Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Gradation
2.2. Scrap Tire Rubber by Dry Process in the Asphalt Plant
2.3. Traffic Inputs, Pavement Structure, and Local Calibration Factors
2.4. Research Methodology
2.4.1. Hamburg Wheel Tracking Device (HWTD) Test
2.4.2. Disc-Shaped Compact Tension (DCT) Test
2.4.3. Dynamic Modulus Test
2.4.4. Dynamic Shear Rheometer
3. Results and Discussions
3.1. Hamburg Wheel Track Device (HWTD) Test Results
3.2. Disc-Shaped Compact Tension (DCT) Test Results
3.3. Dynamic Modulus Test
3.4. Indirect Tensile Strength Test Results
3.5. Multiple Stress Creep Recovery Test Results
3.6. Linear Amplitude Sweep Test Results
3.7. Pavement M-E Design Results
4. Summary and Conclusions
- (1)
- The DCT test shows the fracture energy notably decreased after long-term aging; the rubber mix has better cracking performance than the control mix and polymer mix, as the fracture energy of the rubber mix is 17.1~30.5% higher than that of the control mix, and the fracture energy of the rubber mix is 6.8~9.1% higher than that of the polymer mix. The rubber mix has the highest fracture energy among the asphalt mixtures that have not been aged and among those that have been aged for a long time.
- (2)
- The HWTD results show that the polymer mix and rubber mix have better moisture damage and rutting resistance compared with the control mix. After long-term aging, the rutting and moisture susceptibility performance significantly improve, but the polymer mix and control mix have better moisture damage and rutting resistance compared with the rubber mix.
- (3)
- The dynamic modulus test shows that the polymer mix and rubber mix have higher stiffness compared with the control mix; specifically, the dynamic modulus of the polymer mix is 13.8–24.6% higher than that of the control mix and 11.9–31% higher than that of the rubber mix. After long-term aging, the polymer mix and control mix have higher stiffness compared with the rubber mix.
- (4)
- The MSCR and LAS results of the asphalt binders reveal that the rubberized asphalt binder showed better high-temperature deformation resistance and fatigue property compared with the polymer-modified asphalt. The failure number of the rubberized asphalt binder at a 2.5% strain level compared with polymer asphalt increased by 21.6%. The rubber and polymer incorporated with the asphalt binder improved the resistance of permanent deformation and the fatigue life.
- (5)
- Pavement M-E analysis showed that rubber incorporated with asphalt reduced the AC rutting, IRI, and AC transverse cracking predictions under heavy traffic volume in comparison with the conventional asphalt pavement. The pavement M-E results show the same trend as the high-temperature rutting test and low-temperature cracking test.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, D.; Ge, D.; Zhou, X.; You, Z. Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary ME Design Analysis. Buildings 2022, 12, 160. [Google Scholar] [CrossRef]
- Chen, S.; Ge, D.; Jin, D.; Zhou, X.; Liu, C.; Lv, S.; You, Z. Investigation of hot mixture asphalt with high ground tire rubber content. J. Clean. Prod. 2020, 277, 124037. [Google Scholar] [CrossRef]
- Ge, D.; Zhou, X.; Chen, S.; Jin, D.; You, Z. Laboratory Evaluation of the Residue of Rubber-Modified Emulsified Asphalt. Sustainability 2020, 12, 8383. [Google Scholar] [CrossRef]
- Jin, D.; Wang, J.; You, L.; Ge, D.; Liu, C.; Liu, H.; You, Z. Waste cathode-ray-tube glass powder modified asphalt materials: Preparation and characterization. J. Clean. Prod. 2021, 314, 127949. [Google Scholar] [CrossRef]
- Jin, D.; Ge, D.; Chen, S.; Che, T.; Liu, H.; Malburg, L.; You, Z. Cold in-place recycling asphalt mixtures: Laboratory performance and preliminary ME design analysis. Materials 2021, 14, 2036. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, W.; Chen, J.; Jin, D. Pavement conductive wearing surface with graphite heating film de-icing potential and performance experimental study. Int. J. Pavement Res. Technol. 2021, 14, 688–696. [Google Scholar] [CrossRef]
- Venudharan, V.; Biligiri, K.P.; Sousa, J.B.; Way, G.B. Asphalt-rubber gap-graded mixture design practices: A state-of-the-art research review and future perspective. Road Mater. Pavement Des. 2017, 18, 730–752. [Google Scholar] [CrossRef]
- Miranda, H.; Batista, F.; Neves, J.; De Lurdes, A.M.; Fonseca, P. Asphalt rubber mixtures in Portugal: Fatigue resistance. Alicerces. 2009, pp. 97–106. Available online: https://repositorio.ipl.pt/handle/10400.21/576 (accessed on 12 July 2022).
