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Abstract: Due to the stochastic characteristics of wind power generation and following varying
demands for load consumption over a planning period, the optimal reconfiguration (OR) of the radial
distribution network (RDN) represents a complex problem of a combinatorial nature. This paper
evaluates two types of optimal reconfiguration searching for an optimal solution and considering
time-varying changes. The first one is a static reconfiguration of RDN (SRRDN) made at a fixed load
consumption point and during constant generated renewable power integration. The second one is a
dynamic reconfiguration of RDN (DRRDN) made following a stochastic integration of wind energy
(WTDG) and/or variation in load demand characteristics. In total, five scenarios are investigated in
order to evaluate optimal reconfiguration of RDN (ORRDN) with the aim of reducing total active
power losses (TAPL), improving the voltage profile (VP), and minimizing switches’ change costs
(SCC). To deal with this, a hybrid optimization technique (SAMPSO) combining the simulated
annealing algorithm (SA) with a modified particle swarm optimization (MPSO) is undertaken.
This hybrid method coupled with the MATPOWER toolbox is tested on the standard IEEE 69-
bus RDN through both SRRDN and DRRDN. The results show the effectiveness of this improved
reconfiguration procedure for enhancing the test system performance. A comparison between the
proposed optimization method and previous findings’ methods is undertaken in this work. The
obtained results proved the superiority and effectiveness of the SAMPSO method in solving the
SRRDN and DRRDN problems.

Keywords: hybrid optimization; MATPOWER toolbox; distribution network; static reconfiguration;
dynamic reconfiguration; distributed generation; wind energy

1. Introduction

The distribution network (DN) is one of the main components of the electric power
delivery chain. The main role of a DN is to distribute electrical energy from high voltage
substations to the end customers by adjusting the voltage level if it is necessary [1]. Due to
the customers’ requirements, distribution system operators have faced various technical
challenges. In fact, to meet power users’ demands, power quality, system stability, reliability
level, load balance, and radial DN structure must be guaranteed [1]. Add to that, DNs
are usually operated radially to reduce operation costs and facilitate the coordination of
protections in a unidirectional power flow (PF) [2,3]. However, most of the real power
losses in power networks are caused by current flow in radial DNs [1]. Technically, real
power losses could lead to the deterioration of the voltage profile in power networks.

To ameliorate the quality and efficiency of supply, improve the system characteristics,
reduce power loss, and improve the voltage profile, numerous tools and procedures have
been presented and applied by researchers [4,5]. For instance, a multistage-based tool for
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distribution system expansion planning addressing the independent distribution system
operator and nonutility-owned distributed generation (DG) has been presented in [6].
This planning has been formulated using mixed integer programming and solved using a
Benders decomposition-based approach. An analytical approach investigating the optimal
placement of renewable DG units in DNs has been developed in [7] where the operating
cost and system loss have been considered. In other works, such as [8,9], the optimal
reconfiguration of the DN has been adopted for the minimization of operating costs, power
losses, and voltage drops.

The incorporation of DGs in electrical systems has demonstrated that is flexible and
can be directly injected into the DN. These renewable DG units provide inexhaustible green
power extracted from nearby energy sources such as solar cells (PV) or concentrators and
wind turbines (WT).

When we look for a low-cost method, we found that the reconfiguration of the DN
is the best. This methodology consists of finding a new topology by opening and closing
switches, keeping the radiality of DN. The optimal reconfiguration of the radial distribution
network (ORRDN) consists of finding the optimal topology of the DN by using optimization
techniques proposed in the literature in such a way that the losses are reduced, voltage
and current limits are not violated, all loads are connected, and the radial structure is
maintained [10,11]. The integration of optimization techniques can give faster convergence
characteristics while searching for the optimal solution for the ORRDN problem.

As the wind power and load characteristic of the distribution system varies over time,
the optimal configuration of the RDN also changes from one state to another. Indeed, the
ORRDN can be divided into a static reconfiguration (SR) and dynamic reconfiguration (DR).

In fact, the static reconfiguration of the radial distributed network (SRRDN) is to
optimize the RDN structure at a fixed load consumption point and during constant gener-
ated renewable power integration. The optimal topology obtained following the SRRDN
presents a sub-optimal solution [12].

Moreover, the dynamic reconfiguration of the radial distributed network (DRRDN) is
to optimize the network structures in real-time and during the operation of the RDN. The
optimization technique is made following the stochastic integration of renewable energy
and/or variation in load demand characteristics.

The research on DR is a more practical approach. It is about the improvement of the
optimal algorithm used to make the methodology more efficient and the optimization
results more accurate. So, the obtained configuration presents an optimal solution reaching
the global optimum.

The problem of the ORRDN has been studied by many other researchers from various
aspects, including the reconfiguration techniques, the type of objective function (mono-
objective/multi-objective), the optimization algorithms (heuristic/metaheuristic), the type
of reconfiguration (static/dynamic), the network characteristics (balanced/unbalanced),
and the quality of several integrations (constant/stochastic).

