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Abstract: During the past 20 years, due to climate change, the government and the private sector have
significantly focused on relying on non-fossil fuel-based methods for their energy needs. Climate
change-related events, such as unusual weather conditions, abnormal temperature spikes, etc., have
an adverse influence on clean energy-based investments. In the given study, we intend to focus
on how an incremental temperature rise could affect investors’ perceptions of clean energy assets.
To understand the investor-based sentiment on climate change, we utilize prominent clean energy
ETFs (exchange traded funds) and consider the temperature’s effect on them. The daily average
temperatures of the three most dynamic international financial centers: New York, London and Tokyo,
are taken as predictors. Deep learning-based neural networks are applied to understand both the
linear and non-linear relationships between the desired variables and identify the causal effects. The
results indicate that in almost all the cases with desired lags, there is some sort of non-linear causality,
irrespective of linear causality effects. We hope this occurrence can help portfolio managers and
environmental professionals in identifying novel climate change-related factors when considering
the temperature-related risks.

Keywords: clean energy prices; extreme temperatures; climate mitigation; capital markets; causality

1. Introduction

A substantial amount of evidence validates climate change. Earth’s climate is stochas-
tic, and intense weather and climate events are becoming increasingly prevalent. The
alarming insights concerning climate change have attracted the attention of global environ-
mental experts, scientists and economists alike in the past few decades. Climate change
also exacerbates rising temperatures and raises potential risks to humankind and natural
systems, resulting in catastrophic biodiversity loss 2010 [1]. There have been studies which
corroborate the fact that a single degree temperature rise could have an overall impact
on the economic prosperity of nations. Rising temperatures have undesirable effects on a
nation’s industrial and agricultural output, resulting in political instability Dell et al. [2].
The case is even worse for poorer countries. Temperature rise effects have also been shown
to have significant impacts in areas such as labor productivity (Hsiang [3]), crop yields
(Schlenker et al. [4]), legal decision-making (Heyes and Saberian [5]), etc., to name a few.
Apart from these, temperature escalations could also profoundly influence the demand and
capacity utilization of utility-based electric power, further impacting other vital sectors such
as transportation Khan et al. [6]. Likewise, (Fisher et al. [7]) showed a negative link between
temperature rise and agriculture output in the US. Temperature fluctuations also drastically
affect stock markets globally. Most of these studies were inclined toward high climate risks
impacting a broader set of asset prices. Moreover, international institutions such as the
World Bank and Asian Development Bank (ADB) provide fixed-income securities, such as
green bonds and eco notes Reichelt [8]. However, they are accessible to only a narrow range
of investors, and individual retail investors have limited awareness of them. Henceforth
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in the given study, we intended to focus on the equity markets through ETF-based clean
energy instruments.

According to our literature review, there were not enough studies focused explicitly
on finding the consequences of temperature rise on the stock prices in the renewable
energy sector. Hence with the given study, we intended to focus on how the incremental
temperature growth over the past decade has impacted investments in renewable energy-
based capital market assets through a unique non-linear approach. The study’s key objective
was to comprehend how the incremental temperature growth over the past decade has
impacted investments in renewable energy-based capital market assets through a unique
non-linear approach. This study is unique in three different ways:

Firstly, the study was the first to employ an artificial neural network (ANN)-based
causality analysis of climatic variables such as temperature rise on stock prices. Utilizing
the ANN-based approach helped in discovering the existence of the non-linear association.

Secondly, the study’s scope was narrowed down by focusing on the clean energy
sector, instead of the existing studies dedicated to recognizing the bearings of temperature
rise on capital markets at a broader level. Finally, an extensive analysis of the non-linear
causality relationship was conducted, and its result was compared to traditional linear
causality models for both the prices and volumes data.