- Freitas, E.F. The effect of time on the contribution of asphalt rubber mixtures to noise abatement. Noise Control. Eng. J. 2012, 60, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Gong, F.; Ge, D.; You, Z.; Sousa, J.B. Use of reacted and activated rubber in ultra-thin hot mixture asphalt overlay for wet-freeze climates. J. Clean. Prod. 2019, 232, 369–378. [Google Scholar] [CrossRef]
- Hernández-Olivares, F.; Witoszek-Schultz, B.; Alonso-Fernández, M.; Benito-Moro, C. Rubber-modified hot-mix asphalt pavement by dry process. Int. J. Pavement Eng. 2009, 10, 277–288. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tran, T.N. Effects of crumb rubber content and curing time on the properties of asphalt concrete and stone mastic asphalt using dry process. Int. J. Pavement Res. Technol. 2018, 11, 236–244. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Eskandarsefat, S.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A complete laboratory assessment of crumb rubber porous asphalt. Constr. Build. Mater. 2017, 132, 500–507. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Hasan, M.R.M.; Diab, A.; Shao, H.; Chen, S.; Ge, D. Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. J. Clean. Prod. 2017, 159, 346–358. [Google Scholar] [CrossRef]
- Dias, J.F.; Picado-Santos, L.; Capitão, S. Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Constr. Build. Mater. 2014, 73, 247–254. [Google Scholar] [CrossRef]
- da Silva, L.; Benta, A.; Picado-Santos, L. Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking. Constr. Build. Mater. 2018, 160, 539–550. [Google Scholar] [CrossRef]
- Picado-Santos, L.G.; Capitão, S.D.; Dias, J.F. Crumb rubber asphalt mixtures by dry process: Assessment after eight years of use on a low/medium trafficked pavement. Constr. Build. Mater. 2019, 215, 9–21. [Google Scholar] [CrossRef]
- Zanjad, N.; Pawar, S.; Nayak, C. Use of fly ash cenosphere in the construction Industry: A review. Mater. Today Proc. 2022, 62, 2185–2190. [Google Scholar] [CrossRef]
- Fang, C.; Wu, C.; Hu, J.; Yu, R.; Zhang, Z.; Nie, L.; Zhou, S.; Mi, X. Pavement properties of asphalt modified with packaging-waste polyethylene. J. Vinyl Addit. Technol. 2014, 20, 31–35. [Google Scholar] [CrossRef]
- Romeo, E.; Birgisson, B.; Montepara, A.; Tebaldi, G. The effect of polymer modification on hot mix asphalt fracture at tensile loading conditions. Int. J. Pavement Eng. 2010, 11, 403–413. [Google Scholar] [CrossRef]
- Greene, J.; Chun, S.; Choubane, B. Evaluation and Implementation of a Heavy Polymer Modified Asphalt Binder through Accelerated Pavement Testing; Florida Department of Transportation (FDOT), State Materials Office: Tallahassee, FL, USA, 2014. [Google Scholar]
- Zhu, C. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders; University of Nevada: Reno, NV, USA, 2015. [Google Scholar]
- Blazejowski, K.; Olszacki, J.; Peciakowski, H. Highly Modified Binders Orbiton HiMA. ORLEN Asfalt, Application Guide, Version 1e, 2015; Warsaw, Poland. Available online: https://www.orlen-asfalt.pl/PL/InformacjeTechniczne/PortalWiedzy/Documents/ORLEN_Broszura_aktualizacja_EN-0215.pdf (accessed on 12 July 2022).
