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Abstract: Global efforts towards de-carbonization give rise to remarkable energy challenges, which
include renewable energy penetration increase and intermediate energy carriers for a sustainable
transition. In order to reduce the dependence on fossil fuels, alternative sources are considered by
commodities to satisfy their increasing electricity demand, as a consequence of a rise in population
and the quantity of residential appliances in forthcoming years. The near-term trends appear to be in
fuel and emission reduction techniques through the integration of carbon capture and storage and
more efficient energy carriers, exploiting alternative energy sources, such as natural gas and hydrogen.
Formulating both the fuel consumption and emission released, the obtained experimental results
showed that the total production cost can be reduced by making use of natural gas for the transition
towards 2035’s targets. Maximum profits will be achieved with hydrogen as the only fuel in modern
power plants by 2050. In this way, the lowest electricity production can be achieved as well as the
elimination of carbon dioxide emissions. Since the integration of renewable energy resources in the
sectors of electricity, heating/cooling and transportation will continuously be increased, alternative
feedstocks can serve as primary inputs and contribute to production cost profits, improved utilization
factors and further environmental achievements.

Keywords: de-carbonization; emission cost formulations; sustainable energy carrier; combined cycles;
renewable generation contribution

1. Introduction

Climate change has attracted great attention worldwide. The greenhouse effect is
responsible for changes in the world, forcing many countries to implement strategies to
reduce greenhouse gas (GHG) emissions, especially those of carbon dioxide (CO2) [1,2]. On
the other hand, the fossil fuels utilized by conventional power plants are decreasing, calling
for increased penetration levels of renewable energy for the electricity, heating/cooling
and transportation sectors, which account for 51%, 32% and 17% of the total final energy
consumption, respectively [3,4]. Up to a certain share, the conventional generating units can
adequately adjust the produced power to the variable load demand [5]. At higher renewable
levels, they occur inadequately, exposing the operational and technical limitations of
modern power systems.

As the target for integrating renewable energy sources (RES) becomes higher, the
challenges to retain the system stability and reliability at reasonable cost grow as well.
Specifically, the volatile and uncertain potential availability of RES has led many researchers
to explore the feasibility of large-scale storage options [6,7]. However, the aim is to identify
the feasibility of a 100% renewable energy system by 2050 and promote (1) technologies
for energy conservation on the demand side [8], (2) power plant upgrades by gradual
replacement of fossil fuels with renewable resources [9] and (3) production efficiency
improvements [10]. For the long-term treatment of the environmental burden and climate
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change, the European Union imposed on member states a reduction in GHG emissions
by 50% and an enhancement of RES penetration in the order of 50% by 2030, compared to
their 1990s levels [11,12]. This forms a complicated challenge especially for islanded and
isolated systems where imported fuels cost considerably more than in mainland areas.

Depending on the renewable energy potential, each member state is called upon to
assess its individual domestic technologies. As a result, production, storage, conversion
and delivery to the grid must be combined to provide sustainable solutions and make the
targets achievable. To ameliorate the dependency on imported fossil fuels and conserve an
appropriate utilization factor of the expensive power plants, many countries have turned
to the gradual replacement of carbon-rich fuels with cleaner alternatives [13]. These mainly
include natural gas (CH4) and hydrogen (H2) for electricity production, while the primary
sources used for heating are liquefied petroleum gas (LPG) and biomass feedstocks. Finally,
before turning to fully electrified transportation, an intermediarytransition to biofuels
seems to be a promising solution.

