Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review
Abstract
:1. Introduction
2. Circular Bioeconomy
3. Polygeneration Products from Microalgae
3.1. Biofuels Production
3.2. Co-Products Production
3.2.1. Pharmaceuticals and Cosmetics
3.2.2. Proteins and Carbohydrates
3.2.3. Pigments
3.2.4. Bioplastics
3.2.5. Animal Feed
3.2.6. Pellets
3.2.7. Biofertilizers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO Technical Platform on the Measurement and Reduction of Food Loss and Waste|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/platform-food-loss-waste/en/ (accessed on 5 March 2022).
- Pleissner, D.; Lin, C.S.K. Valorisation of Food Waste in Biotechnological Processes. Sustain. Chem. Processes 2013, 1, 21. [Google Scholar] [CrossRef]
- Dubai Municipality The UAE Food Bank. Available online: https://www.dm.gov.ae/foodbank/ (accessed on 23 May 2022).
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Mayberk, A. Global Food Losses and Food Waste: Extent, Causes and Prevention, Food and Agricultural Organisation of the United Nations 2011. Available online: https://www.fao.org/3/i2697e/i2697e.pdf (accessed on 27 June 2022).
- Gao, A.; Tian, Z.; Wang, Z.; Wennersten, R.; Sun, Q. Comparison between the Technologies for Food Waste Treatment. Energy Procedia 2017, 105, 3915–3921. [Google Scholar] [CrossRef]
- Rizvi, A. UAE Working to Cut Food Waste by Half by 2030, Says Minister–The National 2020. Available online: https://www.thenationalnews.com/uae/government/uae-working-to-cut-food-waste-by-half-by-2030-says-minister-1.980752#:~:text=UAE%20working%20to%20cut%20food%20waste%20by%20half,Almheiri%2C%20the%20Minister%20of%20State%20for%20Food%20Security (accessed on 13 January 2021).
- Schanes, K.; Dobernig, K.; Gözet, B. Food Waste Matters–A Systematic Review of Household Food Waste Practices and Their Policy Implications. J. Clean. Prod. 2018, 182, 978–991. [Google Scholar] [CrossRef]
- Pleissner, D.; Smetana, S. Estimation of the Economy of Heterotrophic Microalgae- and Insect-Based Food Waste Utilization Processes. Waste Manag. 2020, 102, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Calicioglu, O.; Demirer, G.N. Role of Microalgae in Circular Economy. In Integrated Wastewater Management and Valorization Using Algal Cultures; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–12. [Google Scholar]
- Sayeki, M.; Kitagawa, T.; Matsumoto, M.; Nishiyama, A.; Miyoshi, K.; Mochizuki, M.; Takasu, A.; Abe, A. Chemical Composition and Energy Value of Dried Meal from Food Waste as Feedstuff in Swine and Cattle. Nihon Chikusan Gakkaiho 2001, 72, 34–40. [Google Scholar] [CrossRef]
- Zhang, A.Y.Z.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of Bakery Waste for Succinic Acid Production. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- Pleissner, D.; Lam, W.C.; Sun, Z.; Lin, C.S.K. Food Waste as Nutrient Source in Heterotrophic Microalgae Cultivation. Bioresour. Technol. 2013, 137, 139–146. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K. Anaerobic Co-Digestion on Improving Methane Production from Mixed Microalgae (Scenedesmus sp., Chlorella sp.) and Food Waste: Kinetic Modeling and Synergistic Impact Evaluation. Chem. Eng. J. 2016, 299, 332–341. [Google Scholar] [CrossRef]
- Mondal, S.; Bera, S.; Mishra, R.; Roy, S. Redefining the Role of Microalgae in Industrial Wastewater Remediation. Energy Nexus 2022, 6, 100088. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, J.; Jin, Z.; Cheng, J.; Li, J.; Song, H.; Lu, Q.; Li, H.; Wan, T.; Fu, S.; et al. Enhancing Algal Yield and Nutrient Removal from Anaerobic Digestion Piggery Effluent by an Integrated Process-Optimization Strategy of Fungal Decolorization and Microalgae Cultivation. Appl. Sci. 2022, 12, 4741. [Google Scholar] [CrossRef]
- Svehla, P.; Radechovska, H.; Pacek, L.; Michal, P.; Hanc, A.; Tlustos, P. Nitrification in a Completely Stirred Tank Reactor Treating the Liquid Phase of Digestate: The Way towards Rational Use of Nitrogen. Waste Manag. 2017, 64, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jin, H.-F.; Lim, B.-R.; Park, K.-Y.; Lee, K. Ammonia Removal from Anaerobic Digestion Effluent of Livestock Waste Using Green Alga Scenedesmus sp. Bioresour. Technol. 2010, 101, 8649–8657. [Google Scholar] [CrossRef] [PubMed]
- Giwa, A.; Chalermthai, B.; Moheimani, N.; Taher, H. Effective Nutrient Removal and Metabolite Accumulation by C. vulgaris Cultivated Using Digested Food Waste and Brine. Environ. Technol. Innov. 2021, 24, 101935. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Ogbonna, J.; Moheimani, N.R. A Review on Microalgal Culture to Treat Anaerobic Digestate Food Waste Effluent. Algal Res. 2020, 47, 101841. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Ogbonna, J.; Borowitzka, M.A.; Moheimani, N.R. Screening, Acclimation and Ammonia Tolerance of Microalgae Grown in Food Waste Digestate. J. Appl. Phycol. 2020, 32, 3775–3785. [Google Scholar] [CrossRef]