- Jin, D.; Meyer, T.K.; Chen, S.; Boateng, K.A.; Pearce, J.M.; You, Z. Evaluation of lab performance of stamp sand and acrylonitrile styrene acrylate waste composites without asphalt as road surface materials. Constr. Build. Mater. 2022, 338, 127569. [Google Scholar] [CrossRef]
Aggregate Gradation and Aggregate Proportion | ||||||
---|---|---|---|---|---|---|
Aggregate Type | 2NS | Slag Sand | 3/32 | Trap Sand | CS-2 | RAP |
Blend% | 12% | 19% | 13% | 22% | 16% | 18% |
Sieve size | Percent Passing | |||||
½ inch (12.5 mm) | 100% | 100% | 100% | 100% | 100% | 100% |
3/8 inch (9.5 mm) | 100% | 100% | 100% | 100% | 88.8% | 97.1% |
No. 4 (4.75 mm) | 100% | 96.6% | 98% | 93% | 5.2% | 78% |
No. 8 (2.36 mm) | 87.4% | 74.5% | 79.2% | 58% | 1.6% | 58.5% |
No. 16 (1.18 mm) | 74.5% | 52.4% | 46.1% | 33.9% | 1.2% | 40.9% |
No. 30 (0.6 mm) | 58.1% | 35.1% | 26.9% | 20.4% | 1.2% | 28.6% |
No. 50 (0.3 mm) | 25.5% | 21.1% | 14.8% | 11.9% | 1% | 16.5% |
No. 100 (0.15 mm) | 2.7% | 11.5% | 7% | 7.3% | 1% | 8.2% |
No. 200 (0.075 mm) | 0.9% | 6.4% | 4.1% | 4.9% | 0.9% | 5.5% |
Layer Types | Thickness/cm | Structure-1 | Structure-2 | Structure-3 |
---|---|---|---|---|
Surface asphalt layer | 5 | Control mix | Rubber mix | Polymer mix |
Jointed plain concrete | 25.4 | Mr = 6894 MPa | ||
Open graded drainage Course | 15.24 | Mr = 227 MPa | ||
Sand subbase | 25.4 | Mr = 137 MPa | ||
Subgrade | Semi-infinite |
Mixture Type | Creep Slope | Stripping Slope | Stripping Point Passing | Failure Point Passing | |
---|---|---|---|---|---|
Unaged samples | Control mix | 0.003 | 0.005 | 3188 | 5620 |
Rubber mix | 0.00267 | 0.0018 | 16,264 | 18,590 | |
Polymer mix | 0.00253 | 0.00109 | 16,521 | 20,000 1 | |
Long-term aging sample | Control mix (aged) | 0.00083 | NA | 20,000 1 | 20,000 1 |
Rubber mix (aged) | 0.0009 | NA | 20,000 1 | 20,000 1 | |
Polymer mix (aged) | 0.00085 | NA | 20,000 1 | 20,000 1 |
|E*| (MPa) Average Value of Conventional Asphalt Mixture | |||||||||
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |||
T (°C) | |||||||||
−10 | 14,774 | 18,339 | 19,300 | 21,961 | 23,137 | 23,913 | |||
10 | 3227 | 4943 | 5865 | 8317 | 9551 | 10,966 | |||
21 | 927 | 1566 | 1955 | 3378 | 4107 | 5167 | |||
37 | 316 | 392 | 436 | 765 | 999 | 1500 | |||
54 | 131 | 166 | 191 | 319 | 432 | 577 | |||
|G*| (MPa) Average Value | Creep compliance | ||||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (s) | Temperature (°C) | |||||
34 | 132,920 | 70.54 | −20 | −10 | 0 | ||||
40 | 47,472 | 73.78 | 1 | 2.89 × 10−7 | 4.27 × 10−7 | 8.11 × 10−7 | |||
46 | 17,430 | 77.35 | 2 | 2.99 × 10−7 | 4.57 × 10−7 | 9.09 × 10−7 | |||
58 | 2918.8 | 83.25 | 5 | 3.15 × 10−7 | 5.06 × 10−7 | 1.09 × 10−6 | |||
82 | 163.79 | 88.97 | 10 | 3.28 × 10−7 | 5.54 × 10−7 | 1.26 × 10−6 | |||
(−10 °C) IDT strength: 1.51 MPa | 20 | 3.45 × 10−7 | 6.05 × 10−7 | 1.45 × 10−6 | |||||
50 | 3.69 × 10−7 | 6.91 × 10−7 | 1.80 × 10−6 | ||||||
100 | 3.91 × 10−7 | 7.76 × 10−7 | 2.15 × 10−6 |
|E*| (MPa) Average Value of Rubber Modified Asphalt Mixture | |||||||||
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |||
T (°C) | |||||||||
−10 | 18,004 | 21,320 | 22,197 | 24,537 | 25,296 | 25,612 | |||