Putting a price on carbon released during energy conversion, international markets
reshape incentives and reduce the value of emissions, forming an appealing tool to regulate
pollution [14]. To deal with the emission-constrained unit commitment and economic
dispatch problems in the electricity industry, some representative studies performed are
summarized as follows. The authors in [15] proposed a novel hybrid approach based on a
grey wolf optimizer, a sine–cosine mechanism and a crow search algorithm applied on a
three-unit stand-alone micro-grid system. A mixed binary-continuous particle swarm opti-
mization algorithm was presented in [16] for the optimal unit commitment in microgrids
considering uncertainties and emissions. A similar work found in [17] proposed the binary
Jaya algorithm to formulate and solve the economic/environmental unit commitment prob-
lem. All studies concluded that the generation cost decreases in the presence of renewable
energy. However, above a certain share, electricity storage is needed in order to retain the
security and reliability of supply. In this way, realistic or simulated power networks have
been assessed in the presence of renewable resources to lower gaseous emissions rather
than eliminating them.

A formulation based on a genetic algorithm-priority list strategy was demonstrated
by the authors in [18]. In the presence of storage, more operational constraints have to
take place in order to recover the capital costs, including power balance, spinning reserve,
minimum up and down times, ramping capability and so on. The robustness of the
proposed solution is achieved by making use of the Taguchi orthogonal arrays technique.
Apart from storage, a host of other smart-grid technologies are investigated in stochastic
multi-objective unit commitments from the emission perspective. These technologies
include plug-in electric vehicles, demand response programs, demand-side management
and distributed generation systems [19]. Towards this goal, a practical approach for
profit-based unit commitment with emission limitations is presented in [20], while [21]
provides a solution based on a modified Lagrange relaxation combined with Henry gas
solubility optimization. The objective of the latter was the minimization of the emission
and operating cost. Exhaustive efforts in research found that the marginal benefits achieved
by the reduction in GHG emissions must be equal at least to the marginal costs [22]. Based
on the extensive literature, the impact of firm, low-carbon electricity resources in deep
de-carbonization systems has not yet properly assessed. None of these studies has explored
the potential of replacing conventional fuels by making use of the existing equipment in
real-world scenarios.

To motivate the development of novel methods for methane and hydrogen produc-
tion, further studies should be conducted to determine the effects of their involvement
in electricity generation processes. This study provides an introduction to the working
principles pertaining to the main technologies utilized for electricity generation in thermal
power plants. The main fuel types used as imports are presented and their impact is
quantified on a GHG emission target. Moreover, a deep understanding relating to the
formulation of emission cost coefficients is offered for various fuel types and a compre-
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hensive estimation of their impact on total production cost is realized. Specifically, a
thorough analysis is performed based on generation schedules and two transitional scenar-
ios are analyzed concerning the 2035 and 2050 EU targets. The results are discussed and
demonstrated graphically.

In the following section, a brief description of the major thermal-to-power principles
is provided along with their main characteristics and limitations. Section 3 presents the
emission cost formulation for the case studies. The results of the performed analysis are
provided in Section 4, while the conclusions are included in Section 5.

2. Thermal-to-Power Generation Technologies

The requirement to replace the currently exploited energy sources while meeting
increasing demand leads to the exploration of their principal characteristics and their
conversion technologies. Thermal power plants are used as base stations and constitute the
most economical candidate for generating large amounts of electricity, with parallel opera-
tion of different technologies. In order for the electrical energy to be produced, a rotating
electromagnetic field must be evolved with the aid of a rotor, to induce potential difference
(V) at the steady part of the generator, namely the stator. The rotational movement of the
rotor is performed via turbines in series and according to the applied force that produces
the required work, and the commonly used technologies are classified into steam turbines,
gas turbines, combined cycle units and internal combustion engines.

2.1. Steam Units

In their most typical form, steam units consist of a boiler, a turbine and a condenser.
The fuel (coal, oil, etc.) is injected into the boiler and the flowing water is heated until its
evaporation up to the required temperature and pressure rates. The super-heated steam is
expanded to the turbine which in turns rotates in series with a generator enabling electricity
production. The water vapor continues its flow towards the condenser where it is liquefied,
completing a Rankine cycle. This is also known as the closed-loop generation since the
water is recycled and reused based on the discussed process. The main advantages of this
technology are the ability to operate for a long time and the cheap electricity production
cost. However, it shows some installation site-selection problems due to the prospect of
expansion, fuel transportation costs, access to water sources, greenhouse gas release, and
so on.

