic is understood, the process
of immediate improvement is created. After all, people will not move unless they are
convinced. Finally, the fifth level of utilization (abduction level) also assumes that the cause
of the problem can be eliminated; that is, the operation through human-robot collaboration
can be improved. The idea is that if it can get to that point, it is okay to remove the sensor
from the process.

As of 2018, its goal is to proceed to 18 manufacturing sites in Japan up to Level 3. As
long-term goals, it plans to achieve Level 5 by 2030. Currently, this approach is limited to
the factory, but each division has different positions, so it is necessary to introduce it in
accordance with each division. It is important to develop the good points of each base.

Specifically, the injector machining cycle time is as fast as 10 s. Since the factory is rich
in facilities, the key is how well the facilities are used. The Z-Plant of D-firm is suitable
for introducing IoT systems for facilities. JIT of information and efforts of individuals are
carried out. The common rail assembly is carried out overseas, but The Z factory does not
have the same overseas factories.

Firm D is thinking about IoT systems with overseas factories in the future. By visualiz-
ing workflow lines, it wants to speed up training for overseas workers. It also tries to use
open source when it builds the system so that it can build it as freely as it can. Modules are
divided, designed, and combined by function. The plant management system, the analysis
system, and the production preparation management system are all designed to follow
the evolution of the field. By implementing Firm D’s IoT, global standard specifications
(equipment specifications) will be set. It is designed so that any facility can be used as long
as the middleware is properly inserted.

Recently, Firm D also has edge computing and cloud functions in-house. Since all
vibrations and sounds are converted into heat energy in the rubber, the firm has developed
a sensor that can detect the change in heat quantity, and the domestic factory is using this
technology. In facility management, the change point is more important than the absolute
amount of change. Therefore, rather than the absolute value, it is useful to use a sensor that
can integrate various factors into the change of thermal energy and detect the change in
detail. The sensor is manufactured in-house, and the sensor system has a good reputation
and is sold externally.

There is a Global Factory IoT conference every 3 months. About 100 people from each
base and region participate in this program. It was held eight times from 2016 to 2018. The
argument here is that the user interface is very important. In particular, it is very important
to use it in overseas factories. In order to make the UI easy to use, the firm has been working
on specifications with overseas members since the beginning of development.

As of 2018, in order to respond to changes in customer requirements, the process
facility change section, model drawing change section, cost fluctuation, business profit,
process change effect, and check item list are managed by one person for each item, with
personnel from sales, planning, design, and engineering. The goal of using IoT in the future
is to allow one person to handle all of these design changes.



Sustainability 2022, 14, 10583 11 of 20

Injectors are very sophisticated and difficult because they require pressure resistance,
heat resistance, fuel spreading, fuel sharpening, and millisecond control. There are two
types, solenoid type, and piezoelectric type. The piezoelectric system enables control in a
shorter time. It is difficult to measure whether the fuel is blown correctly. This measurement
is essential. The injector consists of 40 parts, each with an intersection of ±1 micron and
a stacking tolerance of ±1 micron. Since it is difficult to manufacture as designed, it is
important to keep the whole product within the tolerance when finally assembled. Without
considering how to assemble the whole parts, it is impossible to control within the tolerance.
The combination is difficult to solve deductively, so the firm has to find the best way to
combine the products as a whole through many experiments. The product quality is
improved by piling up the parts in a fine manner and piling up each part in micron units.
As a result, it is difficult for other companies to copy it. Firm D is also doing something
special about measuring the intersection of parts. The equipment for this purpose is also
manufactured in-house. The cutting tools used to be bought from a Germ firm B, but now
they are made in-house. When they bought equipment from a Germ firm B, they did not
know the actual details of the recipe, so they had to start from scratch. In addition, the
cutting tools used in Vietnam, Thailand, and Mexico are manufactured in-house.

The IoT unit is in the production engineering department. There are about 60 people
in total. The IoT unit of Firm D started with four people. Mr. K has been at Firm D for about
22 years, but since he has been a production engineer in the manufacturing department for
the first 18 years or so, he knows manufacturing well. In this way, it seems to be a good idea
to have someone in the manufacturing department who knows what is going on in the field
involved in the adoption of production technology and IoT. After all, it is important for the
firm to have a desire to improve because such attitudes drive continuous improvement.