In [13], the authors have proposed a branch exchange methodology to find the optimal
configuration of the DN with the aim of reducing loss and improving load balancing. With
the same objective of minimizing losses and improving load balancing, the authors in [14]
have used the runner root algorithm to overcome the multi-objective OR problem.

In [15], a time interval loss index (TILI) has been proposed to evaluate the TAPL
performances of the tested DN after achieving the proposed reconfiguration based on a
comprehensive analysis of operation scenarios over a long-term operating period.

With the aim of TAPL reduction and also enhancing the voltage quality following a DN
reconfiguration, the authors in [16] applied a chaotic stochastic fractal search algorithm (CSFSA).

In [17], the problem of optimal allocation and sizing of DGs in the DN has been
solved by means of an EO algorithm by considering a mono-objective function. This same
new promising algorithm has been proposed in [18] for overcoming the problem of the
ORRDN but now by considering multi-objective fitness functions such as minimizing TAPL,
maintaining bus voltages at expected values, and enhancing some reliability indices.
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The main novelty of the approach presented in [19] has been the inclusion of a path re-
linking phase in order to accelerate the convergence characteristics of the ORRDN problem.
In that work, an improved harmony search (IHS) algorithm was implemented to find the
optimal topology of the DN.

In [20], the authors applied a matrix shifting and an interval merger based on the DR
method on three test RDNs to achieve the optimal solution characterized by the best line
loss reduction with an acceptable computational cost.

A moth–flame optimization methodology was mentioned in [21] to solve the ORRDN
problem considering power losses and network reliability. With the same aim of reducing
power losses, improved selective BPSO and GA-based methods have been proposed,
respectively, in [22,23], to overcome the reconfiguration problem of the balanced network.

To take into account the effect of embedding DGs in the DN when applying an ORRDN,
an adaptive cuckoo search algorithm, GA, and an improved sine-cosine algorithm have
been proposed in [24].

Authors in [25] have proposed a multi-objective reconfiguration procedure of bal-
anced networks with the purpose of minimizing power losses and enhancing reliability
considering demand response services.

In [26], a knee-point driven evolutionary algorithm along with the three-point estima-
tion (KnEA-PE) method has been applied to three tested DNs to overcome the ORRDN
problem. So, the fitness function of this multi-objective optimization problem consists of
minimizing both TAPL and the number of switching operations as well as maximizing the
voltage stability margin.

The ORRDN methodology presented in reference [27] was essentially based on a
fuzzy multi-criteria approach (FMCA) using a new improved corona-virus herd immunity
optimizer algorithm (ICHIOA) and has been tested on an unbalanced DN. This technique
has been simulated for both single and multi-objective optimization with a fitness function
including TAPL minimization, voltage sag improvement, voltage magnitude, and no
supplied energy minimization.

In [28], the authors presented the dynamic reconfiguration of a balanced network as
a multi-objective minimization problem where the objective functions were power losses
and switching costs.

The authors in [29] used the selective bat algorithm (SBAT) combined with the EPRI-
Open DSS software to solve the DNR problem in consideration of balanced and unbalanced
networks with different power levels.

In [30], an Ant lion optimizer was suggested to overcome the reconfiguration problem
of the unbalanced network with the main goal of improving the power quality of the whole
system.

From the literature review, it is found that optimal reconfiguration of RDN was
converted into an optimization problem where system losses and/or improvement of the
voltage profile have been considered objective functions. The originality of the present
work compared with the aforementioned works lies in proposing not only a point-valued
reconfiguration procedure, known by researchers as SRRDN, evaluated at a fixed load
consumption point but also an interval-valued estimated procedure considering stochastic
wind energy and load variation to demonstrate the usefulness of the DRRDN. Moreover, the
methodology addressed in this study consists of alternating distribution network switches
by evaluating five scenarios of incorporation between a constant integration of DG, a
dynamic variation of the load consumption, and a stochastic integration of WTDG.

In the simulation, a metaheuristic optimization technique combining SA optimization
with a modified PSO optimization was undertaken with the aim of reducing TAPL, im-
proving VP, and even decreasing the SCC when it is subject to DR. The proposed hybrid
method referred to as SAMPSO is coupled with the MATPOWER toolbox, software that is
used for power flow calculation. The proposed strategy was tested on the standard IEEE
69-bus RDN where various scenarios are studied. The results found are then discussed to
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show the effectiveness of the ORRDN procedure when applied for the enhancement of the
test system performance.

1.1. Paper Contribution and Motivation

The significant contributions of the proposed study include:

• The resolution of both static and dynamic reconfiguration problems affecting the RDN
by considering various scenarios, which are the SRRDN on a specific point of load
consumption with and without DGs integration, the SRRDN over different load levels,
the DRRDN following a stochastic variation in daily load consumption curve, and,
finally, the DRRDN following the stochastic integration of WTDG and variation in
daily load consumption curve.

• A hybrid SAMPSO optimization method, combining the SA algorithm with the
MPSO method, is proposed in this work to find the optimal configuration of the DN
(global solution).