The main operations can be briefly explained with the help of Figure 1 as follows:

1. Boiler: where the combustion takes place by heating the water until it evaporates
2. Turbine: which is set in motion by the release of steam which is then liquefied
3. Condenser: which directs the hot water to the boiler for reheating and evaporation
4. Cooling tower: where the water liquefaction is realized based on the temperature

difference (otherwise the system must be cooled via pumped water from a river or
the open sea)

5. Pump: to redirect the liquefied water back to the boiler
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2.2. Gas Units 
A typical thermal generation unit based on gas turbines is composed of the fuel 

burner, the turbine and a compressor, as illustrated in Figure 3. Initially, the system with-
draws electrical energy from the grid and the generator operates in motor mode. The mo-
tor rotates the compressor which is in series to produce the required air flow to the burner. 
There, the fuel is introduced and combusted to transfer the required heat to the flowing 
air and, when the super-heated gases acquire the needed temperature and pressure, they 
are directed to the turbine. The turbine enables electricity production through the serial 

Figure 1. Simulation of a steam plant (Rankine cycle), state 1: saturated vapor, state 2: vapor, state 3:
compressed liquid, state 4: liquid pumped into the boiler [23].

The rated 34–40% efficiency can be improved by 4–5%, either by increasing the average
temperature of the transferred heat to the working fluid or by decreasing the average
temperature of the rejected heat from the working fluid in a condenser [24]. However,
elevated temperatures are limited by metallurgical considerations, while lower condenser
pressures increase the moisture content of the steam. A solution to the mentioned effects is
given by reheating the steam so that it is expanded in the turbine in two stages. Figure 2
shows the reheating process of the so-called reheat Rankine cycle.
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Figure 2. Representation of ideal reheat Rankine cycle, state 1: compressed liquid, state 2: liquid,
state 3: saturated vapor, state 4: vapor, state 5: reheated vapor, 6: vapor [24].

2.2. Gas Units

A typical thermal generation unit based on gas turbines is composed of the fuel burner,
the turbine and a compressor, as illustrated in Figure 3. Initially, the system withdraws
electrical energy from the grid and the generator operates in motor mode. The motor
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rotates the compressor which is in series to produce the required air flow to the burner.
There, the fuel is introduced and combusted to transfer the required heat to the flowing
air and, when the super-heated gases acquire the needed temperature and pressure, they
are directed to the turbine. The turbine enables electricity production through the serial
connected generator and once the system becomes autonomous, the motor changes over to
the generation mode.
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The main operations and basic elements are presented below:

1. Burner: where combustion takes place and the exhaust gases are led to the turbine
2. Turbine: which is set in motion by the release of exhaust gases which are then released

into the atmosphere

Similar to steam-turbine generators, gas turbines also offer the ability to operate for
a long time at the expense of site selection problems for their installation including the
prospect of expansion, fuel transportation costs, access to water sources and GHG emissions

2.3. Combined-Cycle Units

The generators falling into this category exploit the combined, working principles of a
closed-loop Rankine and open Brayton cycle via an appropriately designed heat exchanger
as depicted in Figure 4.

The basic elements of a combined-cycle system are summarized as follows:

1. Gas turbine: after being released by moving the gas turbine, the exhaust gases pass
through a heat exchanger and are then released into the atmosphere

2. Steam turbine: the heat recovery from the exchanger evaporates the passing water
and the vapors are released giving movement to the steam turbine

The merits relating to the combined cycle generating units are the optimal heat utiliza-
tion, lower return temperature to the environment and consequent increased efficiency. On
the other hand, concerns exist with respect to the precise heat exchanger design.
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2.4. Internal Combustion Engines (ICE)