10 | 4929 | 6964 | 7619 | 9760 | 10,449 | 11,581 | |||
21 | 1307 | 2019 | 2499 | 3938 | 4386 | 5620 | |||
37 | 386 | 578 | 743 | 1333 | 1646 | 2292 | |||
54 | 225 | 307 | 365 | 631 | 899 | 1168 | |||
|G*| (MPa) Average Value | Creep compliance | ||||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (s) | Temperature (°C) | |||||
34 | 170,890 | 68.32 | −20 | −10 | 0 | ||||
40 | 106,750 | 66.59 | 1 | 2.55 × 10−7 | 3.54 × 10−7 | 6.32 × 10−7 | |||
46 | 43,089 | 69.67 | 2 | 2.60 × 10−7 | 3.71 × 10−7 | 7.00 × 10−7 | |||
58 | 7436.4 | 76.73 | 5 | 2.69 × 10−7 | 3.99 × 10−7 | 8.00 × 10−7 | |||
82 | 375.82 | 86.44 | 10 | 2.76 × 10−7 | 4.25 × 10−7 | 8.92 × 10−7 | |||
(−10 °C) IDT strength: 1.83 MPa | 20 | 2.84 × 10−7 | 4.53 × 10−7 | 1.01 × 10−6 | |||||
50 | 2.96 × 10−7 | 4.97 × 10−7 | 1.20 × 10−6 | ||||||
100 | 3.08 × 10−7 | 5.40 × 10−7 | 1.37 × 10−6 |
|E*| (MPa) Average Value of Polymer Modified Asphalt Mixture | |||||||||
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |||
T (°C) | |||||||||
−10 | 17,378 | 21,804 | 22,753 | 25,935 | 26,734 | 26,967 | |||
10 | 3546 | 5425 | 6470 | 9308 | 10,433 | 12,106 | |||
21 | 1146 | 1878 | 2433 | 4215 | 5090 | 6210 | |||
37 | 329 | 512 | 603 | 1117 | 1450 | 2192 | |||
54 | 212 | 246 | 272 | 433 | 541 | 754 | |||
|G*| (MPa) Average Value | Creep compliance | ||||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (s) | Temperature (°C) | |||||
34 | 56,779 | 62.8 | −20 | −10 | 0 | ||||
40 | 30,082 | 62.77 | 1 | 2.46 × 10−7 | 3.85 × 10−7 | 7.47 × 10−7 | |||
46 | 15,493 | 63 | 2 | 2.58 × 10−7 | 4.22 × 10−7 | 8.57 × 10−7 | |||
58 | 4470.2 | 65.3 | 5 | 2.78 × 10−7 | 4.78 × 10−7 | 1.04 × 10−6 | |||
82 | 502.48 | 75.4 | 10 | 2.94 × 10−7 | 5.27 × 10−7 | 1.20 × 10−6 | |||
(−10 °C) IDT strength: 1.97 MPa | 20 | 3.14 × 10−7 | 5.92 × 10−7 | 1.42 × 10−6 | |||||
50 | 3.47 × 10−7 | 6.93 × 10−7 | 1.79 × 10−6 | ||||||
100 | 3.73 × 10−7 | 7.84 × 10−7 | 2.13 × 10−6 |
Control Mix | Rubber Mix | Polymer Mix | Control Mix (Aged) | Rubber Mix (Aged) | Polymer Mix (Aged) | |
---|---|---|---|---|---|---|
HWDT (wheel passes) | - | 330% | 355% | 355% | 355% | 355% |
DCT (−18 °C fracture energy) | - | 17.1% | 7.3% | 36% | 14% | 21% |
DCT (−24 °C fracture energy) | - | 25.5% | 7.2% | 8.6% | 19.6% | 6.6% |
Dynamic modulus | - | 7~42% | 12~62% | 8~32% | 14~62% | 18~72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Boateng, K.A.; Chen, S.; Xin, K.; You, Z. Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan. Sustainability 2022, 14, 10987. https://doi.org/10.3390/su141710987
Jin D, Boateng KA, Chen S, Xin K, You Z. Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan. Sustainability. 2022; 14(17):10987. https://doi.org/10.3390/su141710987
Chicago/Turabian StyleJin, Dongzhao, Kwadwo Ampadu Boateng, Siyu Chen, Kai Xin, and Zhanping You. 2022. "Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan" Sustainability 14, no. 17: 10987. https://doi.org/10.3390/su141710987
APA StyleJin, D., Boateng, K. A., Chen, S., Xin, K., & You, Z. (2022). Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan. Sustainability, 14(17), 10987. https://doi.org/10.3390/su141710987