• In order to quickly sort solutions, lead to notable improvements in the systems’ per-
formance, and enhance network profitability, reliability, and feasibility under several
conditions, the suggested metaheuristic optimization method is combined with an
open-source MATLAB toolbox, called MATPOWER, for power flow calculation.

• The suggested SAMPSO method is validated on the standard IEEE 69-bus RDN by sat-
isfying technical objectives such as TAPL reduction and voltage profile improvement.
The minimization of switching costs is also considered when applying the DRRDN.

• The superiority of the SAMPSO method is demonstrated by comparing its results with
other existing techniques.

• Broadly speaking, this improved and tested optimization technique can be applied in
other future works on the existing offshore ASHTART network of the Company for
Study, Research and Exploitation of Petroleum in Tunisia, named SEREPT, with the
aim to continue this research direction, to develop this promising remote region, and
to apply the proposed technique in the real-world.

1.2. Paper Organization

The remainder of the paper is divided into four sections as follows. The first one,
which is Section 2, provides a mathematical formulation of the optimal DN reconfiguration
problem. The proposed hybrid SAMPSO optimization method is presented in Section 3.
Section 4 reports and illustrates the simulation results obtained from the investigation of
the five scenarios. Finally, Section 5 includes some concluding remarks.

2. Problem Formulation
2.1. Reconfiguration Technique

In this study, the ORRDN is based on the branch opening and closing technique with
normally closed and normally open switches characterizing the RDN.

During the process of the OR and at each iteration, the verification of the radial
structure is a primary task. So, this verification is done by identifying the loops created
following the closing of all switches of the DN and by ensuring that only one switchable
line segment is still open.

Figure 1 shows an example of the three-loop network [31]. The components of each
loop are as follows.

• Loop 1: {L2 L4 L5}
• Loop 2: {L1 L3 L4}
• Loop 3: {L5 L6 L7}
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2.2. Objective Function, Premises, and Constraints

The ORRDN can be obtained through the minimization of TAPL and the improvement
of VP. In this study, the objective function (OF) used for the optimal reconfiguration problem
is expressed by Equation (1) [32].

FObjective = min (TAPL) (1)

where

TAPL = ∑nb
X=1 KXRX (

P2
X + Q2

X
V2

X
) (2)

The OF is minimized subject to several constraints [33,34], as follows.

(i) Voltage constraint:

Vmin ≤ Vx ≤ Vmax (3)

(ii) The main bus voltage is 1 pu.
(iii) Load flow constraint:

Px + PDG,x = Ploss,x + Pload,x (4)

(iv) Network topological constraints which simultaneously take into account the radial
structure of the DN and uninterrupted loads [35].

It is worth noting that the radial structure of the DN indicates that no loops are allowed
in the networks, whilst uninterrupted loads mean that all loads must be connected to the
network, so every bus should be connected via one path to the substation.

In addition to the presentation of the objective function and the various constraints, it
is necessary to introduce some premises characterizing the studied problem, such as:

(i) The load is modeled as a uniform constant power during the SR and as a stochastic
power during the DR.

(ii) The DG unit is connected to represent a PQ-type bus. Hence, it generates only active
power and it is considered a negative power injection (same for the WTDG).

(iii) Wind power injected into the RDN during the insertion of WTDG is produced from a
doubly fed asynchronous machine (MADA).

It should be noted that the use of MADA in simulation studies is not arbitrary. Indeed,
the choice of MADA is due to its significant advantages, such as better performance at
variable wind speeds, easy maintenance, its ability to reduce the converter’s size up to 70%,
and its suitable price. Moreover, the proposed ORRDN method is expected to be applied in
future work on an existing ASHTART offshore network belonging to the society of study,
research, and exploitation of petroleum in Tunisia, called SEREPT, where MADA-based
wind turbines are already installed.
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where,
X Bus number.
nb Total number of branches.

KX
Switch state of outgoing branch of bus X, where 0 means open state and 1 means
closed state.

RX Resistance of outgoing branch of bus X.
PX Active power flowing out from bus X.
QX Reactive power flowing out from bus X.
PDG,x DG’s active and reactive powers into bus X.
Ploss,x Active power losses in outgoing branch of bus X.
Pload,x Active load power in outgoing branch of bus X.
VX Voltage at bus X.
Vmin Minimum allowable voltage of VX (Vmin = 0.9 pu).
Vmax Maximum allowable voltage of VX (Vmax = 1.05 pu).
IX Current of outgoing branch of bus X
IXmax Maximum allowable current of IX .

2.3. Power Flow Calculation Procedure

The calculation of the power flow (PF), also called the calculation of the distribution
of the load flow (LF), is one of the most used tools for the analysis, operation, and planning
of the DN for a given state (static or dynamic state).