In contrast to gas turbines that imitate the engines used in aircrafts, internal combus-
tion engines follow the exact operating principles used in transportation vehicles with the
difference being at the final work exploitation. They are usually installed in areas with
low demand where the installation of other technologies is considered unprofitable. In
thermal power plants they have mainly a backup role to recover peak loads. By burning a
mixture of fuel, pressures are exerted on pistons that, with appropriate mechanisms, cause
the generator to rotate. A four-stroke configuration of an ICE plant is presented in Figure 5.
The fuel together with the air is introduced into the intake stroke as the piston moves
downwards. When the piston goes upwards, the mixture is compressed in the compression
stroke, and it is ignited in the combustion and power stroke forcing the piston downwards.
Finally, the last stroke takes place to release the waste gases out of the cylinder [23].
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ICE plants perform advantageously in terms of installation complexity and space
requirements, time of response and ease of operation. Their main disadvantages are that
they present frequent failures and require periodical maintenance. However, apart from
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conventional hydrocarbons, hydrogen-based renewable fuels such as biogas (H2-CH4-CO),
ammonia (NH3), methanol (CH4O) and hydrogen can be used directly [26]. In this way, an
opportunity is given to improve the overall efficiency by making use of the produced work
and heat recovery among multiple energy activities. Hence, the achieved efficiency of 56%
can be further enhanced via co-generation (combined heat and power) and tri-generation
(combined cooling, heating and power) systems to near 83% [25,27]. Figure 6 presents two
paradigms via which the concept of co-generation and tri-generation can be explained.
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3. Fuel Diversity and Combustion Pollutants

As stated in the introductory section, each storage system is considered appropriate
only for a narrow range of applications [28–31]. However, taking into consideration the
future, growing contribution of stochastic RES it is clear that no single electricity storage
technology could be used to fully satisfy a whole sector. The most important challenges for
electricity storage systems are to conserve the energy stored for extended periods of time
and supply it by responding rapidly when required [32]. Therefore, several studies in their
attempt to promote a clean, reliable, sustainable and secure alternative to traditional fossil
fuels were focused on carbon capture and sequestration (CCS) mechanisms and hydrogen
(H2) technology [33,34].

Unlike traditional fuels, hydrogen is not readily available in nature. Nevertheless, it
can be generated from any primary source and utilized as a fuel in gas turbines, internal
combustion engines or fuel cells, producing water as the only byproduct. Possessing
carbon-free and extremely high energy content, compared to other fuels, hydrogen is
globally accepted as an environmentally benign renewable energy carrier and alternative
to conventional fuels [35]. A further advantage is that it can be safely transported by
conventional means and used for domestic consumption supported by various storage
methods [36].

Anthropogenic carbon dioxide (CO2) emissions weighted by global warming poten-
tials constitute the largest portion of GHG emissions. Within this range, the emissions
derived from fuel combustion constitute the great majority, providing the ability to be
directly and immediately estimated from the activities of combustion [37]. In this section,
an attempt is undertaken to evaluate the emission impact on the total production cost based
on power generation modeling and optimal scheduling.

3.1. Cost Function Formulation

Generally, the total electricity generation cost is calculated based on the fuel consump-
tion f(Pi) and unit start-up cost SUi. The proposed methods aim at delivering optimal
schedules in terms of unit commitment status (U) and economic dispatch (P) pertaining to
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the available number of generators (N) during different time frames (T). This objective is
mathematically formulated as follows [38–40]:

TPC =
N

∑
i=1

T

∑
t=1

Uit[ f (Pit) + SUit] (1)

The optimal solution is obtained under different technical and generational constraints
including:

1. system power balance: the total power produced by generating units must satisfy the
total electricity demand (PD)

2. spinning reserve margins (SR): the maximum capacity (Pmax_cap) of the synchronized
(on-line) generators must account for forecast errors with respect to load and renew-
able contribution as well as for a probable generation failure

3. capacity limits: each generator must operate within its minimum (Pmin) and maximum
(Pmax) boundaries

4. minimum up (MU) and down (MD) times: each generator can change its status once
the minimum required time elapsed

5. maximum ramp up (RU) and down (RD) capability: each generator possesses a
maximum positive and negative rate of change of its power output