The given paper is structured as follows. Section 2 provides a brief literature review
of recent studies related to temperature effects on capital markets, such as investor’s
sentiments and their risk appetite for financial assets in general. Section 3 describes the
data used for the study, such as clean energy ETF datasets and the various predictors of
temperatures of global financial centers, along with the explanation of the neural network-
based non-linear causality methodology. Section 4 presents the empirical results describing
how incremental temperature growth impacts the investors’ responses to clean energy
stocks through non-linear GC (Granger causality) methods. Section 5 summarizes and
concludes the study with discussion related to its impact on policy decisions.

2. Literature Review

The clean energy industry is growing, and its consumption has turned more impera-
tive in response to serious environmental problems. Thus, more and more investors are
beginning to target clean energy firms in their portfolios Liu and Zeng [9].

Consequently, recent events, such as the Paris Agreement in 2015, climate protests
following it and various prominent IPCC (Intergovernmental Panel on Climate Change)-led
COP (Conference of the Parties) meetings over the years have brought investors’ attentions
to climate risks Krueger et al. [10]. Chen et al. [11], in their study, indicated that in nations
where clean energy investment was higher, low carbon activity was more likely to be
pursued. These awareness levels have forced investors to focus more on investing in
equities related to renewable energy technologies. Fahmy [12] corroborated this fact. Their
investigations of investor sentiment during the Paris Agreement in 2015, using Google
search results, showed that the search for clean energy-related investments increased
significantly after the deal. It also showed that public attention to climate investing rises
during extreme weather events.

Prior research has shown that climate change impacts clean energy usage. Still, a lack
of literature thoroughly explores how climate change affects clean energy investment.

Hansen et al. [13] identified three reasons for clean energy investments: GHG (green-house
gas) emissions, severe temperatures and extreme weather events. A heat wave may increase
energy demand owing to air conditioning while simultaneously putting the electrical generation
infrastructure under strain, potentially resulting in outages. Moreover, excessive temperatures
harm electricity production and impact energy production, resulting in supply cuts of various
magnitudes that affect other infrastructures (Pryor et al. [14]). Moreover, Xu et al. [15] elucidated
that factors such as temperature, humidity and type of day have an undeviating effect on
energy consumption levels. Şenhaz et al. [16] also stated that high levels of carbon emissions
result in higher returns for clean energy companies. Apart from this, there have been other
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recent studies specifically focused on other environmental factors such as air pollution, humidity
levels and sunshine exposure effects on investment returns Tufan and Hamarat [17]; Levy and
Yagil [18]; Teng and He [19]. These results also corroborate with the findings of Howarth and
Hoffman [20], suggesting three factors, namely humidity, temperature and sunshine time, have
the most significant impact on an investor’s mood. However, in the given study, we mainly
intended to focus on temperature rise as humidity and sunshine are not uniformly distributed
across the regions throughout annual weather cycles.

The impact of temperature variations on various economic variables has been exten-
sively studied. Addoum et al. [21] used the daily temperature data across the United States
to study how it affected the sales and productivity of various business establishments. Sim-
ilarly, Burke et al. [22] determined a non-linear relationship between temperature rise and
economic productivity, resulting in reduced global incomes. Colacito et al. [23] used panel
data of various economic sectors in the United States to infer that increasing temperatures
could significantly shrink economic growth in the coming years. There have been studies
focused on temperature on stock market performance. For example, Cao and Wei [24]
stated that due to apathy and aggression in high-temperature environs, investors may
hinder risk-taking, ultimately resulting in negative stock returns. Similarly, Balvers [25]
stated that a rise in temperature results in a rising cost of equity for listed companies. Bansal
et al. [26] stated that temperature-related disasters significantly affect stock returns. Baker
and Wurgler [27] were the first to study the effect of an investor’s mood on temperature.
Their results implied that investor mood impacts the extreme temperature effect. These
effects endured even after addressing several issues.

On the other hand, according to He and Ma [28], in smaller, younger, more volatile
and less lucrative enterprises with a higher proportion of intangible assets, extreme tem-
peratures significantly impact abnormal stock returns. Their data also implied that investor
sentiments influence the severe temperature effect, which overall impacts the market. More-
over, Yan et al. [29] concluded with China as an example that temperature rise results in a
decrease in stock price returns.