In this study, PF is calculated using the MATPOWER simulation toolbox implemented
under MATLAB. MATPOWER was originally developed by Ray Zimmerman and his
colleagues at Cornell University, under the direction of Robert Thomas, in 1997. This tool
presents a powerful set of programming under MATLAB, ensuring the calculation of the PF
and the determination of the optimal power flow (OPF) for a given simulation state. Thus,
it can be applied while being combined with metaheuristic optimization tools in terms
of validation of the OF of the DN [36]. The MATPOWER process is characterized by its
flexibility during use and also when modifying the original code. The use of MATPOWER
for solving both PF and OPF problems requires an adequate and correct implementation of
the different case information of such a studied network [37]. The process of MATPOWER
is presented in three steps, as shown in Figure 2.
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3. Proposed Hybrid SAMPSO Optimization Method
3.1. Simulated Annealing Algorithm (SA)

In 1983, Kirkpatrick proposed a simulated annealing (SA) algorithm based on the
analogy between annealing solids and the problem of solving a combinatorial optimization
problem [38].

The process of SA consists of [39]:

(i) Starting from a known fundamental state with particles of the solid arranged in a
highly structured network with the minimum energy of the system;

(ii) Heating the solid by increasing its temperature (T) in a heat bath until the solid melts
into a liquid and obtains randomly arranged particles;

(iii) Lowering its temperature slowly.

SA is a random search process characterized by the ability to solve large and complex
combinatorial optimization problems.

It is the most popular algorithm for obtaining a single solution during a well-determined
time. Indeed, its principle consists of starting from a stochastic initial solution and an
iterated algorithm and trying to approach the global minimum of the OF without slipping
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into the local minima thanks to the acceptance probability function (APF) with approval or
rejection of a newly updated solution.

Its resolution process includes [38]:

(i) Initialization;
(ii) Cooling rate;
(iii) Upgrade;
(iv) Probability of approval of the research procedure.

The major drawback of this optimization is that any configuration leading to an
improvement in the OF is accepted. So, the result obtained following a Simulated Annealing
optimization cannot be always optimal, and in this situation, we can mention a sub-optimal
solution verifying the suggested OF but not leading to the best optimal solution.

Therefore, it is probably also a matter of accepting configurations corresponding to a
worse OF with a high APF which decreases with temperature.

To conclude, it can be said that the solution obtained following a SA optimization
method corresponds to a local solution instead of a global and optimal solution.

3.2. Modified Particle Swarm Optimization (MPSO)

In 1995, James Kennedy and Russell C. Eberhart invented a new optimization algo-
rithm called the particle swarm optimization (PSO) technique which was mainly based on
the simulation of the psychosocial expression of birds and fish [40]. Indeed, the concept of
PSO was originally a simulation of a simplified social system and has proven to be robust
in solving linear and other non-linear problems [41]. In addition, PSO is the system’s model
of the social structure of similar basic creatures that come together to form a group with a
common goal, such as foraging.

In this context, it is essential to obtain the best part of the population (optimal solution)
for a group with the same activity (OF).

The principle of PSO is very simple; it consists of a group (swarm) of individuals
(particles) moving in space and searching for the best solution (global optimum). Its basic
concept is to accelerate each particle towards its Pbest and Gbest locations, with a random
weighted acceleration at each time step [42,43].

To better reach an optimal solution, a modified PSO (MPSO) methodology is proposed
in this study. MPSO offers a new sigmoid function capable of increasing the control of the
particle update rate and improving the convergence characteristic. The main advantages of
MPSO are:

(i) The use of the sigmoid function in the control of the rate of variation of the particles
to obtain perfect solutions.

(ii) The exploitation of all the search space to discover the best solution as quickly
as possible.

(iii) The use of a better method to improve the convergence of the population and reduce
the number of possible iterations.

To solve the ORRDN by using MPSO optimization, the following equations should be
implemented:

wk = wmax − wmax − wmin

kmax k (5)

vk+1
ij = wkvk

ij + c1r1(Pbesti − xk
ij) + c2r2(Gbest − xk

ij) (6)

xk+1
ij = Sij = loop(ceil(sig(vk+1

ij ), j) (7)

sig(vk+1
ij ) =

length
(
non zero

(
loopj

))
1 + e−vk+1

ij
(8)
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where:
wk Inertia weight factor (wk ≥ 0).
K Current iteration number.
c1, c2 Acceleration coefficients (c1 ≥ 0 and c2 ≥ 0).
r1 ,r2 Random numbers within the range [0, 1].
vk

ij Velocity of particle in the search space at iteration k.
xk

ij Current position of particle i in the search space at iteration k.
wmin,
wmax Minimum and maximum inertia factor weights.

kmax Maximum number of iterations.

3.3. A Hybrid SAMPSO Algorithm Combined with the MATPOWER Toolbox

To obtain the most optimal solution for the RDN reconfiguration problem, a hybrid
algorithm called SAMPSO is proposed in this work. The suggested methodology is to
combine the SA algorithm with the modified PSO optimization for faster, optimal, and
better optimization.

Indeed, SAMPSO uses controlled probability in SA to avoid local minima and accepts
all solutions found at high temperatures, and audits accepted solutions at low temperatures.
This procedure is no longer done in a randomized way, on the contrary, it is organized in a
very orderly manner. For this, the use of the sigmoid function to characterize the modified
PSO technique is essential.