3.2. Firm F Case

Firm F, one of Fujifilm group firms, was established in 2005 through the integration
of five companies under the F Group’s manufacturing equipment firms. The company
manufactures printing and imaging equipment (mainly medical equipment) and is the
core manufacturing company under F Group’s equipment business. F group has been
steadily expanding its business, and in 2016, Firm F, a manufacturer in the field of optical
devices, integrated its endoscope production functions through a company split and began
to manufacture endoscope equipment.

The new smart factory, which was constructed in the S Plant of Firm F, began full-scale
operation in October 2019 as a new production base for endoscopes. The new smart factory
has been producing endoscopes and related parts. This new smart factory is a smart factory
that has significantly increased production efficiency by using IoT and AI and is aimed at
doubling the production capacity of endoscopes.

An information system Manager of Firm F, the project leader for the start-up of this
plant, said that since a new factory needs to be built, they incorporated various ideas to
allow flexible layout changes, and they communicate wirelessly, and he said automatic
conveyors (AGVs), which carry parts and products, were controlled by radio.

Generally speaking, the image of a factory is that large equipment, facilities, and
robots are used to automatically process and assemble products, and workers are involved
in these processes in an auxiliary manner. When it comes to IoT and AI-powered smart
factories, there’s often a vision to take this automation even further and make it unmanned.

The new smart factory, which began operations in October 2019, is the F Group’s most
advanced smart factory, but its contents differ slightly from the image of a smart factory
described above. A manager of Firm F explained that they incorporated measures to make
production more efficient and smarter for this new smart factory. It is a smart factory where
people really play a leading role.

The smart factory’s human-centered design is largely due to the characteristics of
the endoscope final assembly process at this new plant. The endoscope is not a mass-
produced product but a high-mix, low-volume product whose specifications are flexibly
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changed to meet customer requirements. As the work depends on delicate technology, such
as using microscopes to attach tiny lenses, most of the production process is performed
manually. Thus, the new smart factory has introduced an original process support system
to each worker’s workstation in order to record the work contents of the workers and to
enable accurate work instructions. Such work demands, in turn, facilitate the creation
and digitization of Device History Records (DHR) required for instruction to workers and
manufacturing of medical devices.

Many IoT-enabled smart factories rely on data collected from machines and equipment
such as sensors. At the new smart factory in Firm F, however, it is required to collect
production data from people. Sensing by IoT devices and beacons used by workers follow
the policy of collecting production-related data from people.

A large number of skilled workers work at this new smart factory, which produces
endoscopes that require delicate work. However, passing on the skills of these skilled
workers and developing new human resources is an important mission for this new smart
factory, which is a smart factory where people play a leading role. Human resource
development is conducted at a training center in the factory, and a skill certification system
has been established to create an environment where more advanced skills can be acquired.
Therefore, a manager of Firm F indicated that it is important to set up a system to nurture
new employees to the same level of work as skilled workers.

The image inspection process for endoscopes is time-consuming, even for experts,
because it requires careful checking of dust, stains, and noise generated as image output.

The new factory adopted AI technology in the image inspection process of endoscopes
after final assembly. The video inspection process is automated, reducing the manpower
required for inspection. Regarding the production process of endoscopes, which is mainly
made by people, it is not realistic to continue to assign skilled workers to all processes in
view of the decrease in the labor force in the future. Therefore, Firm F decided to automate
the inspection process so that skilled workers could work on more difficult, value-added
assembly processes. In addition to reducing inspection work, this automation has also
enabled the quantification of judgment criteria.

3.3. Comparison with German Firm B

Firm-B (Bayer AG) is a German global pharmaceutical and chemical company with
over 350 subsidiaries and more than 100 manufacturing facilities in 150 countries. Bayer
is a global enterprise with core competencies in the life science fields of health care and
nutrition. The Bayer Group’s three major subsidiaries are: Bayer HealthCare, Bayer Crop
Science, and Bayer Material Science. They sell over 5000 products, including cold medicine,
adult disease, as well as diagnostic devices, animal vaccines, herbicides, insecticides, rubber,
and plasmatic parts.