6. conditional restrictions: due to environmental and economic issues some units may
fall in the must-run, must-out and run at fixed-MW output

Consequently, the optimal solution refers to those values (binary and continuous)
which enable the most economical demand satisfaction. This way, the Equation (1) can be
rewritten as:

(U∗, P∗) = argmin(TPC) so that



c1
c2
c3
c4
c5
c6

≤ e (2)

The fuel costs depend on the output generation level of each generator and some
predefined coefficients a, b and c. These coefficients are retrieved by the quadratic function
utilized to express the heat-rate curve of each generator multiplied by the specific fuel cost
used in each case [41]. Figure 7 illustrates an example of four different technologies found
in [42] and described in the previous section.
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In real-world conditions, the heat-rate curves are initially provided by manufacturers
and typically reconstructed every time a new fuel receiving takes place. Once the heat-rate
curves are constructed, the coefficients can be retrieved and the respective fuel cost is
obtained based on Equation (3), where fi is the specific fuel cost.

f (Pit) = fi

(
aiPit

2 + biPit + ci

)
(3)

3.2. Emission Function Formulation

A second formulation is needed to include the emission cost impact in the objective
and estimate the amount of carbon released into the atmosphere. In fact, in quantitative
assessments for the fuel combustion process it is standard practice to express this amount
by the equivalent mass of CO2 released. Although the great majority of GHG is due to
CO2, carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx) including NO and
NO2, sulphur oxides (SOx), non-methane volatile organic compounds (NMVOCs), such as
benzene, xylene, propane and butane, and other matter particulates (PMs) also occur as
by-products in combustion reactions.

Assuming that modern power plants follow strict practices towards de-sulfurization
and that NOx only occur at very specific conditions, under ideal combustion conditions
(complete combustion) the whole quantity of fuel is converted into useful energy (thermal
in our case), CO2 and water (H2O). To this end, the following chemical reactions are listed,
representing the combustion of heavy fuel oil (HFO), diesel, natural gas (NG) and hydrogen.
It is noted that the chemical composition of HFO varies according to the extent of mixing
or blending with cleaner fuels. Blended streams may include carbon numbers from x = 20
to greater than x = 50 [43,44].

HFO : CxHy +
(

x +
y
4
)O2 → xCO2 +

y
2

H2O

Diesel oil: C13H28 + 20O2 → 13CO2 + 14H2O

NG: CH4 + 2O2 → CO2 + 2H2O

Hydrogen: 2H2 + O2 → 2H2O

Apart from the hydrogen, the carbon in fossil fuels produces carbon dioxide when
utilized for heat raising. The underlying equation that estimates the amount released is
as follows:

Cr
[

tC/kg f
]
= 1kg.q.NCVf .EFf .

(
1− S f

)
.Ff (4)

q: quantity of carbon released and attributed to fuel combustion q = 44/12 for CO2. NCV:
net calorific value of fuel (MJ/kg). EF: emission factor (tC/TJ). S: carbon storage factor. F:
oxidation factor.

Based on this formulation, Table 1 shows the obtained rates, namely the amount
of carbon released (in tonnes) if 1 kg of fuel subjected to combustion generates 1 kg of
molar CO2. To determine the actual amount of CO2 released based on the balanced
combustion reactions, the stoichiometric coefficient Mr is taken into account, converting q
into Q = Mr·q.

Table 1. Main parameters and factors pertaining to the fuel combustion process [43–45].

f NVC EF S F Cr (kgC/kgf )

HFO 39 21.1 0.8 0.98 0.591389
Diesel 45.5 20.2 0.5 0.99 1.668167

NG 50 17.2 0.33 0.995 2.10217
H2 120 0 0 0 0
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To estimate the total amount of carbon emissions, the total fuel consumption can be
computed via the following equation:

m f =
H
(

a f , b f , c f

)
NCVf

(5)

As a result, the total emission cost stems from the product of total carbon released
and specific emission cost ec, which in the case of CO2 is assumed to be 5 €/t [38], as
shown below:

m f .Cr.ec =
H
(

a f , b f , c f

)
NCVf

.Cr f .5·10−3 (6)

Finally, the objective function of Equation (1) can be transformed (into Equation (7)) to
include the emission cost coefficients which are presented in Equation (8).