According to our findings, not many papers have focused explicitly on the clean
energy sector. Regarding sector-specific studies, He and Ma [28] demonstrated that for
steel and construction companies’ temperature-induced disasters, mood plays a role in
abnormal stock returns, especially on the higher side. For clean energy stocks, experts are
inclined to be more optimistic, resulting in higher returns than average market returns
Lohrmann and Lohrmann [30].

Hence in the given study, the temperature effects were studied on the stock market
performance particularly for the clean energy companies.

Exchange traded funds (ETFs) are securities directly traded on stock exchanges to
track a specific index or sector. One of the other significant benefits of ETFs is their low
transaction costs and liquidity Ben-David et al. [31]; Kosev and Williams [32]. Clean energy-
based ETFs are a unique instrument that tracks companies dealing with non-conventional
sources of energy, hence, in this study, we took it to be a proxy for clean energy stocks.

As shown in Figure 1, the price dynamics of the most actively traded renewable energy-
based ETFs, namely First Trust NASDAQ Clean Edge Green Energy Index Fund (QCLN),
iShares Global Clean Energy ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW)
and Invesco Solar ETF (TAN), has been quite varied for the last 10–12 years. A graphic
review of Figure 1 reveals some interesting features, such as the fact that during the years
starting from 2010 to the end of 2012, there was a sheer decrease in the prices. This
was primarily the product of government subsidies and incentive plans, leading to a
more significant number of renewable projects and, in turn, bringing down electricity
generation prices worldwide Mendelsohn and Feldman [33]. Then, from 2013 onwards
until 2017, there was a slight upward trend in prices attributed to climate change, such
as in the Paris Agreement in 2015 (Agreement, P. [34]) which gained more attractiveness
during 2014 as interest rates approached historic lows and investors looked for alternative
means of generating consistent, low-risk incomes La Monaca. et al. [35]. This continued
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until the subsequent announcement of the US withdrawal from it Fahmy [12], and even
outperformed other conventional energy peers Ibikunle et al. [36]. From 2017 until the
beginning of the pandemic, the prices were pretty stable. Subsequently, after the pandemic,
there was an enormous spike, which was a result of a commitment to investments by
private investors Pavlova and de Boyrie [37]; Fahmy [12].
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Apart from this, some studies have focused on other areas of interest that could
significantly influence clean energy stock prices. There are examples of sectoral companies
in the technology and oil sectors which have shown causal effects on clean energy, such as
Kumar et al. [38], Broadstock et al. [39], Kocaarslan and Soytas [40] and Dutta et al. [41].
On the contrary, others, such as Nasreen et al. [42], Ferrer et al. [43] and Elie et al. [44], did
not find any substantial causal linkages. Examples such as Kocaarslan and Soytas [40],
Sadorsky [45] and Wang et al. [46] have used ETFs to study market uncertainty surrounding
clean energy stocks.

3. Data and Methodology

Daily average temperature data of the three most significant economic hotspots,
namely New York, London and Tokyo, was obtained from the National Centers for Envi-
ronmental Information (NCEI) as of June 2022. The data was obtained from monitoring
stations nearest to each city’s international airport. Similarly, for the dependent variable,
daily ETF price data was considered for the two most traded clean energy ETF scrips
on the NASDAQ stock exchange using the Thomson Reuters Eikon platform. The most
active clean energy-based ETFs by volume, namely First Trust NASDAQ Clean Edge Green
Energy Index Fund (QCLN) and iShares Global Clean Energy ETF (ICLN), were taken to
account for the daily prices of clean energy stocks. The reasons for choosing these two
ETFs were that they (i) track companies dealing with a broad spectrum of clean energy
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sources, including but not limited to solar, wind, geothermal, nuclear and biomass, etc.,
and (ii) they take into account companies from an extensive geographical area covering
both developed and the developing world.