- Moheimani, N.R.; Vadiveloo, A.; Ayre, J.M.; Pluske, J.R. Nutritional Profile and in Vitro Digestibility of Microalgae Grown in Anaerobically Digested Piggery Effluent. Algal Res. 2018, 35, 362–369. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of Nutrients From Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef]
- Chi, Z.; Zheng, Y.; Jiang, A.; Chen, S. Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process. Appl. Biochem. Biotechnol. 2011, 165, 442–453. [Google Scholar] [CrossRef]
- Abreu, A.P.; Fernandes, B.; Vicente, A.A.; Teixeira, J.; Dragone, G. Mixotrophic Cultivation of Chlorella vulgaris Using Industrial Dairy Waste as Organic Carbon Source. Bioresour. Technol. 2012, 118, 61–66. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Show, P.L.; Ling, T.C.; Arya, S.S.; Chang, J.S. Food Waste Compost as an Organic Nutrient Source for the Cultivation of Chlorella vulgaris. Bioresour. Technol. 2018, 267, 356–362. [Google Scholar] [CrossRef]
- Lau, K.Y.; Pleissner, D.; Lin, C.S.K. Recycling of Food Waste as Nutrients in Chlorella vulgaris Cultivation. Bioresour. Technol. 2014, 170, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Gao, F.; Liu, J.-Z.; Yang, J.-S.; Liu, M.; Ge, Y.-M.; Chen, D.-Z.; Chen, J.-M. Improving Sedimentation and Lipid Production of Microalgae in the Photobioreactor Using Saline Wastewater. Bioresour. Technol. 2022, 347, 126392. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Suthar, S.; Chand, N.; Mutiyar, P.K. Phycoremediation of Milk Processing Wastewater and Lipid-Rich Biomass Production Using Chlorella vulgaris under Continuous Batch System. Sci. Total Environ. 2022, 833, 155110. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Nasr, M.; Rawat, I.; Nayunigari, M.K.; Bux, F. Cultivation of Chlorella sorokiniana and Scenedesmus obliquus in Wastewater: Fuzzy Intelligence for Evaluation of Growth Parameters and Metabolites Extraction. J. Clean. Prod. 2017, 147, 419–430. [Google Scholar] [CrossRef]
- Ansari, F.A.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643. [Google Scholar] [CrossRef]
- Piligaev, A.V.; Sorokina, K.N.; Shashkov, M.V.; Parmon, V.N. Screening and Comparative Metabolic Profiling of High Lipid Content Microalgae Strains for Application in Wastewater Treatment. Bioresour. Technol. 2018, 250, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Lau, K.Y.; Ki Lin, C.S. Utilization of Food Waste in Continuous Flow Cultures of the Heterotrophic Microalga Chlorella pyrenoidosa for Saturated and Unsaturated Fatty Acids Production. J. Clean. Prod. 2017, 142, 1417–1424. [Google Scholar] [CrossRef]
- Fernando, J.S.R.; Premaratne, M.; Dinalankara, D.M.S.D.; Perera, G.L.N.J.; Ariyadasa, T.U. Cultivation of Microalgae in Palm Oil Mill Effluent (POME) for Astaxanthin Production and Simultaneous Phycoremediation. J. Environ. Chem. Eng. 2021, 9, 105375. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef]
- Chen, C.Y.; Jesisca; Hsieh, C.; Lee, D.J.; Chang, C.H.; Chang, J.S. Production, Extraction and Stabilization of Lutein from Microalga Chlorella sorokiniana MB-1. Bioresour. Technol. 2016, 200, 500–505. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Iovine, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Chianese, S.; Musmarra, D. Extraction of Astaxanthin and Lutein from Microalga Haematococcus pluvialis in the Red Phase Using CO2 Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Mar. Drugs 2018, 16, 432. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Hu, X.; Liu, Z.; Li, S.; Kitamura, Y. Combination of Brewery Wastewater Purification and CO2 Fixation with Potential Value-Added Ingredients Production via Different Microalgae Strains Cultivation. J. Clean. Prod. 2020, 268, 122332. [Google Scholar] [CrossRef]
- Macías-Sánchez, M.D.; Mantell, C.; Rodríguez, M.; Martínez De La Ossa, E.; Lubián, L.M.; Montero, O. Supercritical Fluid Extraction of Carotenoids and Chlorophyll a from Nannochloropsis gaditana. J. Food Eng. 2005, 66, 245–251. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Koutra, E.; Kornaros, M.; Farhadian, O.; Bhatnagar, A. Sequential Cultivation of Microalgae in Raw and Recycled Dairy Wastewater: Microalgal Growth, Wastewater Treatment and Biochemical Composition. Bioresour. Technol. 2019, 273, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, H.H.; Revankar, M.S.; Kamat, M.Y.; Lele, S.S. Cultivation of Spirulina in Gas Induced Photobioreactor and Isolation of Phycobiliproteins. Indian J. Biotechnol. 2002, 1, 255–262. [Google Scholar]