The detailed approach based on the SAMPSO algorithm combined with the MAT-
POWER toolbox to solve the problem of the ORRDN to achieve the OF of the studied cases
is depicted in the following steps.

Step 1. Load case information: the system data, generator data, bus data, and branch data,
are saved in a MATPOWER case file.
Step 2. Calculate voltages at each node and total power loss in the distribution network at
the initial state using the MATPOWER toolbox.
Step 3. Initialize the temperature parameter Tmax.
Step 4. Set a temperature change counter n = 0 and a repetition counter K at each tempera-
ture value.
Step 5. Generate a random configuration, Xi, for the search space, S.
Step 6. Check the radial configuration of the distributed network.
Step 7. Initialize the Swarm parameters: define the bounds of the velocity, Vbmax and Vbmin,
specify the inertial weight, w, and the values of the acceleration coefficients, c1 and c2,
and assign the initial position Xi = [xi1, xi2, . . . , xin] and velocity Vbi = [vbi1, vbi2, . . . , vbin]
randomly.
Step 8. Compute the fitness function for each particle, f (X0i).
Step 9. Find fitness value of fitness function, Fbest0=min(f (X0i)).
Step 10. Update the weight coefficient, velocity, and position of the particle using
Equations (5)–(7), respectively.
Step 11. Calculate PF for an updated particle with the MATPOWER toolbox, check the
network’s radiality, and display all results.
Step 12. Compute the new fitness function for each particle, f (Xi), using updated particle
position and velocity.
Step 13. Find Fbest = min(f (Xi)).
Step 14. Set the new Pbest,i, and the corresponding new fitness function, Fbest,i.
Step 15. Update new Pbest and Gbest; if the fitness fuction Fbest,i < Fbest, then update Gbest =
Pbest,i and Fbest = Fbest,i.
Step 16. Calculate ∆= Fbest0 − Fbest,i.
Step 17. If ∆ < 0, then X0i = Xi; if random (0,1) < exp(−∆/T), then X0i = Xi.
Step 18. Repeat the above procedure (K = K + 1 and n = n + 1) starting with step 10 until the
stopping criterion and print out the optimal solution to the target problem.
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The detailed process of the ORRDN using the SAMPSO algorithm combined with the
MATPOWER toolbox is depicted in the flowchart in Figure 3.
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4. Simulation Results and Discussion
4.1. Simulation Procedure

To achieve the efficacy of the proposed SAMPSO approach, the established procedure
is implemented by MATLAB software and tested on the standard IEEE 69-bus RDN. In the
simulation work, there are five scenarios to be investigated.

(i) Scenario 1: Static reconfiguration of the test system at a normal load level characterized
by a specific point of load consumption.

(ii) Scenario 2: Static reconfiguration of the test system at a normal load level with an
optimal integration of DGs. It can be mentioned here that DGs with an optimal size
and placement are used based on the results of previous work given in [44].

(iii) Scenario 3: Static reconfiguration of the test system at different load levels.
(iv) Scenario 4: Dynamic reconfiguration of the test system following a stochastic variation

in the daily load consumption curve.
(v) Scenario 5: Dynamic reconfiguration of the test system following the stochastic inte-

gration of WTDG and variation in the daily load consumption curve.

These different scenarios allow for showing the effects of the static and dynamic
reconfiguration on the network parameters, such as voltage profile and real power losses.

It should be stated here that the OPF problem in this study is solved by MATPOWER,
whose main aim is to provide a simulation tool within MATLAB that is easier to use and
modify [45,46].

4.2. Simulation Results for the Static Reconfiguration of the Standard IEEE 69-Bus RDN

The results of the feeder system in relation to the above-mentioned scenarios based on the
static reconfiguration (SR) of the standard IEEE 69-bus RDN are reported in this subsection.

4.2.1. Scenario 1

To begin with, scenario 1 consists of determining the ORRDN using a hybrid SAMPSO
methodology and verifying the objective function given by Equation (1). In fact, this
simulation procedure is achieved at a specific value of load consumption and without the
integration of DGs.

The radial system, shown in Figure 4a, is considered the initial topology of the IEEE
69-bus system before its optimal reconfiguration and without the integration of DG units.
It has one main line and seven lateral lines. The system contains 69 buses and 68 branches.
In its initial state, this network consists of 68 sectionalizing switches, which are considered
normally closed, and 5 tie-switches which are considered normally open. In Figure 4, solid
black lines indicate branches in service, dashed red lines represent inactive or out-of-service
branches and small arrows in blue color represent loads.

The state vector associated with any system topology is expressed as follows:

X = [S1 S2 . . . ..SN] (1 × N) (9)

where:
S1, S2, . . . SN represent the switches selected to be opened for a new configuration

taken from the vectors formed by the loops created by the closing of all the switches, and N
is the number of vectors or loops formed by closing the tie-switches.

So, the initial state vector corresponding to the initial topology of IEEE 69-bus RDN is
X = [69, 70, 71, 72, 73].