The drawback of using the traditional linear Granger causality method is that it is
based upon linear constraints and must follow a normal distribution. To address these
issues, Baek and Brock [47] suggested a non-linear Granger causality test by using Monte
Carlo simulations on non-linear models to test their forecasting performance. According
to their findings, the performance decreased in the presence of non-linearity; hence, non-
linear models have an enhanced predictive ability compared to their linear counterparts.
This is also confirmed by others, such as Lusch et al. [48]. According to them, Granger
causality-based non-linear models could deliver improved causality results. Since then,
non-linear GC models have been used in a variety of fields, namely finance (Hiemstra
and Jones [49]), neuroscience (Bergmann and Hartwigsen [50]) and ecology (Cox Jr and
Popken [51]). Studies such as Henderson and Michailidis [52] have used non-parametric
processes to account for non-linear effects. However, non-linear methods could add some
additive impact on the model, influencing its overall accuracy. These non-linear additive
effects might be triggered by various circumstances Hastie [53]. To address these issues,
neural network-based control mechanisms were added to the given model, as they have
already been shown to improve causality estimations in studies related to stock indices
Tabari et al. [54]. Technically, neural networks can be considered a novel methodology
within the field of econometrics. They have certain advantages over traditional methods,
such as (i) they are self-adaptive, data-driven methods that do not require distributional
assumptions and (ii) they are non-linear. The use of artificial neural networks (ANNs) for
modeling non-linear time series has become increasingly popular; pioneering works in this
area include Zhang [55], Zhang and Qi [56], Chen et al. [11] and Khashei and Bijari [57].

On the one hand, there are examples, such as Tank et al. [58], who have used sparsity-
inducing methods to reduce some sets of weights to zero for capturing Granger casual
structure; others such as Marcinkevičs and Vogt [59] have used distinct self-explaining
neural networks to enhance the overall performance of these models. However, our interest
was in determining Granger causality through neural networks, which allowed us to
contrast the existence of non-linear causality. For this purpose and the appropriateness
of the data used in the study, we closely followed the work of Maciej et al. [60], which
developed an algorithm to determine the existence of non-linear causality using neural
networks based on the multi-layer perceptron (MLP), long short-term memory (LSTM) and
gated recurrent unit (GRU). All of the standard RNN models that deal with gradient descent
issues, including LSTM and GRUs, are adaptations of MLPs. LSTM can accommodate
deep learning problems requiring long-term recollection of events. It has recurrent gates,
frequently called input, output and forgets gates. Additionally, it weakens signals that
contain both low- and high-frequency elements Gers et al. [61].

According to our analysis, this was probably the first study to employ neural network-
based Granger causality to understand the relation of temperature rise with clean energy
stock prices.

Based on the work of Zhang [55] and Khashei and Bijari [57], for the case of a time
series (yt−1, yt−2, . . . , yt−p), the representative ANN for the case of a single hidden layer
has the following mathematical representation

yt = w0 + ∑q
j=1 wjg

(
w0j + ∑p

i=1 wijyt−i

)
+ εt (1)

where wij (i = 0, 1, 2, . . . , p; j = 1, 2, . . . , q) and wj (j = 0, 1, 2, . . . , q) are the param-
eters or weights of the model, p is the number of input nodes and q is the number of
hidden layer nodes. In general terms, the above expression can be generalized to the
following formulation

yt = f
(
yt−1, yt−2, . . . , yt−p; w

)
(2)
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where the neural network is equivalent to a non-linear auto-regressive model in which the
function f ( ) is determined by the structure of the network.

4. Results

Initially, we present the descriptive statistics of the variables considered in the study.
Table 1 shows these statistics for the variables return_qcln, return_icln, vol_qcln, vol_icln,
temp_NY, temp_L and temp_T.

Table 1. Descriptive statistics.