- Rizzo, R.F.; dos Santos, B.N.C.; de Castro, G.F.P.d.S.; Passos, T.S.; Nascimento, M.d.A.; Guerra, H.D.; da Silva, C.G.; Dias, D.d.S.; Domingues, J.R.; de Lima-Araújo, K.G. Production of Phycobiliproteins by Arthrospira platensis under Different Lightconditions for Application in Food Products. Food Sci. Technol. 2015, 35, 247–252. [Google Scholar] [CrossRef]
- Panahi, Y.; Khosroshahi, A.Y.; Sahebkar, A.; Heidari, H.R. Impact of Cultivation Condition and Media Content on Chlorella vulgaris Composition. Adv. Pharm. Bull. 2019, 9, 182–194. [Google Scholar] [CrossRef]
- Chu, W.L. Strategies to Enhance Production of Microalgal Biomass and Lipids for Biofuel Feedstock. Eur. J. Phycol. 2017, 52, 419–437. [Google Scholar] [CrossRef]
- Kwak, H.S.; Kim, J.Y.H.; Woo, H.M.; Jin, E.S.; Min, B.K.; Sim, S.J. Synergistic Effect of Multiple Stress Conditions for Improving Microalgal Lipid Production. Algal Res. 2016, 19, 215–224. [Google Scholar] [CrossRef]
- Pádrová, K.; Lukavský, J.; Nedbalová, L.; Čejková, A.; Cajthaml, T.; Sigler, K.; Vítová, M.; Řezanka, T. Trace Concentrations of Iron Nanoparticles Cause Overproduction of Biomass and Lipids during Cultivation of Cyanobacteria and Microalgae. J. Appl. Phycol. 2015, 27, 1443–1451. [Google Scholar] [CrossRef]
- Kadar, E.; Rooks, P.; Lakey, C.; White, D.A. The Effect of Engineered Iron Nanoparticles on Growth and Metabolic Status of Marine Microalgae Cultures. Sci. Total Environ. 2012, 439, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Vaz, B.; Alberto Vieira Costa, J.; Greque de Morais, M. Physical and Biological Fixation of CO2 with Polymeric Nanofibers in Outdoor Cultivations of Chlorella fusca LEB 111. Int. J. Biol. Macromol. 2020, 151, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Jin, W.; Zhou, X.; Han, W.; Gao, S.; Chen, C.; Ding, W.; He, Z.; Chen, Y.; Jiang, G. Enhancing Harvest of Biodiesel-Promising Microalgae Using Daphnia Domesticated by Amino Acids. Environ. Res. 2022, 212, 113465. [Google Scholar] [CrossRef]
- Shet, A.R. Parametric Optimization of Oil Extraction and Lipase Catalyzed Biodiesel Production from Rice Bran. Biosci. Biotechnol. Res. Commun. 2021, 14, 340–345. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Drogui, P.; Surampalli, R.Y. Ultrasonication Assisted Lipid Extraction from Oleaginous Microorganisms. Bioresour. Technol. 2014, 158, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.; Park, W.-K.; Kim, C.W.; Choi, Y.-E.; Yang, J.-W. Direct Lipid Extraction from Wet Chlamydomonas Reinhardtii Biomass Using Osmotic Shock. Bioresour. Technol. 2012, 123, 717–722. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, D.; Wu, C.; Xu, A.; Xia, W.; Wang, Z.; Wen, F.; Yu, D. Influence of a Facile Pretreatment Process on Lipid Extraction from Nannochloropsis sp. through an Enzymatic Hydrolysis Reaction. RSC Adv. 2017, 7, 53270–53277. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M. Effective Extraction of Microalgae Lipids from Wet Biomass for Biodiesel Production. Biomass Bioenergy 2014, 66, 159–167. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.; Tariq, S. Supercritical Carbon Dioxide Extraction of Microalgae Lipid: Process Optimization and Laboratory Scale-Up. J. Supercrit. Fluids 2014, 86, 57–66. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M. Enzymatic Biodiesel Production of Microalgae Lipids under Supercritical Carbon Dioxide: Process Optimization and Integration. Biochem. Eng. J. 2014, 90, 103–113. [Google Scholar] [CrossRef]
- Garoma, T.; Janda, D. Investigation of the Effects of Microalgal Cell Concentration and Electroporation, Microwave and Ultrasonication on Lipid Extraction Efficiency. Renew. Energy 2016, 86, 117–123. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. A Review on the Extraction of Lipid from Microalgae for Biodiesel Production. Algal Res. 2015, 7, 117–123. [Google Scholar] [CrossRef]
- Shomal, R.; Hisham, H.; Mlhem, A.; Hassan, R.; Al-Zuhair, S. Simultaneous Extraction–Reaction Process for Biodiesel Production from Microalgae. Energy Rep. 2019, 5, 37–40. [Google Scholar] [CrossRef]
- Taher, H.; Giwa, A.; Abusabiekeh, H.; Al-Zuhair, S. Biodiesel Production from Nannochloropsis gaditana Using Supercritical CO2 for Lipid Extraction and Immobilized Lipase Transesterification: Economic and Environmental Impact Assessments. Fuel Processing Technol. 2020, 198, 106249. [Google Scholar] [CrossRef]
- Reddy, H.K.; Muppaneni, T.; Patil, P.D.; Ponnusamy, S.; Cooke, P.; Schaub, T.; Deng, S. Direct Conversion of Wet Algae to Crude Biodiesel under Supercritical Ethanol Conditions. Fuel 2014, 115, 720–726. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Deng, S.; Cooke, P.; Munson-McGee, S.; Rhodes, I.; Lammers, P.; Nirmalakhandan, N. Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions. Bioresour. Technol. 2011, 102, 118–122. [Google Scholar] [CrossRef]