Since its inception as a dye manufacturing company, the firm has grown steadily and
into Germany’s first comprehensive pharmaceutical/chemical group. However, after a
huge crisis in the 2000s, Bayer reduced its overall size by 20%, focusing on future-oriented
industries such as healthcare, lingerie, and advanced materials. In 2004, Bayer chose to
“position pharmaceuticals as a medium-sized enterprise” and to focus its US pharmaceutical
business on specialty and biotech products for specialist physicians.

In fiscal 2021, the Group employed around 100,000 people and had sales of EUR
44.1 billion. R&D expenses before special items amounted to EUR 5.3 billion.

Recently, Bayer announced that it is strengthening the production network of its phar-
maceutical division to ensure sustainable competitiveness and support the transformation
of its pharmaceutical business based on breakthrough innovation delivering long-term, sus-
tainable business growth. By investing in new technologies, automation, and digitalization,
Bayer will implement a comprehensive program to substantially upscale its pharmaceutical
manufacturing. Over the next three years, Bayer will invest around EUR two billion into its
manufacturing and supply chain capabilities.
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Germany will remain an important strategic manufacturing location for the company.
Recently, Bayer AG has celebrated the topping-out of its new pharmaceutical facility in
Leverkusen, Germany, which is one of the most modern pharmaceutical production plants
in the world. It is part of a billion-euro investment program that Bayer is implementing to
strengthen its pharmaceutical production network and the company’s in-house innovation
power. The plant will be at the heart of the new global Center of Excellence for the produc-
tion of solid pharmaceutical products at the Leverkusen site. According to the company, it
will not only set standards for efficiency, quality, supply security, and sustainability but will
also leverage the advantages of digitalization in a learning factory to build an environment
in which data streams are analyzed using AI in order to derive action recommendations.

However, the flow of IoT technology in Bayer, such as other American and German
firms, is pursuing IoT with the aim of Level 1 to Level 4 of our research framework. All
the manufacturing processes are automated from manufacturing to final packaging. A
production manager explained they seek to automate all the processes completely and link
to all supply chains through ERP systems and external logistic systems. Therefore, the role
of a mechanical engineer is more crucial than skillful workers, different from Japanese firms.
In other words, the IoT promotion strategy is centered on IoT systems and mechanical
engineers who are capable of managing all manufacturing processed automatically.

3.4. Five-Level Framework for Utilizing IoT or AI

First, the framework of this paper suggested that there are five levels in terms of
utilizing IoT. The idea of things includes induction, deduction, and abduction. Especially,
abduction is not an area of machines or robots because it recalls the hypothesis suddenly
when the accident is abrupt. In other words, it is performed out of the human reasoning
structure. Even if firms collect big data at the same Monozukuri site, they should think
about whether they can use it effectively by abduction. In other words, a person should
be a subject, have a hypothesis about the logic behind it, and give an answer to the results
presented to IoT/AI.

Second, as discussed in the introduction, Japanese companies have built a process
capability to collect and analyze various data from analog facilities, even with the transfer
of big data due to the introduction of the latest IoT, because of the Monozukuri strategy.
Because it has such characteristics, it recognizes that it is important to interconnect with
digital data through new IoT technology.

Third, the trend of IoT technology in the United States and Germany is pursuing IoT
with the aim of Level 1 to Level 4, as presented in this paper. However, in the case of
Japanese companies D and F, the ultimate goal is Level 5. That is, an IoT promotion strategy
that is centered on skillful human beings.

Fourth, no matter how good an IoT or AI tool is, the usage of these means is determined
by the human being. It can be said that this is because of the principle of solving all the
problems based on the logic and the theory of the tacit knowledge of the Monozukuri field
that has been accumulated so far in Japanese companies. As shown in the Toyota production
method, the strengths of Japanese companies are to solve the problem by repeating the
fundamental “5 why questions (why -> why -> why - > why -> why - > solution)”.

