Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Data Sources
2.3. Analysis of Spatial Heterogeneity of Forest Biomass
2.4. Determination of Biotic and Abiotic Factors
2.5. Data Analysis
3. Results
3.1. Spatial Distribution of Forest Biomass
3.2. Factors Affecting Variation in Forest Biomass
4. Discussion
4.1. Biotic Factors
4.2. Abiotic Factors
4.3. Spatial Factors and Their Interactions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.H.; Fu, B.J.; Fang, J.Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecol. Sin. 2000, 20, 732–740. [Google Scholar]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Zald, H.S.J.; Spies, T.A.; Seidl, R.; Pabst, R.J.; Olsen, K.A.; Steel, E.A. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon cascades, USA. For. Ecol. Manag. 2016, 366, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Tarun, K.T.; Swamy, S.L.; Arvind, B.; Mammohan, J.R.D. Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. J. For. Res. 2019, 30, 157–170. [Google Scholar] [CrossRef]
- Nicolas, P.; Gamarra, J.G.P.; Luca, B.; Anne, B. Plot-level variability in biomass for tropical forest inventory designs. For. Ecol. Manag. 2018, 430, 10–20. [Google Scholar] [CrossRef]
- Qian, C.H.; Qiang, H.Q.; Zhang, G.M.; Li, M.Y. Long-term changes of forest biomass and its driving factors in karst area, Guizhou, China. Int. J. Distrib. Sens. Netw. 2021, 17. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Magnussen, S.; Nord-Larsen, T.; Riis-Nielsen, T. Lidar supported estimators of wood volume and aboveground biomass from the danish national forest inventory (2012–2016). Remote Sens. Environ. 2018, 211, 146–153. [Google Scholar] [CrossRef]
- Huang, H.B.; Liu, C.X.; Wang, X.Y.; Zhou, X.L.; Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 2019, 221, 225–234. [Google Scholar] [CrossRef]
- Kim, T.J.; Bullock, B.P.; Stape, J.L. Effects of silvicultural treatments on temporal variations of spatial autocorrelation in Eucalyptus plantations in Brazil. For. Ecol. Manag. 2015, 358, 90–97. [Google Scholar] [CrossRef]
- Lin, Z.; Chao, L.; Wu, C.; Hong, W.; Hong, T.; Hu, X. Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: A case study in Jiangle County, southeast China. Acta Geochim. 2017, 37, 90–101. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Fang, H.; Zhou, G.; Xu, X.; Zhou, Y.; Tao, J.; Ji, B.; Xu, J.; Li, C.; et al. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 2018, 631–632, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Z.; Franklin, S.B.; Wang, Q.G.; Shi, Z.; Luo, Y.Q.; Lu, Z.J.; Zhang, J.X.; Qiao, X.J.; Jiang, M.X. Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. For. Ecol. Manag. 2015, 357, 95–103. [Google Scholar] [CrossRef]
- Liu, Y.C.; Yu, G.R.; Wang, Q.F.; Zhang, Y.J. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 2014, 23, 323–333. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.H.; Wang, X.P.; Xiao, W.F.; Chen, L.; Li, S.G.; Sun, H.; Deng, X.W.; Forrester, D.I.; Zeng, L.X.; et al. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Ali, A.; Mattsson, E.; Nissanka, S.P. Big-sized trees and species-functional diversity pathways mediate divergent impacts of environmental factors on individual biomass variability in SriLankan tropical forests. J. Environ. Manag. 2022, 315, 115177. [Google Scholar] [CrossRef]
- Lutz, J.A.; Furniss, T.J.; Johnson, D.J.; Davies, S.J.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.J.; Andrade, A.; Baltzer, J.; Becker, K.M.L.; et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 2018, 27, 849–864. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Arets, E.J.M.M.; Ascarrunz, N.; Enquist, B.J.; Finegan, B.; Licona, J.C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A.; et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 2017, 26, 1423–1434. [Google Scholar] [CrossRef]