- Al-Ameri, M.; Al-Zuhair, S. Using Switchable Solvents for Enhanced, Simultaneous Microalgae Oil Extraction-Reaction for Biodiesel Production. Biochem. Eng. J. 2019, 141, 217–224. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Dimou, A.; Fakas, S.; Diamantopoulou, P.; Philippoussis, A.; Galiotou-Panayotou, M.; Aggelis, G. Biotechnological Conversion of Waste Cooking Olive Oil into Lipid-Rich Biomass Using Aspergillus and Penicillium Strains. J. Appl. Microbiol. 2011, 110, 1138–1150. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choi, Y.-K.; Park, J.; Lee, S.; Yang, Y.-H.; Kim, H.J.; Park, T.-J.; Hwan Kim, Y.; Lee, S.H. Ionic Liquid-Mediated Extraction of Lipids from Algal Biomass. Bioresour. Technol. 2012, 109, 312–315. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Park, S.; Kim, M.H.; Choi, Y.-K.; Yang, Y.-H.; Kim, H.J.; Kim, H.; Kim, H.-S.; Song, K.-G.; Lee, S.H. Ultrasound-Assisted Extraction of Lipids from Chlorella vulgaris Using [Bmim][MeSO4]. Biomass Bioenergy 2013, 56, 99–103. [Google Scholar] [CrossRef]
- Giwa, A.; Adeyemi, I.; Dindi, A.; Lopez, C.G.B.; Lopresto, C.G.; Curcio, S.; Chakraborty, S. Techno-Economic Assessment of the Sustainability of an Integrated Biorefinery from Microalgae and Jatropha: A Review and Case Study. Renew. Sustain. Energy Rev. 2018, 88, 239–257. [Google Scholar] [CrossRef]
- Miao, C.; Chakraborty, M.; Chen, S. Impact of Reaction Conditions on the Simultaneous Production of Polysaccharides and Bio-Oil from Heterotrophically Grown Chlorella sorokiniana by a Unique Sequential Hydrothermal Liquefaction Process. Bioresour. Technol. 2012, 110, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Plude, S.; Demirer, G.N. Valorization of Harmful Algal Blooms and Food Waste as Bio-methane. Environ. Prog. Sustain. Energy 2020, 40, e13561. [Google Scholar] [CrossRef]
- Azadi, P.; Brownbridge, G.P.E.; Mosbach, S.; Inderwildi, O.R.; Kraft, M. Production of Biorenewable Hydrogen and Syngas via Algae Gasification: A Sensitivity Analysis. Energy Procedia 2014, 61, 2767–2770. [Google Scholar] [CrossRef]
- Nunes, N.S.P.; Ansilago, M.; Oliveira, N.N.; Leite, R.S.R.; da Paz, M.F.; Fonseca, G.G. Biofuel Production. In Microalgae Cultivation, Recovery of Compounds and Applications; Academic Press: Cambridge, MA, USA, 2021; Chapter 6; pp. 145–171. [Google Scholar]
- Taylor, R.P.; Jones, C.L.; Laubscher, R.K. Recovery of Methane and Adding Value to the Digestate of Biomass Produced by High Rate Algal Ponds or Waste Activated Sludge, Used to Treat Brewery Effluent. J. Water Process Eng. 2020, 40, 101797. [Google Scholar] [CrossRef]
- Bhalamurugan, G.L.; Valerie, O.; Mark, L. Valuable Bioproducts Obtained from Microalgal Biomass and Their Commercial Applications: A Review. Environ. Eng. Res. 2018, 23, 229–241. [Google Scholar] [CrossRef]
- Wang, H.M.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the Potential of Using Algae in Cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic Attributes of Algae–A Review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Thomas, N.V.; Kim, S.K. Beneficial Effects of Marine Algal Compounds in Cosmeceuticals. Mar. Drugs 2013, 11, 46–64. [Google Scholar] [CrossRef]
- Aditya, T.; Bitu, G.; Mercy, E.G. The Role of Algae in Pharmaceutical Development. J. Pharm. Nanotechnol. 2016, 4, 82–89. [Google Scholar]
- Sui, Y.; Vlaeminck, S.E. Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset. Trends Biotechnol. 2020, 38, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; Iovine, A.; Casella, P.; Mehariya, S.; Chianese, S.; Cerbone, A.; Rimauro, J.; Musmarra, D. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. Int. J. Environ. Res. Public Health 2018, 15, 2436. [Google Scholar] [CrossRef] [Green Version]
- Khanum, F.; Giwa, A.; Nour, M.; Al-Zuhair, S.; Taher, H. Improving the Economic Feasibility of Biodiesel Production from Microalgal Biomass via High-value Products Coproduction. Int. J. Energy Res. 2020, 44, 11453–11472. [Google Scholar] [CrossRef]
- Bluebiotech BlueBioTech. Available online: https://bluebiotech.com.au/ (accessed on 27 June 2022).
- Cyanotech Cyanotech BioAstin® Hawaiian Astaxanthin®. Available online: https://www.cyanotech.com/astaxanthin/ (accessed on 27 June 2022).
- Astareal Astareal Natural Astaxanthin. Available online: https://astareal.com/en/ (accessed on 27 June 2022).
- Georlich From Idea to Success–Your “One-Stop” Supplier for Food Supplements. Available online: https://goerlich-pharma.com/en/ (accessed on 27 June 2022).
- Earthrise Earthrise Californian Spirulina. Available online: https://www.earthrise.com/ (accessed on 27 June 2022).
- Binmei Wholesale Spirulina & Blue Spirulina Protein Powder|Binmei. Available online: https://www.binmei-global.com/product/ (accessed on 27 June 2022).