Return_Qcln Return_Icln Vol_Qcln Vol_Icln Temp_NY Temp_L Temp_T

N 4376 4376 4376 4376 4376 4376 4376
Mean 0.0317 −0.0176 70,662.3 72,002.6 55.6 51.4 62.3

Median 0.1389 0.0000 14,830 25,445 55.5 51.3 63
Std 1.7893 1.6175 145,349.6 139,501.2 16.5 11.3 13.9
Min −13.9 −13.7 100 1010 8.5 11.4 34.1
Max 13.6 10.8 999,810 991,680 90.1 83.4 90.3
Skew −0.4139 −0.5235 3.3958 3.7514 −0.1744 −0.1980 −0.0133

Kurtosis 4.4585 5.5627 12.6491 15.4445 −0.9641 −0.2615 −1.1707

The sample consisted of 4376 observations from January 2010 to December 2021.
In evaluating the returns of the QCLN and ICLN assets, we observed that the former
maintained positive average returns of 0.0317%. In comparison, the latter held negative
average returns of −0.0176%. Concerning the median, 50% of the QCLN returns were
below 0.1389% and for ICLN, 50% of the returns were below 0%. The dispersion between
QCLN and ICLN was relatively similar since the standard deviations were 1.7893 and
1.6175, respectively. The minimum returns were −13.9% for QCLN and −13.7% for ICLN,
while the maximum returns were 13.6% for QCLN and 10.8% for ICLN.

Both assets presented negative skewness of −0.4139 and −0.5235 for QCLN and
ICLN, respectively. The kurtosis of QCLN was 4.4585 and that of ICLN was 5.5627, both
greater than three and indicating moderately leptokurtic distributions. As for the traded
volumes of these assets during the historical period considered, on average, approximately
70,662 QCLN securities and 72,002 ICLN securities were traded. On the other hand, 50% of
the QCLN trading volume was below 14,830 transactions, and 50% of the ICLN trading
volume was below 25,445 transactions. The dispersion of QCLN trading volume was
greater than that of ICLN, with values of approximately 145,349 and 139,501, respectively.
The minimum traded volume in the period was 100 for QCLN and 1010 for ICLN, while
the maximum traded volumes of QCLN and ICLN were 999,810 and 991,680, respectively.
Both variables presented positive skewness in the order of 3.3958 and 3.7514 for QCLN
and ICLN, respectively. Moreover, both variables presented a high typical kurtosis of the
financial variables in the order of 12.6491 for QCLN and 15.4445 for ICLN, which indicated
that the distribution of the traded volume of these securities was subject to many more
extreme values than those of a normal distribution, therefore, the normality assumption
was a very inadequate approximation for these variables.

For the variables that measured the average temperature in the cities of New York,
London and Tokyo, the average temperature in these cities during the study period was
approximately 55.6 ◦C, 51.4 ◦C and 62.3 ◦C for New York, London and Tokyo, respectively,
while the median values of the temperatures among these cities were very similar to the
previous averages. Temperature variability was highest in New York with a standard
deviation of 16.5, followed by Tokyo with a standard deviation of 13.9, and finally, Lon-
don exhibited the lowest temperature variability with a standard deviation of 11.3. The
minimum temperatures during the period for New York, London and Tokyo were 8.5 ◦C,
11.4 ◦C and 34.1 ◦C, respectively, while the maximum temperatures of New York and
Tokyo were very similar in the order of 90.1 ◦C and 90.3 ◦C, respectively, and the maximum
temperature of London during the period was 83.4 ◦C. The temperatures of the three cities
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presented positive asymmetry during the period, with a greater concentration towards the
upper tail, with asymmetry values of −0.1744, −0.198 and −0.0133 for New York, London
and Tokyo, respectively. Likewise, all three cities presented Kurtosis of less than three,
indicating a mesokurtic distribution, that is, with greater dispersion than that of a normal
distribution. More specifically, the kurtosis values for New York, London and Tokyo were
−0.9641, −0.2615 and −1.1707, respectively.