Fifth, Japanese companies that successfully utilize IoT can be characterized by their
ability to go back to the fundamental problem of the phenomenon and eliminate the root
cause of the problem, that is, Level 5.

4. Discussion and Contributions

With three types of decision-making methods, this research tries to analyze an ex-
ploratory analysis through a comparison of the utilization pattern of the digital technology
of American, German, and Japanese firms and shows different ways in which the DX
technologies are utilized in these three countries.
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4.1. Theoretical Contribution

First, we present a research framework that is based on three types of decision-making
for problem-solving: (1) deduction, (2) induction, and (3) abduction. Though abduction, in-
duction, and deduction are strictly related forms of defeasible reasoning [55,62], traditional
machine learning research is mainly focused on inductive techniques. Though abduction
was used in machine learning, its use was limited [47,48,62]. Furthermore, these reasoning
methods are not used for the analysis of management decision-making. We first used these
three types of decision-making for problem-solving and the human–machine collaborations
in the area of manufacturing [5]. In particular, to analyze international comparison, we
showed different evolutionary pathways in each nation’s firms. A research framework
with empirical studies is applicable to not only the use of digital technologies but also
problem-solving of management and the evolution of innovation in general. Thus, this
article extends the traditional machine learning application of three types of reasoning
methods into managerial decision-making.

Furthermore, based on our findings, we propose several propositions concerning the
relationship between the degree of automation and the firm’s reliance on tacit knowledge.

As discussed before, to manage the labor shortage, current Japanese SMEs have
decided to introduce many robots to automate their factories [9,43]. When comparing
the cost-efficiency of machines vis-à-vis humans, there are competing views on human–
machine collaboration. Historically Japanese firms have held a philosophy that humans
learn a body of knowledge over time and increase their proficiency level by repeating the
same task over a series of trials, ending up fostering multi-skilled workers [43]. At the
factory level, as previous routines become patterned as a practice is repeated, Japanese
multi-skilled workers evolved previous routines and expanded their routines according to
education and continuous learning. Although the introduction of novel technology (such as
robots utilizing DX technologies) or transfer of previous routines to different organizational
contexts can stimulate dynamic organizational learning, we think it is difficult for current
robotics to work like multi-skilled workers [43,66]. In other words, robots are not replacing
workers, but instead complement them.

In this article, we compared the national difference of suitable human–machine collab-
orations from the dependence degree of tacit Knowledge at the factory level. While studies
have investigated how robotics affect the improvement of productivity, less work has
looked at the tacit knowledge differences in the use of DX technologies such as autonomous
machines. Park (2020) shows there is an important gap in terms of addressing how to
decide the optimal time to switch from a human to a machine-centered manufacturing
line or choosing to keep a human-centric manufacturing line [43]. Though new technolo-
gies such as autonomous machines and AI allow organizations to automate an increasing
number of routine tasks in the changing world of work, improving work whilst being
unskilled is non-routine and therefore harder to automate. For example, when Park (2020)
compared Japan factory (OH HQ) and China (OHC) and Vietnam (OHV) factory in Omron,
the Japanese factory with lots of multi-skilled workers and high human costs had the most
sophisticated automation machine [43]. As such, the firm’s degree of automation can be
affected by the tacit knowledge of multi-skilled workers and labor costs.

Figure 3 presents the different types in response to Degree of Automation (DA) and
Dependence Degree of Tacit Knowledge (DDTC) as the two axes. Based on our findings,
we suggest propositions along the two axes.
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Knowledge (DDTC).

The first and second patterns are Low-Skilled Human Dependence (LSHD) Type
(P1A) and Machine Dependence (MD) Type (P1B), which represent the use patterns of DX
technologies with a low dependence degree of tacit knowledge. In the situation of a low
dependence degree of tacit knowledge, the automation level of firms has an influence on
the performance of DX technologies.

Therefore, we posit:
Proposition 1:
In the situation of a low dependence degree of tacit knowledge, Machine Dependence

(MD) Type is more likely to exhibit higher performance than the Low-Skilled Human
Dependence (LSHD) Type (P1A).