Under initial operating conditions, the system is characterized by a TAPL in the order
of 225.0007 KW and a total reactive power loss (TRPL) in the order of 102.1648 KVAR.

At the end of a set of simulations, an ORRDN is obtained and it is characterized by a
new configuration of this network with an optimal topology as shown in Figure 4b. This new
topology ensures that the network is always radial and that all connected loads are powered.
The final state vector following the first scenario is X = [10, 17, 45, 55, 64]. This result is
obtained by considering the same evaluation criteria of the optimal solution for all iterations.
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The convergence characteristic of the OF using MPSO and SAMPSO optimization
is illustrated in Figure 5. It demonstrates the efficiency and superiority of the proposed
hybrid SAMPSO algorithm when it is applied to the standard IEEE 69-bus RDN to find the
most optimal configuration.
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The impacts of the ORRDN obtained by using the suggested SAMPSO-based proce-
dure and other techniques are presented in Table 1.
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Table 1. Results of the ORRDN for IEEE 69-Bus System (scenario 1).

Optimal Reconfiguration Open Switches Min. Voltage (pu) TAPL (KW) TAPL Reduction (%) TAPL Saving (KW)

Initial Topology 69, 70, 71, 72, 73 0.9092 225.0007 - -

Optimal Topology

HSA method in [47] 14, 55, 61, 65, 70 0.9428 99.59 55.74 125.4107

SSOE method in [48] 13, 57, 61, 69, 70 0.9428 99.69 55.68 125.3107

MPSO method in [49] 14, 58, 61, 69, 70 0.9523 98.86 56.062 126.14

BSPSO method in [50] 14, 56, 61, 69, 70 0.9495 98.60 56.18 126.4007

SA method in [51] 12, 19, 56, 63, 69 0.9410 96.97 56.9 128.0307

Proposed SAMPSO 10, 17, 46, 56, 65 0.9530 85.6837 61.91 139.317

It can be seen from Table 1 that the proposed optimization provides the lowest TAPL
which is in the order of 85.6837 KW. Therefore, the corresponding TAPL reduction is around
61.91% compared to the initial configuration characterized by a TAPL equal to 225.0007 KW.

Moreover, Table 1 shows that the proposed optimization technique used in this work
to find the optimal configuration of the IEEE 69-bus RDN leads to better results compared
to the other techniques in terms of the percentage reduction in TAPL and improvement in
minimum voltage value (MVV).

Figure 6 illustrates the VP at all busses and reveals that in the initial state (before the
ORRDN), this network has a minimum voltage equal to 0.9091 pu found at bus 65. After
achieving the ORRDN, a new VP is established with a minimum value equal to 0.9530 pu
at bus 64.
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Figure 6. VP following the SAMPSO reconfiguration of IEEE 69-bus RDN (scenario 1).

Figure 7 shows the APL at each branch before and after the SAMPSO reconfiguration
of the IEEE 69-bus RDN. It is clear that before reconfiguration the highest value of the APL
is equal to 49.684 kW, obtained at branch 56. The maximum value of the APL is reduced to
21.255 kW for the new configuration and is obtained at branch 72 of the DN.
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Figure 7. Active power losses at each branch following the SAMPSO Reconfiguration of IEEE 69-bus
RDN (scenario 1).

4.2.2. Scenario 2

This second scenario consists of the incorporation of SRRDN (in an exact point of load
consumption) and the optimal insertion of DGs characterized by a well-defined output
power. The study of this scenario will be based on the results of a subsequent work [44]
presenting the optimal size and location of DGs in the DN. In fact, two DGs are injected
into IEEE 69-bus RDN at both buses 17 and 62 with an optimal size equal to 0.55 MW and
1.53 MW, respectively.

The state vector corresponding to the initial topology of the test network before
reconfiguration is X = [69, 70, 71, 72, 73], as shown in Figure 8a.
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The OR of the network using the proposed SAMPSO algorithm is completed as soon
as the optimal solution is obtained, putting the DN under a new radial topology. Therefore,
a new state vector is established having the form X = [10, 11, 13, 57, 64], as presented in
Figure 8b. In Figure 8, solid black lines, dashed red lines and small arrows in blue have
same significance as in Figure 4.

Figure 9 and Table 2 both show that this optimal solution led to a considerable im-
provement in VP after a comparison with the initial state (scenario 1), which well justifies
the importance of the application of this second scenario. It can be added that the improve-
ment in voltage values following the optimal reconfiguration of the RDN IEEE 69-bus with
an optimal injection of 2 DGs affected almost all buses. Hence, an improvement in the
minimum voltage value from 0.9719 pu to 0.976 pu, is obtained at the same bus 64.
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Figure 9. The VP following the SAMPSO reconfiguration of IEEE 69-bus RDN with and without
DG injection.

Table 2. Comparative results of the ORRDN for IEEE 69-Bus System.

SAMPSO
Reconfiguration TAPL (kW) TRPL (kVAR)

Min. Voltage
TAPL Reduction (%) Tie-Switches

Voltage Value (pu) Bus
Num.