In the application of the algorithm, the three neural network architectures, namely
MLP, LSTM and GRU, were evaluated, and the linear Granger causality (AR) test was
applied to establish comparisons. Of the three types of neural networks, only MLP proved
to be valid; for LSTM and GRU, the algorithm did not produce decent results. As for
the MLP design, the calculations were performed for 30 and 60 lags, respectively, and
two hidden layers were used, each with 100 neurons, respectively. The training sample
consisted of 70% of the data and the test sample consisted of 30%. To determine the
presence of non-linear causality of X to Y, (Maciej et al., 2021) suggested using the Wilcoxon
signed-rank test, a non-parametric test that allows testing whether the prediction errors
obtained on the test set from the past-based model of X and the past-based model of both X
and Y have the same distribution (No assumption of normality is required). These data
were normalized to optimize the performance of the neural network algorithms.

Table 2 shows the results for the case of non-linear Granger causality between tem-
perature and returns. When considering 30 lags, except for the London temperature case,
in all remaining cases the null hypothesis of no non-linear Granger causality was rejected,
indicating that temperature history was a good predictor of QCLN and ICLN returns, the
same was true when considering 60 lags. Comparatively, for both lags, the null hypothesis
of no non-linear Granger causality (AR) was rejected, indicating the inability of these
methods to capture non-linear causality and the inherent bias they could lead to.

Table 2. p-values for each model and each tested lag obtained from the Wilcoxon signed-rank test
in case where Y→ X. AR describes linear Granger causality. Cases where a causal relationship was
detected are shown in bold.

Lag Value Granger Causality MLP AR

30 temp_NY 9 return_qcln 3.300 × 10−85 ** 0.9586
temp_L 9 return_qcln 0.1558 0.7259
temp_T 9 return_qcln 0.00181 ** 0.3639

temp_NY 9 return_icln 0.0004598 ** 0.9693
temp_L 9 return_icln 3.02839 × 10−52 ** 0.6994
temp_T 9 return_icln 0.02819 * 0.2961

60 temp_NY 9 return_qcln 1.189715 × 10−28 ** 0.8919
temp_L 9 return_qcln 6.802304 × 10−13 ** 0.5499
temp_T 9 return_qcln 1.066786 × 10−13 ** 0.5741

temp_NY 9 return_icln 3.579381 × 10−05 ** 0.9281
temp_L 9 return_icln 2.161692 × 10−49 ** 0.3977
temp_T 9 return_icln 1.197499 × 10−40 ** 0.3111

Notes: * p < 0.05, ** p < 0.01.

Table 3 shows the results of the non-linear and linear Granger causality testing of
temperature concerning QCLN and ICLN traded volumes in the stock market. As can
be seen in the table, we had mixed results; when 30 lags were considered, in effect, the
historical past of the average temperature of the cities of New York, London and Tokyo
were a good predictor of QCLN and ICLN traded volumes.
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Table 3. p-values for each model and each tested lag obtained from the Wilcoxon signed-rank test
in case where Y→ X. AR describes linear Granger causality. Cases where a causal relationship was
detected are shown in bold.

Lag Value Granger Causality MLP AR

30 temp_NY 9 vol_qcln 2.073000 × 10−36 ** 0.0507 *
temp_L 9 vol_qcln 4.015626 × 10−09 ** 0.0383 *
temp_T 9 vol_qcln 3.122777 × 10−108 ** 0.6730

temp_NY 9 vol_icln 4.050622 × 10−49 ** 0.3861
temp_L 9 vol_icln 1.890867 × 10−68 ** 0.9022
temp_T 9 vol_icln 2.989957 × 10−77 ** 0.0974 *

60 temp_NY 9 vol_qcln 6.542931 × 10−16 ** 0.0452 **
temp_L 9 vol_qcln 2.369952 × 10−13 ** 0.0668 *
temp_T 9 vol_qcln 1.797172 × 10−50 ** 0.1938

temp_NY 9 vol_icln 6.052480 × 10−62 ** 0.6370
temp_L 9 vol_icln 1.858961 × 10−68 ** 0.1864
temp_T 9 vol_icln 0.630244 0.0703 *

Notes: * p < 0.05, ** p < 0.01.