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Buono, S.; Langellotti, A.L.; Martello, A.; Rinna, F.; Fogliano, V. Functional Ingredients from Microalgae. Food Funct. 2014, 5, 1669–1685. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef]
- Khanra, A.; Srivastava, M.; Rai, M.P.; Prakash, R. Application of Unsaturated Fatty Acid Molecules Derived from Microalgae toward Mild Steel Corrosion Inhibition in HCl Solution: A Novel Approach for Metal–Inhibitor Association. ACS Omega 2018, 3, 12369–12382. [Google Scholar] [CrossRef]
- Apone, F.; Barbulova, A.; Colucci, M.G. Plant and Microalgae Derived Peptides Are Advantageously Employed as Bioactive Compounds in Cosmetics. Front. Plant Sci. 2019, 10, 756. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–Nutritious, Sustainable Aqua- and Animal Feed Source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Linking Microalgae and Cyanobacteria Culture Conditions and Key-Enzymes for Carbohydrate Accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal Carbohydrates: An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Bixler, H.J.; Porse, H. A Decade of Change in the Seaweed Hydrocolloids Industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Pacheco, D.; Gonçalves, A.M.M.; Pereira, L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life 2020, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Parreidt, T.S.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef]
- Singh, S. Hydrocolloids Market Worth $11.4 Billion by 2023–Exclusive Report by MarketsandMarketsTM. 2020. Available online: https://www.prnewswire.com/news-releases/hydrocolloids-market-worth-11-4-billion-by-2023--exclusive-report-by-marketsandmarkets-300788865.html (accessed on 27 June 2022).
- Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019, 11, 1226. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The Role of Carotenoids in the Prevention and Treatment of Cardiovascular Disease–Current State of Knowledge. J. Funct. Foods 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Cardoso, L.A.; Karp, S.G.; Vendruscolo, F.; Kanno, K.Y.; Zoz, L.I.; Carvalho, J.C. Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products. In Carotenoids; InTech Open: London, UK, 2017; p. 125. Available online: https://www.intechopen.com/chapters/54486 (accessed on 27 June 2022).
- Rammuni, M.N.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Attalage, R.A. Comparative Assessment on the Extraction of Carotenoids from Microalgal Sources: Astaxanthin from H. Pluvialis and β-Carotene from D. Salina. Food Chem. 2019, 277, 128–134. [Google Scholar] [CrossRef]
- McWilliams, A. FOD025F The Global Market for Carotenoids BCC Research Report Overview The Global Market for Carotenoids. 2018. Available online: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html (accessed on 27 June 2022).
- Odjadjare, E.C.; Mutanda, T.; Olaniran, A.O. Potential Biotechnological Application of Microalgae: A Critical Review. Crit. Rev. Biotechnol. 2017, 37, 37–52. [Google Scholar] [CrossRef]
- Crampon, C.; Nikitine, C.; Zaier, M.; Lépine, O.; Tanzi, C.D.; Vian, M.A.; Chemat, F.; Badens, E. Oil Extraction from Enriched Spirulina platensis Microalgae Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2017, 119, 289–296. [Google Scholar] [CrossRef]
- Hamed, I. The Evolution and Versatility of Microalgal Biotechnology: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef]
- Gonçalves, V.D.; Fagundes-Klen, M.R.; Goes Trigueros, D.E.; Kroumov, A.D.; Módenes, A.N. Statistical and Optimization Strategies to Carotenoids Production by Tetradesmus acuminatus (LC192133.1) Cultivated in Photobioreactors. Biochem. Eng. J. 2019, 152, 107351. [Google Scholar] [CrossRef]
- He, Q.; Yang, H.; Wu, L.; Hu, C. Effect of Light Intensity on Physiological Changes, Carbon Allocation and Neutral Lipid Accumulation in Oleaginous Microalgae. Bioresour. Technol. 2015, 191, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Gargouch, N.; Karkouch, I.; Elleuch, J.; Elkahoui, S.; Michaud, P.; Abdelkafi, S.; Laroche, C.; Fendri, I. Enhanced B-Phycoerythrin Production by the Red Microalga Porphyridium marinum: A Powerful Agent in Industrial Applications. Int. J. Biol. Macromol. 2018, 120, 2106–2114. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.H.; Liao, J.F.; Chen, C.Y.; Chang, J.S. Combining Light Strategies with Recycled Medium to Enhance the Economic Feasibility of Phycocyanin Production with Spirulina platensis. Bioresour. Technol. 2018, 247, 669–675. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M. An Overview: Biomolecules from Microalgae for Animal Feed and Aquaculture. J. Biol. Res.-Thessalon. 2014, 21, 6. [Google Scholar] [CrossRef]
- Beckstrom, B.D.; Wilson, M.H.; Crocker, M.; Quinn, J.C. Bioplastic Feedstock Production from Microalgae with Fuel Co-Products: A Techno-Economic and Life Cycle Impact Assessment. Algal Res. 2020, 46, 101769. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics. 2016. Available online: https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 27 June 2022).