TPC =
N

∑
i=1

T

∑
t=1

Uit[F(Pit) + E(Pit) + SUit] (7)

E(Pit) = ec

(
aiPit

2 + biPit + ci

)
(8)

4. Transition to Carbon-Neutral and Carbon-Free Energy

To serve the electricity industry, hydrogen can be used in two ways: either fed to
a fuel cell or directly burnt and then converted into electricity by a reaction with the
air. To evaluate the impact on total production cost in terms of both fuel consumption
and emission released, a power system consisting of 20 generating units is taken into
account. The generating units are distinguished by technology into 8 steam-turbine, 4 gas-
turbine, 2 combined-cycle and 6 internal combustion generators. These units constitute
the available generators for conventional electricity production in Cyprus during the year
2020 and belong to a semi-governmental organization called the Electricity Authority of
Cyprus (EAC).

Cyprus represents a clear example of an isolated energy system of relatively important
size. Although the island’s domestic resources utilized for electricity production include
biomass, solar PV and wind, the interest of RES investors is focused on PV [46]. During the
year under assessment, the maximum demand amounted on Friday 4 September at 14:22 h
to 1160 MW. RES systems constitute 396.7 MW of total installed capacity, accounting for
229.1 MW PV, 157.5 MW wind and 12.1 MW biomass. Their annual contribution achieved
561.004 MWh in contrast to 4246.106 GWh for conventional units. The annual electrical
energy consumption recorded at 4,807,110 MWh [47].

In our analysis, the lowest molecular weight structure with 20 carbon atoms was
considered for the chemical composition of the imported HFO to supply the steam units.
The rest of the technologies are fueled by diesel. Their technical characteristics are tabulated
in Table 2.

Considering the participation of the defined units in annual demand satisfaction, the
results obtained assumed three case studies. The base case refers to the current share
of 150 MWe photovoltaic systems, while the rest regard a 250% and 500% increase [48].
Since an average wind speed of 3–4 m/s is dominant across the island and offshore power
densities of up to 500 W/m2 are limited to short winter periods, wind capacity extensions
were not taken into account for the isolated system of Cyprus. On the other hand, case
study 1 assumes a PV installed capacity of 375 MW. This forms a realistic condition for the
islanded system of Cyprus. As a result, the overall contribution of PV systems, in terms of
energy during 2035’s paradigm shows an increase of 2.5 times the real PV energy generated
in 2020. With the increasing interest in PV installations for domestic consumption and
commercial purposes, the case study 2 assumes an installed capacity of up to 750 MW.
Similarly, an increase in the order of 500% in PV contribution during the 2050 scenario is
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taken into account. Figures 8 and 9 demonstrate the onshore and offshore wind potential,
respectively, as a comparison with solar energy illustrated in Figure 10. The contribution
per unit is presented in Table 3.

Table 2. Technical characteristics of the thermal generating units [46].

Unit a (MBtu/MW2h) b (MBtu/MWh) c (MBtu/h) Technology Fuel Specific Cost
(€/MBtu)

1–4 0.013 4.077 57.034 Gas turbine Diesel 8.32
5–10 0.017 3.734 60.261 Steam turbine HFO 5.05

11–13 0.001 3.741 9.3 ICE HFO 5.05
14–16 0.026 3.105 11.28 ICE HFO 5.05
17–18 0.004 3.407 74.284 Steam turbine HFO 5.05
19–20 0.002 2.596 148.844 Combined cycle Diesel 8.32
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Table 3. Annual electricity generation (in GWh) per unit.