The third and fourth patterns are the High-Skilled Human Dependence (HSHD) Type
and Human–Machine Collaboration (HMC) Type, which refer to firms that are highly
dependent on tacit knowledge. As shown in the case study of Japanese firms, they adopted
human–machine collaboration as a final goal of DX technologies use, contrary to the
German firm. However, in the case of a low degree of DX technologies among Japanese
firms, lots of firms rely on the human skills of multi-skilled workers. Especially most SMEs
are applicable.

Thus, as proposed above, we posit:
Proposition 2:
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The Human–Machine Collaboration (HMC) Type (P2B) is higher performing than the
High-Skilled Human Dependence (HSHD) Type (P2A).

Second, we suggest the evolution stage of smart factories based on case studies;
Level 1 (visualization level), Level 2 (error detection level), Level 3 (prognosis mainte-
nance), Level 4 (autonomous control), and Level 5 (robot–human collaboration). Further-
more, we connect these five stages to three types of decision-making for problem-solving:
(1) deduction, (2) induction, and (3) abduction. This framework can be used not only
for the evolution of digital technologies at a firm level or an industry level but also at a
national level.

Third, our study is in line with previous research concerning relations between prod-
uct architecture and IoT utilization capability. Product architecture is “the overall mapping
to envision and identify product functions and distributes them through common ele-
ments, essential processes and critical interfaces through which vital information and value
creation opportunities are shared and realized” [12–14,38,39,42,67,68], and this product
architecture affects innovation strategies of firms in the era of DX [40]. As all firms must
consider the fitness between this architecture and innovation strategies, it is necessary to
discuss the implication of these factors for the business architecture.

As discussed before, the adoption of external IT systems often implies that firm-
specific contexts and organizational identity are neglected [10,38]. In addition, even the
best systems become outdated and rigid over time, hence becoming less able to respond
flexibly and quickly to dynamic and ever-changing needs. The only way to remedy these
shortcomings is to consider user initiatives and develop a unique system that reflects firm-
specific identity-based requirements. For the sustainable delivery of outstanding products
that exceed customer requirements, it is crucial to build an IT system that ensures the
integration of product development processes and organizational capabilities. The essence
of this winning strategy is a firm’s ambidextrousness, which highlights strengths and
complements weaknesses. This new range of organizational capabilities thrives on integral
architecture for the integrated manufacturing of complex products (e.g., automobiles and
medical equipment), which is a typical trait of outstanding Japanese manufacturing firms;
yet, it is also capable of adopting an open modular architecture for consumer products
(e.g., electronics), which requires a large number of suppliers with limited manufacturing
capabilities. In this way, they can attain long-term global competitiveness by penetrating
both emerging and advanced markets. An ambidextrous strategy uses both integrated
manufacturing IT for integral architecture products and global standard IT for global
modular products. In other words, human–machine collaboration study can be extended
to a GIMIS concept that integrates IMIS and GSIS [10,38,39].

As discussed earlier, if the utilization pattern of digital technologies is different among
countries, industries, and firms, firms that utilize DX should examine whether there is a
fit between the utilization of new digital technology and the organization’s capability of
DX technology.

In particular, for holistic DX utilization beyond DX at the factory level, it is more
important to integrate a database in introducing an IT system. Without integration
among databases, the introduction of IT may result in a worthless investment. For ex-
ample, 3D CAD-CAE promises a reduction in development time through front loading
and smaller design changes under the right kind of organizational capabilities [12,39,42].
Thus, global firms should admit differences in organizational capabilities to utilize IT
systems and conduct strategic decision-making for the utilization of DX that best suits their
own capabilities.

4.2. Managerial Contribution

First, this study presented the benchmark tool to assess the utilization capability of
digital technologies. This research framework is useful for firms to classify, assess and
evaluate the stage of a smart factory. Most firms remain in Level 1 (visualization level)
or Level 2 (error detection level). However, like the firms featured in this case study,
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global firms with high utilization capabilities of digital technologies seek to reach Level
3 (prognosis maintenance), Level 4 (autonomous control), and Level 5 (robot–human col-
laboration). This type of DX use might be different according to the focal firm’s historical
background and cultural context. Most Japanese firms have built their distinctive capa-
bilities through raising skillful workers set apart from those from other countries. In that
case, to use this high-skilled human capital, they should consider a uniquely tailored
design of DX technologies. However, most American and German firms can target Level 4
(autonomous control).