- Anushri, S.; Archana, T. Polyhydroxyalkonates: Green Plastics of the Future. Int. J. Biomed. Adv. Res. 2012, 3, 770–774. [Google Scholar]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Costa, S.S.; Miranda, A.L.; de Morais, M.G.; Costa, J.A.V.; Druzian, J.I. Microalgae as Source of Polyhydroxyalkanoates (PHAs)–A Review. Int. J. Biol. Macromol. 2019, 131, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a Natural Biopolymer in Cancer Combating: From Edible Algae to Nanocarrier Tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Cabanelas, I.T.D.; Marques, S.S.I.; de Souza, C.O.; Druzian, J.I.; Nascimento, I.A. Botryococcus, What to Do with It? Effect of Nutrient Concentration on Biorefinery Potential. Algal Res. 2015, 11, 43–49. [Google Scholar] [CrossRef]
- Shuba, E.S.; Kifle, D. Microalgae to Biofuels: ‘Promising’ Alternative and Renewable Energy, Review. Renew. Sustain. Energy Rev. 2018, 81, 743–755. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Akbulut, A.; Arica, M.Y. Study of Polyethyleneimine- and Amidoxime-Functionalized Hybrid Biomass of Spirulina (Arthrospira) platensis for Adsorption of Uranium (VI) Ion. Environ. Sci. Pollut. Res. 2015, 22, 17998–18010. [Google Scholar] [CrossRef]
- Hirayama, S.; Ueda, R. Production of Optically Pure D-Lactic Acid by Nannochlorum sp. 26A4. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2004, 119, 71–77. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Kim, J.S.; Hwang, H.J.; Park, M.S.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Kim, J.C. Production of L-Lactic Acid from a Green Microalga, Hydrodictyon Reticulum, by Lactobacillus Paracasei LA104 Isolated from the Traditional Korean Food, Makgeolli. Bioresour. Technol. 2012, 110, 552–559. [Google Scholar] [CrossRef]
- Becker, W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture; Wiley-Blackwell: Hoboken, NJ, USA, 2007; Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118567166.ch25 (accessed on 27 June 2022).
- Lum, K.K.; Kim, J.; Lei, X. Dual Potential of Microalgae as a Sustainable Biofuel Feedstock and Animal Feed. J. Anim. Sci. Biotechnol. 2013, 4, 53. [Google Scholar] [CrossRef]
- Ishaq, A.G.; Matias-Peralta, H.M.; Basri, H. Bioactive Compounds from Green Microalga Scenedesmus and Its Potential Applications: A Brief Review. Pertanika J. Trop. Agric. Sci. 2016, 39, 1–16. [Google Scholar]
- Holman, B.W.B.; Malau-Aduli, A.E.O. Spirulina as a Livestock Supplement and Animal Feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.M.; Smith, D.L.; Moritz, J.S. Effects of Algae Incorporation into Broiler Starter Diet Formulations on Nutrient Digestibility and 3 to 21 d Bird Performance. J. Appl. Poult. Res. 2015, 24, 206–214. [Google Scholar] [CrossRef]
- Shanmugapriya, B.; Babu, S.S.; Hariharan, T.; Sivaneswaran, S.; Anusha, M.B. Dietary Administration of Spirulina platensis as Probiotics on Growth Performance and Histopathology in Broiler Chicks. Int. J. Rec. Sci. Res. 2015, 6, 2650–2653. [Google Scholar]
- Zahroojian, N.; Moravej, H.; Shivazad, M. Effects of Dietary Marine Algae (Spirulina platensis) on Egg Quality and Production Performance of Laying Hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Milledge, J.J. Commercial Application of Microalgae Other than as Biofuels: A Brief Review. Rev. Environ. Sci. Bio/Technol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- D’Este, M.; Alvarado-Morales, M.; Angelidaki, I. Laminaria digitata as Potential Carbon Source in Heterotrophic Microalgae Cultivation for the Production of Fish Feed Supplement. Algal Res. 2017, 26, 1–7. [Google Scholar] [CrossRef]
- Yadav, G.; Meena, D.K.; Sahoo, A.K.; Das, B.K.; Sen, R. Effective Valorization of Microalgal Biomass for the Production of Nutritional Fish-Feed Supplements. J. Clean. Prod. 2020, 243, 118697. [Google Scholar] [CrossRef]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as Feed Ingredients for Livestock Production and Meat Quality: A Review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Hosseinizand, H. Drying and Co-Pelletization of Microalgae with Sawdust. 2018. Available online: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0371249 (accessed on 27 June 2022).
- Huang, Z.L.; Li, H.; Yuan, X.Z.; Lin, L.; Cao, L.; Xiao, Z.H.; Jiang, L.B.; Li, C.Z. The Energy Consumption and Pellets’ Characteristics in the Co-Pelletization of Oil Cake and Sawdust. RSC Adv. 2016, 6, 19199–19207. [Google Scholar] [CrossRef]
- Li, H.; Jiang, L.-B.; Li, C.-Z.; Liang, J.; Yuan, X.-Z.; Xiao, Z.-H.; Xiao, Z.-H.; Wang, H. Co-Pelletization of Sewage Sludge and Biomass: The Energy Input and Properties of Pellets. Fuel Process. Technol. 2015, 132, 55–61. [Google Scholar] [CrossRef]
- Tibbetts, S.M. The Potential for ‘Next-Generation’, Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution. In Microalgal Biotechnology; Intechopen: London, UK, 2018; Available online: https://www.intechopen.com/chapters/59033 (accessed on 27 June 2022).