- Feng, Y.H.; Schmid, B.; Loreau, M.; Forrester, D.I.; Fei, S.L.; Zhu, J.X.; Tang, Z.Y.; Zhu, J.L.; Hong, P.B.; Ji, C.J.; et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 2022, 376, 865–868. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.Q.; Wang, K.L.; Yang, H.; Yue, Y.M.; Zeng, Z.X.; Peng, W.X.; Zeng, F.P. Influences of stand characteristics and environmental factors on forest biomass and root–shoot allocation in southwest China. Ecol. Eng. 2016, 91, 7–15. [Google Scholar] [CrossRef]
- Ferry, B.; Morneau, F.; Bontemps, J.D.; Blanc, L.; Freycon, V. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J. Ecol. 2010, 98, 106–116. [Google Scholar] [CrossRef]
- Fisk, M.; Schmidt, S.; Seastedt, T.R. Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 1998, 79, 2253–2266. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252. [Google Scholar] [CrossRef]
- Conti, G.; Pérez-Harguindeguy, N.; Quètier, F.; Gorné, L.D.; Jaureguiberry, P.; Bertone, G.A.; Enrico, L.; Cuchietti, A.; Díaz, S. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric. Ecosyst. Environ. 2014, 197, 68–76. [Google Scholar] [CrossRef]
- McEwan, R.W.; Lin, Y.C.; Sun, I.F.; Hsieh, C.F.; Su, S.H.; Chang, L.W.; Michael Song, G.Z.; Wang, H.H.; Hwong, J.L.; Lin, K.C.; et al. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. For. Ecol. Manag. 2011, 262, 1817–1825. [Google Scholar] [CrossRef]
- Goulden, M.L.; McMillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B.P. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Chang. Biol. 2011, 17, 855–871. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.R.; Zhen, Z. Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model. Chin. J. Appl. Ecol. 2014, 25, 2779–2786. [Google Scholar] [CrossRef]
- Nettesheim, F.C.; Garbin, M.L.; Pereira, M.G.; Araujo, D.S.D.; Grelle, C.E.V. Local-scale elevation patterns of Atlantic Forest tree community variation and assembly drivers in a conservation hotspot in southeastern Brazil. Flora 2018, 248, 61–69. [Google Scholar] [CrossRef]
- Song, L.Y.; Li, M.Y.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.C.; Wu, X.J.; Feng, L.C.; Chen, J.; Lu, X.; et al. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Tian, X.L.; Xia, J.; Xia, H.B.; Ni, J. Forest biomass and its spatial pattern in Guizhou province. Chin. J. Appl. Ecol. 2011, 22, 287–294. [Google Scholar] [CrossRef]
- Zuo, S.D.; Ren, Y.; Weng, X.; Ding, H.F.; Luo, Y.J. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China. Chin. J. Appl. Ecol. 2015, 26, 356–362. [Google Scholar] [CrossRef]
- Pan, C.X.; Li, X.T.; Lv, U.L. Resources and Biomass of Phyllostachys heterocycla cv. pubescens in Anji. J. Zhejiang For. Sci. Technol. 2010, 30, 82–84. [Google Scholar] [CrossRef]
- Rossi, R.E.; Mulla, D.J.; Journel, A.G.; Franz, E.H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 1992, 62, 277–314. [Google Scholar] [CrossRef]
- Li, H.B.; Wang, Z.Q.; Wang, Q.C. Theory and methodology of spatial heterogeneity quantification. Chin. J. Appl. Ecol. 1998, 9, 651–657. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ambroise, B.; Beven, K.; Freer, J. Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological Similarity. Water Resour. Res. 1996, 32, 2135–2145. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L.F. Numerical Ecology; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R Version 4.1.1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Dray, S.; Bauman, D.; Blanchet, G.; Borcard, D.; Clappe, S.; Guenard, G.; Jombart, T.; Larocque, G.; Legendre, P.; Madi, N. Adespatial: Multivariate multiscale spatial analysis. R Package Version 2017, 82, 3–7. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J. Suggests MASS. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Chen, H.Y.H.; You, W.H.; Yan, E.R. Multiple abiotic and biotic drivers of aboveground biomass shift with forest Stratum. For. Ecol. Manag. 2019, 436, 1–10. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 2007, 253, 68–80. [Google Scholar] [CrossRef]