Second, case study findings also suggest the road map for the future strategic direction
of the adoption of DX technologies. In identifying the current stage of a smart factory, each
firm could select a future strategic direction for the adoption of suitable DX technologies.

Third, this study suggests the importance of training data scientists for DX utilization.
Computers do not automatically learn and become smarter. Instead, people play a large
role in calibrating DX, including modeling how the human brain actually learns and basing
their design of machine learning based on the human learning mechanism. A machine
learning system with the wrong data runs the risk of Garbage In and Garbage Out. Hence,
feedback control mechanisms should also be established to prevent misuse and falsification
of data. Therefore, the training of data scientists and systems architects is necessary. For
example, recently, Kaggle and other systems have become popular. This allows companies
to train data scientists and systems architects. Founded in 2010 in the United States, Kaggle
is a predictive modeling and analysis method-related platform, and it allows companies
and researchers from around the world to submit data and statisticians and data analysts to
compete for optimal models. The crowdsourcing approach to modeling is attributed to the
myriad of strategies that can be applied to any predictive modeling challenge. Kaggle has a
section called Kernels, where data scientists publish their methods. When comparing these
methods, AI-powered machine learning systems are more like art or craftsmanship [37]. In
this scheme, although the same dataset is used, participants’ performance varies greatly
depending on the processing of the data and the model used. The development of human
resources capable of making the most of the data in this way is an urgent issue.

Finally, when we consider sustainable human–machine collaborations, feedback con-
trol also matters. In the digital world, feedback effects, economies of scale, and network
externalities are at work [37,69]. The feedback effect is related to the scale and network
effects, but it occurs when the computer system uses the feedback data for learning. If one
enters a wrong word in Google’s search field, it will automatically correct it and suggest the
correct spelling. However, Google is also improving its spell-checker with user feedback.
Watson, IBM’s AI, is becoming more accurate at detecting specific cancers as the number
of diagnoses increases. The feedback effect is that as the most popular products and ser-
vices obtain more data, so they improve more. Accordingly, innovation in the digital age
depends not on ideas but on how much feedback data can be collected. Thus, in the age
of data-driven innovation, the development of data scientists (system architects) and the
control of feedback between machines and humans will become increasingly important.

5. Conclusions

In this paper, we discussed the difference in decision-making models to utilize ideal
external technologies in terms of deduction, induction, and abduction inference structures
when introducing new IT systems or tools such as IoT. To this end, we presented the five lev-
els of IoT adoption: (1) visualization level, (2) error detection level, (3) predictive(prognosis)
maintenance, (4) autonomous control, and (5) robot–human collaboration level.

Significantly, through our case study, we find that Japanese firms’ decision-making ap-
proach began from visualization at the initial induction level. Subsequently, their decision-
making evolved into deduction—abduction when introducing the most successful IT
system. The current IoT promotion in the United States and Germany is aimed at the un-
manned smart factory aiming at the fourth stage of autonomous control, but the direction
of Japan is based on the tacit knowledge of the strong Monozukuri field. In other words, it
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is characterized by the level of elimination of fundamental problems in human abduction
as an ideal level.

Using exploratory case studies, we examined three representative firms which adopted
a smart factory strategy. For the purpose of this article, we chose to conduct an in-depth
analysis of a nonrandom sample of firms. For generalizability of results, future studies
can design reliable survey instruments or experiments to examine the sustainable human–
machine collaborations in DX technologies adoption [5,43]. A bigger scale of empirical
studies may provide rich and valuable insights into the dynamic nature of sustainable
human–machine collaborations. In the future, cross-national comparative studies beyond
Japan and Germany will be important for generalizing our findings which are limited to
the Japanese and German contexts.
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