Case without DG
Integration

Initial Topology 225,0007 102.1647 0.9092 65 - 69, 70, 71, 72, 73

Optimal Topology 85.6837 113.5306 0.9530 64 61.91 10, 17, 45, 55, 64

Case with DG
Integration

Initial Topology 71.7401 37.4484 0.9719 64 68.16 69, 70, 71, 72, 73

Optimal Topology 30.8907 44.06194 0.9760 64 86.27 10, 11, 13, 57, 64

The above table demonstrates a reduction in TAPL from 225 kW at the initial state to
an optimal value equal to 30.89 kW in the state with DG units and a TAPL reduction value
of around 86.27% which improves the reliability of the whole system.

The TAPL of all the branches for all the cases proposed is shown in Figure 10.



Sustainability 2022, 14, 11208 15 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

The above table demonstrates a reduction in TAPL from 225 kW at the initial state 

to an optimal value equal to 30.89 kW in the state with DG units and a TAPL reduction 

value of around 86.27% which improves the reliability of the whole system. 

 

Figure 9. The VP following the SAMPSO reconfiguration of IEEE 69-bus RDN with and without 

DG injection. 

The TAPL of all the branches for all the cases proposed is shown in Figure 10. 

By and large, it could be said that all results found after those two scenarios prove 

that the new optimal configuration obtained during the SRRDN of the DN in the pres-

ence of DGs gives better results in terms of TAPL minimization and VP improvement. 

 

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
1

2 3 4 5
6

7
8

9
10

11
12

13
14

15

16

17

18

19

20

21

22
23

24
25

26
27

28
29

30
31323334353637383940

41
42

43
44

45
46

47
48

49

50

51

52

53

54

55

56

57
58

59
60

61
62

63
64

65
66 67 68 69

Before Reconfiguration  (without DG) After Reconfiguration (without DG)

Before Reconfiguration (with DG) After Reconfiguration (with DG)

0

10

20

30

40

50

60

1 3 5 7 9 1113151719212325272931333537394143454749515355575961636567697173

A
ct

ri
v
e 

p
o

w
er

 l
o
ss

es
 (

k
W

)

Branches

Before Rconfiguration (without DG) After Reconfiguration (without DG)

Before Reconfiguration ( with DG) After Reconfiguration (with DG)

Figure 10. Active power losses at each branch following the SAMPSO reconfiguration of IEEE 69-bus
RDN (scenario 2).

By and large, it could be said that all results found after those two scenarios prove that
the new optimal configuration obtained during the SRRDN of the DN in the presence of
DGs gives better results in terms of TAPL minimization and VP improvement.

4.2.3. Scenario 3

This scenario consists of applying the ORRDN using the suggested SAMPSO method
on the same test network with different load levels, ensuring that the new topology best
fulfills the objective function mentioned in this work and that the structure of the network
always remains radial. The load level is described by the following equation.

PL = µ PL0

where PL is the actual load and PL0 is the initial load.
In this third scenario, three levels of load demand are tested:

(i) Normal load (NL) for each bus of the RDN (µ = 1),
(ii) Light load (LL) is obtained when the value of the normal load is reduced by 10% (µ = 0.9),
(iii) Heavy load (HL) resulting from a 30% increase in the value of the normal load for the

RD buses (µ = 1.3).

Figure 11a,b, show the VP before and after the optimal reconfiguration of the RDN for
µ = 0.9 and µ = 1.3, respectively. The results mentioned in these two figures, and through
Table 3, indicate a significant improvement in voltage magnitudes for most buses after
achieving optimal reconfiguration.

It is important here to mention that for the configured state and all load levels, the
lowest voltage occurred at bus 64 with amounts of 0.9530 pu for NL, 0.9579 pu for LL, and
0.9381 pu for HL.

From Table 3, it is obvious that the TAPL for the basic configuration are of the order of
178,9448 KW for µ = 0.9, 225,0007 KW for µ = 1, and 403,2863 KW for µ = 1.3. The OR with
the proposed SAMPSO method saves 106 KW in TAPL at LL, 139 KW in TAPL at NL, and
253 KW in TAPL at HL.

In comparing the results mentioned in the last row of Table 3, we notice that the state
vector corresponding to the optimal topology of the DN differs from one load level to
another. Indeed, the new configuration of the system for µ = 1 admits as final state vector
X = [10, 17, 45, 55, 64]. For µ = 0.9, this state vector changes and becomes X = [10, 17, 45,
56, 64], from which another new configuration is established. For µ = 1.3, the state vector
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corresponding to this optimal solution is X = [10, 17, 45, 58, 64], thus leading to another
new optimal topology.
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Figure 11. The VP following the SAMPSO reconfiguration of IEEE 69-bus RDN (scenario 3): (a) Light
Load and (b) Heavy Load.

Table 3. Results of the ORRDN for IEEE 69-Bus System (scenario 3).