According to the AR column containing the results of the linear Granger causality
test, the average temperature history of New York and London caused in the Granger
sense, the traded volumes of QCLN and ICLN at the 5% significance level. The given
phenomenon indicated that the neural network captured temperature-driven non-linear
causality, and some of the linear causality was captured with linear methods. It suggested
the desirability of using both methodologies conjointly. When considering 60 lags, we also
observed the complementary effect of both approaches concerning the predictive power
of historical past average temperatures in New York and London on the QCLN traded
volume. Likewise, the past average temperatures of the cities of New York, London and
Tokyo had a non-linear impact on the QCLN and ICLN volumes. At the same time, their
respective linear counterpart did not reject the hypothesis of Granger non-causality. Finally,
it was noted that Tokyo’s history of average temperatures linearly caused ICLN traded
volume at the 5% level; the respective non-linear Granger causality hypothesis was not
rejected. This also corroborated that Tokyo is in an entirely different time zone and, hence,
has non-drastic effects on the volumes of the traded ETFs Kao and Fung [62].

This paper aimed to determine whether the average daily temperatures Granger
caused clean energy stock prices, through daily volumes and returns of exchange traded
funds (ETFs), for the period from January 2010 to December 2021. There is abundant
econometric literature on the determination of Granger causality through univariate re-
gression techniques and vector auto-regressive models; the common factor among these
techniques is the verification of linear causality. The work intended to focus on linear
and non-linear causality between temperature and clean energy stock prices and trading
volumes. In more than 90% of scenarios, i.e., 11 of 12 cases, concerning temperature and
trading volume relationship, the non-linear causal effect was found. In approximately
50% of scenarios, linear and non-linear effects were seen. Similarly, in almost all the cases,
there were non-linear effects between daily temperature rise and daily prices; however, the
presence of a linear effect was weak. The existence of non-linear behavior implied there is a
need also to increase attention on other factors apart from looking at investors’ moods, as
conducted by previous studies (Cao and Wei [24]; He and Ma [28]).

In general, real-world phenomena are mixtures of linear and non-linear behaviors.
Trying to evaluate hypotheses of interest while omitting the non-linear nature of these
phenomena has the fundamental consequence of incurring what the statistical literature
calls a type I error, i.e., rejecting the hypothesis being true. This can be clearly illustrated
through the results of our work; in Table 2, we observed that when contrasting Granger
non-causality between temperatures and returns—in the cases of New York and Tokyo
temperatures—using a linear approximation (RA), it was not possible to reject the hy-
pothesis of non-causality. Still, when using the non-linear approximation (MLP), it was
possible to reject the hypothesis of non-causality. In other words, had we conformed
to the linear approximation (RA), discarding the possible existence of non-linearity, we
would have committed a type I error; therefore, the way to minimize the possibility of
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committing a type I error in the context of Granger causality is to use both the linear and
the non-linear approximation, because we do not know ex ante which component—linear
or non-linear—determines the phenomenon.

5. Discussions and Policy Implications

Furthermore, the findings could also be integrated into studies on analyzing various
climate-related risks to green sector-specific stock prices and how they could affect the
overall cost of equity due to magnified risk premiums (Balvers [25]). The non-linear
linkages between temperature rise and price could be incorporated for policy-level analysis
at various government institutions, while meeting the needs of their sustainability goals.
On the other hand, it could be utilized by various sovereign wealth and pension funds while
it accessed risk-adjusted returns for their clean energy investments. Moreover, the given
non-linearity opens up the necessity for further inquiries into the occurrence of structural
breaks in the given relationship. The level of complexity involved with non-linear deep
learning approaches makes it difficult to find the degree of symmetry and asymmetry in a
given time series. Hence, future extensions could be performed using integrating models
such as asymmetric generalized auto-regressive conditional heteroscedasticity (GARCH)
or AGARCH to focus on this aspect. To conclude, the study approves that global climate
warming has broad economic implications not just confined to productivity and wealth
creation but also financial markets. Finally, the given work has shown the usefulness
of neural network-based methods to capture the non-linear causality of environmental
variables concerning stock market-specific variables.
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