- Hui, D.F.; Wang, J.; Shen, W.J.; Le, X.; Ganter, P.; Ren, H. Near Isometric Biomass Partitioning in Forest Ecosystems of China. PLoS ONE. 2014, 9, e86550. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Pawlik, U. Drivers of forest aboveground biomass and its increments in the Tatra Mountains after 15 years. Catena 2021, 205, 105468. [Google Scholar] [CrossRef]
- Ni, Y.Y.; Jian, Z.J.; Zeng, L.X.; Liu, J.F.; Lei, L.; Zhu, J.H.; Xu, J.; Xiao, W.F. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. For. Ecol. Manag. 2022, 504, 119839. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Wang, M. Similar carbon density of natural and planted forests in the Lüliang Mountains, China. Ann. For. Sci. 2018, 75, 87. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H.; Taylor, A.R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 2017, 31, 419–426. [Google Scholar] [CrossRef]
- Landuyt, D.; Maes, S.L.; Depauw, L.; Ampoorter, E.; Blondeel, H.; Perring, M.P.; Brumelis, G.; Brunet, J.; Decocq, G.; den Ouden, J.; et al. Drivers of aboveground understorey biomass and nutrient stocks in temperate deciduous forests. J. Ecol. 2019, 108, 982–997. [Google Scholar] [CrossRef]
- Griess, V.C.; Acevado, R.; Hartl, F.; Staupendahl, K.; Knoke, T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For. Ecol. Manag. 2012, 267, 284–296. [Google Scholar] [CrossRef]
- Poorter, H.; Jagodzinski, A.M.; Ruiz-Peinado, R.; Kuyah, S.; Luo, Y.; Oleksyn, J.; Usoltsev, V.A.; Buckley, T.N.; Reich, P.B.; Sack, L. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New. Phytol. 2015, 208, 736–749. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 2016, 97, S1–S275. [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.S.; Xiao, L.; Peart, M.R. Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl River Delta, South China. J. Environ. Manag. 2019, 232, 781–788. [Google Scholar] [CrossRef]
- Malhi, Y.; Girardin, C.A.J.; Goldsmith, G.R.; Doughty, C.E.; Salinas, N.; Metcalfe, D.B.; Huasco, W.H.; Silva-Espejo, J.E.; Aguilla-Pasquell, J.D.; Amézquita, F.F.; et al. The variation of productivity and its allocation along a tropical elevation gradient: A whole carbon budget perspective. New Phytol. 2017, 214, 1019–1032. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Malhi, Y.; Aragão, L.E.O.C.; Mamani, M.; Huasco, H.W.; Durand, L.; Feeley, K.J.; Rapp, J.; Silva-Espejo, J.E.; Silman, M.R.; et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob. Chang. Biol. 2010, 16, 3176–3192. [Google Scholar] [CrossRef]
- Sandoya, V.; Saura-Mas, S.; Cerda, G.D.L.; Arellano, G.; Macía, M.J.; Tello, J.S.; Lloret, F. Contribution of species abundance and frequency to aboveground forest biomass along an Andean elevation gradient. For. Ecol. Manag. 2021, 479, 118549. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Ali, A.; Sanaei, A.; Ruiz-Benito, P.; Jucker, T.; Fang, L.; Bai, E.; Ye, J.; Lin, F.; Fang, S.; et al. Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. For. Ecol. Manag. 2021, 481, 118698. [Google Scholar] [CrossRef]
- Wang, X.L.; Yu, C.; Chen, H.W.; Hu, Y.M.; Jiao, L.L.; Feng, Y.T.; Wu, W.; Wu, H.F. Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China. Chin. J. Appl. Ecol. 2014, 25, 974–982. [Google Scholar] [CrossRef]
- Du, H.; Hu, F.; Zeng, F.P.; Wang, K.L.; Peng, W.X.; Zhang, H.; Zeng, Z.X.; Zhang, F.; Song, T.Q. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Sci. Rep. 2017, 7, e15664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. For. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Sanaei, A.; Chahouki, M.A.Z.; Ali, A.; Jafari, M.; Azarnivand, H. Abiotic and biotic drivers of aboveground biomass in semi-steppe rangelands. Sci. Total Environ. 2018, 615, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Jucker, T.; Bouriaud, O.; Coomes, D.A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 2015, 29, 1078–1086. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, B.Y.; Hai, C.X. Effects of soil depth on vegetation cover and above ground biomass in east part of inner Mongolia. J. Soil Water Consery. 2007, 4, 164–167. [Google Scholar] [CrossRef]