- Thapa, S.; Johnson, D.B.; Liu, P.P.; Canam, T. Algal Biomass as a Binding Agent for the Densification of Miscanthus. Waste Biomass Valorization 2015, 6, 91–95. [Google Scholar] [CrossRef]
- Faheed, F.; Abd-El Fattah, Z. Effect of Chlorella vulgaris as Bio-Fertilizer on Growth Parameters and Metabolic Aspects of Lettuce Plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Metzner, H.; Rau, H.; Senger, H. Untersuchungen Zur Synchronisierbarkeit Einzelner Pigmentmangel-Mutanten von Chlorella. Planta 1965, 65, 186–194. [Google Scholar] [CrossRef]
- Bumandalai, O.; Tserennadmid, R. Effect of Chlorella vulgaris as a Biofertilizer on Germination of Tomato and Cucumber Seeds. Int. J. Aquat. Biol. 2019, 7, 95–99. [Google Scholar]
- Renuka, N.; Prasanna, R.; Sood, A.; Ahluwalia, A.S.; Bansal, R.; Babu, S.; Singh, R.; Shivay, Y.S.; Nain, L. Exploring the Efficacy of Wastewater-Grown Microalgal Biomass as a Biofertilizer for Wheat. Environ. Sci. Pollut. Res. 2016, 23, 6608–6620. [Google Scholar] [CrossRef] [PubMed]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
Species | Growth Media | Extraction (Conditions) | Yield (wt/wt) | Comments | Ref. | |
---|---|---|---|---|---|---|
Lipids | ||||||
C.curvatus | Cafeteria food waste | N/A | 28.6% | Low lipid productivity due to C/N ratio. Lipid accumulates using food waste | [23] | |
R.glutinis | Cafeteria food waste | N/A | 19.6% | Low lipid productivity due to C/N ratio. Lipid accumulates using food waste | [23] | |
C. vulgaris | Cheese whey powder | SLE | 42% a | Higher lipid content by using hydrolyzed cheesy whey powder | [24] | |
S. mangrovei | Rice, noodles, meat, and vegetables | SLE | 30% | Accumulated fatty acids are suitable for biodiesel production | [12] | |
C. pyrenoidosa | Synthetic wastewater | NA | 65.2% | Highest lipid productivity was achieved at salinity of 1.0% | [27] | |
C. vulgaris | Cake, pastry, noodles, rice, meat, and vegetable waste | SLE (60 °C) | 22.2% | Lipid content decreased from 300 to 200 mg/g between days 4 and 6 in cultivation while increased to 300 mg/g at day 7 | [26] | |
C. vulgaris | Milk processing wastewater | dichloromethane and methanol (2:1 v/v) | 421.56 e | Biomass productivity reaching 20 mgL−1d−1 | [28] | |
C. sorokiniana | Sewage Wastewater | MAE (100 °C) | 19.8% | Increased biomass production resulted in an increase in lipid yield | [29] | |
S. obliquus | Sewage Wastewater | MAE (100 °C) | 16% | Increased biomass production resulted in an increase in lipid yield | [29] | |
S. obliquus | Municipal Wastewater | Freeze drying-MAE (100 °C) | 25.39% | Use of freeze drying as pre-treatment increased lipid yield | [30] | |
Micractinium sp. | Municipal Wastewater | SLE (25 °C) | 36.29% | The metabolic profiles have significant differences in the exponential and stationary phases of growth | [31] | |
C. pyrenoidosa | Canteen food waste | NA | 12–15% | [32] | ||
Proteins | ||||||
C. vulgaris | 25% cafeteria organic food waste and 75% inorganic food waste | SLE (80 °C) | 10.1% | At a ratio of 25–35:75–65 organic to inorganic food waste, a higher amount of lipids was accumulated | [25] | |
C. vulgaris | Cheese whey powder | SLE | 26% a | Higher protein content by using hydrolyzed sample | [24] | |
S. mangrovei | Rice, noodles, meat, and vegetables | SLE | 10% | The protein content makes the microalgae of interest as a food and feed source | [12] | |
C. pyrenoidosa | Rice, noodles, meat, and vegetables | SLE | 10% | The protein content makes the microalgae of interest as a food and feed source | [12] | |
C. vulgaris | Cake, pastry, noodles, rice, meat, and vegetable waste | SLE | 22.2% | Protein content was reduced from 33.3% to 22.2% w/w after day 4 of cultivation | [26] | |
C. sorokiniana | Wastewater | SLE (8080 °C) | 25.5% | Increased in the growth pattern could decrease protein content | [29] | |
S. obliquus | Wastewater | SLE (8080 °C) | 28.5% | Increased in the growth pattern could decrease protein content | [29] | |
S. obliquus | Wastewater | Freeze drying-MAE (100 °C) | 31.26% | Sun-drying resulted in lower protein yields than other drying processes | [30] | |
A. protothecoides | Shrimp boiling water residues | NA | NA | High growth rates, up to 2.4 d−1 Protein rich biomass | [33] | |
C. vulgaris | 35% cafeteria organic food waste and 65% inorganic food waste | Ultrasonication and SLE | 2.0% | At a ratio 25–35:75–65 organic to inorganic food waste, a higher amount of lipids was accumulated | [25] | |
Carbohydrates | ||||||
S. mangrovei | Rice, noodles, meat, and vegetables | SLE | 30–40% | Carbohydrates were the most effective accumulation product when compared to lipids and proteins | [12] | |
C. pyrenoidosa | Rice, noodles, meat, and vegetables | SLE | 30–40% | Carbohydrates were the most accumulation product when compared to lipids and proteins | [12] | |
C. vulgaris | Cake, pastry, noodles, rice, meat, and vegetable waste | SLE (121 °C) | 44.4% | For 7 days cultivation, increasing the duration increased carbohydrate accumulation | [26] | |