Generator Base Case Case Study 1 Case Study 2

1 3.154228 1.997647 0.809017
2 1.097265 0.554599 0.257415
3 0.076241 0 0
4 0 0 0
5 1678.562 1687.955 1701.377
6 1675.507 1681.205 1684.223
7 1653.869 1644.427 1628.991
8 1527.925 1502.54 1439.053
9 1253.089 1202.252 1095.075
10 988.9184 940.3106 826.6504
11 553.6949 561.1234 548.1765
12 553.6949 561.1234 548.1765
13 553.6949 561.1234 548.1765
14 591.9923 594.3116 587.3696
15 591.9923 594.3116 587.3696
16 591.9923 594.3116 587.3696
17 3459.706 3441.907 3349.22
18 3459.706 3441.907 3349.22
19 3245.911 2824.913 2272.047
20 852.4629 720.0493 483.3979

Based on this configuration, the obtained total production cost is €26.815 M, €26.060 M
and €12.590 M. As can be observed, the emission costs drastically decrease at higher
photovoltaic integration levels. After the validation of the results through the EAC annual
report [52], two scenarios are examined concerning the 2035 and 2050 targets. The first
scenario accounts for the replacement of HFO and diesel fuels with the upcoming natural
gas, whereas by 2050 the electricity sector must be satisfied with 100% RES and thus,
all generating units must utilize hydrogen. In this way, the heat-rate coefficients greatly
improve based on the lower calorific values (LCV) and fuel costs in each case. In addition,
the emission cost using natural gas is reduced in accordance with CO2 emissions, while it
is completely eliminated by making use of hydrogen derived from RES. The operational
features are demonstrated in Tables 4 and 5 for the respective scenarios. The specific fuel
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cost of natural gas is rolling for 12 months and an average value between 2.60 €/MBtu in
January and 2.47 €/MBtu in August is taken into consideration. On the other hand, the
cost of hydrogen is expected to hit 12.5 €/MBtu by 2050 [47].

Table 4. Technical characteristics of the thermal generating units in 2035 scenario.

Unit a (MBtu/MW2h) b (MBtu/MWh) c (MBtu/h) Technology Fuel Specific Cost
(€/MBtu)

1–4 0.012 3.71 51.901 Gas turbine NG 2.60
5–10 0.013 2.912 47.004 Steam turbine NG 2.60

11–13 0.001 2.918 7.254 ICE NG 2.47
14–16 0.021 2.422 8.798 ICE NG 2.47
17–18 0.003 2.658 57.941 Steam turbine NG 2.47
19–20 0.002 2.362 135.448 Combined cycle NG 2.47

Table 5. Technical characteristics of the thermal generating units in 2050 scenario.

Unit a (MBtu/MW2h) b (MBtu/MWh) c (MBtu/h) Technology Fuel Specific Cost
(€/MBtu)

1–4 0.005 1.546 21.626 Gas turbine H2 12.52
5–10 0.006 1.214 19.585 Steam turbine H2 12.52

11–13 0.0004 1.216 3.022 ICE H2 12.52
14–16 0.009 1.009 3.666 ICE H2 12.52
17–18 0.0013 1.107 24.142 Steam turbine H2 12.52
19–20 0.0009 0.984 56.437 Combined cycle H2 12.52

The new coefficients were determined relying on Equation (9), converting the S.I. units
such that 1 MBtu = 1055.056 MJ.(

a f , b f , c f

)
NEW

=
(

a f , b f , c f

)
BASE

.
LCVBASE
LCVNEW

(9)

The total production cost consuming natural gas during the year becomes €21.395 M,
€20.729 M and €9.960 M for the base, first and second case study, respectively. This reveals
that with less expensive and more efficient fuels, the expenses due to fuel consumption
and emission released can be decreased reasonably. In the case of hydrogen (scenario 2),
the annual costs fall even more rapidly, despite the higher cost of hydrogen used as the
primary source. These are estimated at €8.744 M, €8,470 M and €4.057 M. Figure 11 includes
the varying and cumulative emission cost pertaining to the assessed scenarios in base case.