- Li, L.M.; Tang, H.N.; Lei, J.R.; Song, X.Q. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Zhou, S.C.; Wu, N.C.; Zhang, M.; Peng, W.Q.; He, F.Z.; Guo, K.; Yang, S.Y.; Zou, Y.; Qu, X.D. Local environmental, geo-climatic and spatial factors interact to drive community distributions and diversity patterns of stream benthic algae, macroinvertebrates and fishes in a large basin, Northeast China. Ecol. Indic. 2020, 117, 106673. [Google Scholar] [CrossRef]
- Luo, Y.J.; Zhang, X.Q.; Wang, X.K.; Ren, Y. Dissecting Variation in Biomass Conversion Factors across China’s Forests: Implications for Biomass and Carbon Accounting. PLoS ONE 2014, 9, e94777. [Google Scholar] [CrossRef] [Green Version]
Equation | Tree Species | Fitting Equation | Index |
---|---|---|---|
(1) | Cunninghamia lanceolata | y = 0.0687·DBH2.4175 | R² = 0.9009 |
(2) | Pinus massoniana | y = 0.0874·DBH2.4547 | R² = 0.9103 |
(3) | Pinus yunnanensis | y = 0.0794·DBH2.4594 | R² = 0.9361 |
(4) | Pinus armandii | y = 0.1276·DBH2.2911 | R² = 0.9403 |
(5) | Broad-leaved tree | y = 0.1646·DBH2.3916 | R² = 0.9400 |
(6) | Phyllostachys edulis | y = 0.1574·DBH2.3049 + 2.3079 | [33] |
Model | Nugget (C0) | Still (C0 + C) | Nugget Coefficient (C0/(C0 + C)) | Range /km | Residual Sum of Squares (RSS) | R² |
---|---|---|---|---|---|---|
Spherical | 0.38 | 9.49 | 0.04 | 17.7 | 0.371 | 0.35 |
Exponential | 0.93 | 9.49 | 0.10 | 15.0 | 0.365 | 0.36 |
Linear | 9.13 | 9.76 | 0.94 | 297.3 | 0.05 | 0.91 |
Gaussian | 1.47 | 9.48 | 0.16 | 14.7 | 0.371 | 0.35 |
Factors | Adjusted R2 | F | p-Value | VIF |
---|---|---|---|---|
Average stand height | 0.184 | 1245.08 | 0.001 | 6.73 |
Tree species structure | 0.078 | 580.69 | 0.001 | 2.63 |
Stand basal area | 0.033 | 261.95 | 0.001 | 5.15 |
Stand origin | 0.028 | 226.75 | 0.001 | 2.6 |
Shrub coverage | 0.009 | 78.94 | 0.001 | 2.07 |
stand density | 0.008 | 69.67 | 0.001 | 4.78 |
Annual precipitation | 0.007 | 59.81 | 0.001 | 1.08 |
Slope | 0.005 | 41.17 | 0.001 | 1.46 |
Land type | 0.003 | 30.83 | 0.001 | 3.32 |
Exposure rate of bedrock | 0.003 | 27.2 | 0.001 | 1.23 |
Canopy density | 0.003 | 23.93 | 0.001 | 7.72 |
Thickness of litter | 0.002 | 19.11 | 0.001 | 2.09 |
Stand age | 0.001 | 13.18 | 0.001 | 3.1 |
Elevation | 0.001 | 12.2 | 0.001 | 1.1 |
Category | Anshun | Bijie | Guiyang | Liupanshui | Qiandongnan | Qiannan | Qianxinan | Tongren | Zunyi | Number of Spots | |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil thickness | Thin | 227 | 640 | 187 | 245 | 419 | 519 | 360 | 344 | 631 | 3572 |
Medium | 31 | 120 | 33 | 26 | 157 | 172 | 104 | 137 | 212 | 992 | |
Thick | 22 | 80 | 41 | 33 | 369 | 124 | 65 | 87 | 115 | 936 | |
Exposure Rate of bedrock (%) | ≤10 | 270 | 810 | 257 | 301 | 207 | 791 | 495 | 545 | 930 | 4606 |
(10,50] | 9 | 30 | 3 | 3 | 585 | 22 | 33 | 23 | 21 | 729 | |
>50 | 1 | 0 | 1 | 0 | 153 | 2 | 1 | 0 | 7 | 165 | |
Number of spots | — | 280 | 840 | 261 | 304 | 945 | 815 | 529 | 568 | 958 | 5500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Ding, G.; Zhang, J.; Qi, Y. Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province. Sustainability 2022, 14, 10771. https://doi.org/10.3390/su141710771
Zhang T, Ding G, Zhang J, Qi Y. Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province. Sustainability. 2022; 14(17):10771. https://doi.org/10.3390/su141710771
Chicago/Turabian StyleZhang, Tie, Guijie Ding, Jiangping Zhang, and Yujiao Qi. 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province" Sustainability 14, no. 17: 10771. https://doi.org/10.3390/su141710771
APA StyleZhang, T., Ding, G., Zhang, J., & Qi, Y. (2022). Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province. Sustainability, 14(17), 10771. https://doi.org/10.3390/su141710771