C. sorokiniana | Wastewater | SLE (121 °C) | 20% | Increasing biomass concentrations (inoculum) increased carbohydrate yield | [29] | |
S. obliquus | Wastewater | SLE (121 °C) | 20.4% | Increasing biomass concentrations (inoculum) increased carbohydrate yield | [29] | |
C. vulgaris | 75% organic food waste and 25% inorganic food waste | SLE(121 °C) | N/A | Use of compost medium combination decreased carbohydrate content by 7% | [25] | |
S. obliquus | Wastewater | Freeze drying-MAE (100 °C) | 19.8% | No significant difference in carbohydrate yield between sun-dried and oven-dried samples | [30] | |
Pigments (Carotenoids) | ||||||
Desmodesmus sp. | Industrial wastewater | SLE (25 °C) | 6.70 b | Light intensity significantly affects carotenoid content | [34] | |
Nannochloropsis sp. | Industrial wastewater | SLE (25 °C) | 2.56 ab | Light intensity significantly affects carotenoid content | [34] | |
C. sorokiniana | BG-11 | SLE (40 °C) | 5.78 c | Pretreatment using high pressure cell supported lutein recovery | [35] | |
H. pulvialis | N/A | SC-CO2 + ethanol (25 °C, 550 bar) | 18.5 d | Highest product yield purity was at 80 °C and 400 bar | [36] | |
H. pulvialis | N/A | SC-CO2 + ethanol (25 °C, 550 bar) | 7.15 c | Highest product purity was found at 80 °C and 550 bar | [36] | |
H. pluvialis | Palm oil mill effluent | NA | 22.43 | Cells grow better in continuous illumination at 6000 lux Highest cellular content was obtained in in 7.5% effluent | [33] | |
Scenedesmus sp. | Brewery wastewater | SLE | 7.54 e | Carotenoids concentration in the hybrid process increased from 5.97 mg L−1 to 7.54 mg L−1. | [37] | |
Pigments (Chlorophyll) | ||||||
N. gaditana | N/A | SC-CO2 (60 °C, 400 bar) | 2.24 f | Chlorophyll got extracted at 200 bar. Use of CO2 provided selective of chlorophyll | [38] | |
S. quadricauda | Dairy wastewater | SLE (60 °C) | 9.45 e | Use of dairy wastewater reduces pigments production | [39] | |
T. suecica | Dairy wastewater | SLE (60 °C) | 11.7 e | Use of dairy wastewater reduces pigments production | [39] | |
Scenedesmus sp. | Brewery wastewater | SLE | 20.40 e | Chlorophyll concentration in the hybrid process increased from 9.32 mg L−1 to 20.40 mg L−1 | [37] | |
Pigments (Phycobiliproteins) | ||||||
S. platensis | Zarrouk medium/GIMAP | N/A | 92% | Extraction of phycobiliproteins was possibly achieved by adjusting pH of the buffer without cell rupture | [40] | |
A. platensis | Zarrouk medium | N/A | 10% | White light promoted highest biomass production with an insignificant effect on protein and phycobiliprotein contents | [41] |
Species | HVP | Application Area | Application | Form | Production Companies | Ref. |
---|---|---|---|---|---|---|
D. Salina | β-carotene | Pharmaceutical, food supplements and cosmetics | Food colorant, Provitamin A, anti-inflammatory, antioxidant and chemo preventative | Powder | BlueBioTech GmbH.—Dunaliella salina | [80] |
H. pluvialis | Astaxanthin | Nutrition and pharmaceuticals | Antioxidant, cardiovascular health, and skin health | Powder, Capsules and soft gels | Cyanotech Co.—BioAstin, BlueBioTech GmbH. –Astaxanthin | [80,81,82] |
AstaReal Co. | ||||||
Schizochytrium spp. | Fatty acids (Omega 3) | Nutrition, pharmaceuticals | Anti-inflammatory, brain health | Powder, capsules, tablets, oils | GoerlichPhamra. GmbH—Omega 3 | [83] |
Spirulina spp. | Carotenoids, phycocyanin | Nutrition, pharmaceuticals | Antioxidant, cardiovascular health, and immune support, colorant | Cold press tablet, powder | Earthrise LLC.—Spirulina | [80,81,84,85] |
Cyanotech Co.—Hawaiian Spirulina | ||||||
BlueBioTech GmbH.—Spirulina platensis, Binmei Biotechnology Co.—Blue Spirulina and Spirulina powder | ||||||
C. pyrenoidosa | Protein, vitamins and minerals | Nutrition | Body health, antioxidant, anti-inflammatory | Powder | BlueBioTech GmbH.—Chlorella pyrenoidosa | [80] |
Nannochloropsis spp. | Whole cell | Aquaculture feed | Poultry, fish, shrimps and swine feed, green water Rotifer enrichment | Biomass—liquid | BlueBioTech—Aquaculture | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giwa, A.; Abuhantash, F.; Chalermthai, B.; Taher, H. Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review. Sustainability 2022, 14, 10759. https://doi.org/10.3390/su141710759
Giwa A, Abuhantash F, Chalermthai B, Taher H. Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review. Sustainability. 2022; 14(17):10759. https://doi.org/10.3390/su141710759
Chicago/Turabian StyleGiwa, Adewale, Farah Abuhantash, Bushra Chalermthai, and Hanifa Taher. 2022. "Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review" Sustainability 14, no. 17: 10759. https://doi.org/10.3390/su141710759
APA StyleGiwa, A., Abuhantash, F., Chalermthai, B., & Taher, H. (2022). Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review. Sustainability, 14(17), 10759. https://doi.org/10.3390/su141710759