Increasing the contribution of photovoltaic power, the monthly fluctuation of the
base case, case study 1 (250% PV increase) and case study 2 (500% PV increase) can
be observed in Figure 12. For the sake of completeness, the comparative results are
demonstrated in Figures 13 and 14, where the total production cost and the amount of
CO2 released are respectively presented. The obtained results with respect to hydrogen
transition appear very promising. In the absence of a hydrogen network, due to the isolated
nature of Cyprus’s energy system, the price of imported H2 can be decreased drastically if
domestic energy resources could be exploited. In this way, RES will dominate in hydrogen
production and excess green energy can be injected into the forthcoming EuroAsia HVDC
interconnector, helping the European Union to reduce its dependence on imported fuels.
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targets of 2020 (Basic scenario), 2035 (Scenario 1) and 2050 (Scenario 2).

Considering only an inferior specific cost of the alternative natural gas and hydrogen
fuels to replace the conventional resources, the renewable routes for hydrogen production
are not compared fairly. Certainly, each H2-production process greatly depends on dif-
ferent geographical limitations and the final cost includes the storage and transportation
expenses. In our attempt to provide this information, the case studies during Scenario
2 were examined under different hydrogen production costs. Hence, the inflated costs
obtained from [34] are tabulated by the process and energy source in Table 6, whereas the
obtained total production costs are shown in Figure 15.
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Table 6. Renewable routes for hydrogen production.

H2 Route Process Energy Source Production Cost (€/MBtu)

R1 Biomass pyrolysis biomass 23.59
R2 Biomass gasification biomass 26.12
R3 Bio-photolysis solar 25.51
R4 Fermentation solar 29.40
R5 PV electrolysis solar 180.94
R6 Solar-thermal electrolysis solar 97.11
R7 Wind electrolysis wind 78.92
R8 Solar thermolysis solar 102.03
R9 Photo-electrolysis solar 112.81
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As can be observed, hydrogen routes that exploit biomass as a feedstock offer the
lowest production costs ranging between 16.5–20.6 M€ in the base case, 15.9–19.9 M€
during case study 1 and 7.7–9.5 M€ during case study 2. The most economical results were
obtained by biomass pyrolysis. Next was the water-electrolysis route from wind energy,
while solar-thermal electrolysis and solar thermolysis sit in the middle with around 69 M€,
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67 M€ and 32 M€ during the base case, case study 1 and case study 2, respectively. The
highest hydrogen generation costs are provided by PV electrolysis systems, with respective
values greater than 126 M€, 122 M€ and 58 M€.

5. Conclusions

In this study, the most important conventional technologies for power generation were
presented along with their principle of operation and main advantages. A comprehensive
formulation of the fuel cost with respect to the technical and operational system constraints
was provided. The formulation was extended to include the emission impact on total
production cost and three experimental evaluations were compared and discussed in detail.
The simulation results were based on a representative power system which consists of
20 generating units combining all the technologies explained. According to their contribu-
tion in the base case, the total production costs including carbon dioxide emissions were
compared under different photovoltaic penetration levels and fuel types.

Apart from the basic scenario where heavy fuel oil and diesel were the main fuels, two
further scenarios were taken into account. The second scenario considers the 2035 targets
and a gradual transition towards cleaner electricity production by making use of natural
gas (methane). During the last scenario (Scenario 2), a 100% renewable power generation is
expected by 2050 and consequently hydrogen constitutes the only option for the thermal
source in modern power plants. According to the simulation results, the application of
natural gas can lower the annual expenses in cooperation with the integrated photovoltaic
systems. However, the total annual costs are drastically decreased when hydrogen con-
stitutes the main source in conventional plants. The total production costs were lowered
by one-third, mitigating the uncertainty in renewable contributions and eliminating the
emissions released. Since only the operational expenses have been included in this assess-
ment and considering that the existing power plants will be replaced in a generation, future
exploration of the impact of installation, design and planning costs should be conducted to
evaluate the overall cost of the transition to cleaner fuels.
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