SAMPSO
Reconfiguration Results

Different Load Factors

Light (0.9) Normal (1.0) Heavy (1.3)

Initial Topology

TAPL (kW) 178.9448 225.0007 403.2863

TRPL (kVAR) 81.33799 102.1648 182.5133

Min. volt
« Vmin »

Value (pu) 0.9191 0.9092 0.8781

Bus Num. 65 65 65

Optimal Topology

TAPL (kW) 72.8517 85.6837 150.2000

TRPL (kVAR) 91.2312 113.5306 196.6374

Min. volt
« Vmin »

Value (pu) 0.9579 0.9530 0.9381

Bus Num. 64 64 64

TAPL réduction (%) 59.2881 61.91 62.7559

Tie Switchers 10/17/45/56/64 10/17/45/55/64 10/17/45/58/64

The impact of this third SR on the APL, in each branch of the studied RDN and for
each load level (HL and LL), is illustrated in Figure 12.

Overall, scenario 3 clearly shows that the new topology found for all tested load
levels is not always the same and changes from one level to another. Hence, it is obvious
that an optimal topology at one time may not be so at another. For example, an optimal
configuration for peak hours may no longer be optimal for off-peak hours due to the change
in load demand behavior of the network during a given day, for which the simulation of
scenario 4 becomes essential.

4.3. Simulation Results for the Dynamic Reconfiguration of Standard IEEE 69-Bus RDN

The results of the feeder system in relation to the above-mentioned scenarios in relation
to the DR of Standard IEEE 69-bus RDN are reported in this section. Another objective
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function was added in the evaluation of the DRRDN consisting of minimizing switches’
change costs (SCC).

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 28 
 

 

Table 3. Results of the ORRDN for IEEE 69-Bus System (scenario 3). 

SAMPSO Re-

configuration 
Results 

Different Load Factors 

Light (0.9) Normal (1.0) Heavy (1.3) 

Initial Topology 

TAPL (kW) 178.9448 225.0007 403.2863 

TRPL (kVAR) 81.33799 102.1648 182.5133 

Min. volt  

« Vmin » 

Value (pu) 0.9191 0.9092 0.8781 

Bus Num. 65 65 65 

Optimal Topo-

logy 

TAPL (kW) 72.8517 85.6837 150.2000 

TRPL (kVAR) 91.2312 113.5306 196.6374 

Min. volt  

« Vmin » 

Value (pu) 0.9579 0.9530 0.9381 

Bus Num. 64 64 64 

TAPL réduction (%) 59.2881 61.91 62.7559 

Tie Switchers 10/17/45/56/64 10/17/45/55/64 10/17/45/58/64 

From Table 3, it is obvious that the TAPL for the basic configuration are of the order 

of 178,9448 KW for μ = 0.9, 225,0007 KW for μ = 1, and 403,2863 KW for μ = 1.3. The OR 

with the proposed SAMPSO method saves 106 KW in TAPL at LL, 139 KW in TAPL at 

NL, and 253 KW in TAPL at HL. 

In comparing the results mentioned in the last row of Table 3, we notice that the 

state vector corresponding to the optimal topology of the DN differs from one load level 

to another. Indeed, the new configuration of the system for μ = 1 admits as final state 

vector X = [10, 17, 45, 55, 64]. For μ = 0.9, this state vector changes and becomes X = [10, 

17, 45, 56, 64], from which another new configuration is established. For μ = 1.3, the state 

vector corresponding to this optimal solution is X = [10, 17, 45, 58, 64], thus leading to 

another new optimal topology. 

The impact of this third SR on the APL, in each branch of the studied RDN and for 

each load level (HL and LL), is illustrated in Figure 12. 

  
(a) (b) 

Figure 12. Active power losses at each branch following the SAMPSO reconfiguration of IEEE 

69-bus RDN (scenario 3): (a) Light Load and (b) Heavy Load. 

Overall, scenario 3 clearly shows that the new topology found for all tested load 

levels is not always the same and changes from one level to another. Hence, it is obvious 

that an optimal topology at one time may not be so at another. For example, an optimal 

configuration for peak hours may no longer be optimal for off-peak hours due to the 

change in load demand behavior of the network during a given day, for which the sim-

ulation of scenario 4 becomes essential. 

0

5

10

15

20

25

30

35

40

45

1 5 9 13172125293337414549535761656973

A
ct

iv
e 

p
o

w
er

 l
o
ss

es
 (

k
W

)

Branches

Before Reconfiguration After Reconfiguration

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

A
ct

iv
e 

p
o

w
er

 l
o
ss

es
 (

k
W

)

Branches

Before Reconfiguration After Reconfiguration

Figure 12. Active power losses at each branch following the SAMPSO reconfiguration of IEEE 69-bus
RDN (scenario 3): (a) Light Load and (b) Heavy Load.

In reality, changing the switch’s state from one hour to another hour presents a hard
and expensive task for network operators. So, minimizing switches’ change cost consists
of a simple choice of an optimal topology used for the whole day, avoiding the task of
pinpointing switches from one optimal topology to another one during the 24 h of the
tested day. In fact, the optimal topology chosen is the best for verifying the OF of our work
(minimizing TAPL and improving MVV).

4.3.1. Scenario 4

Since the load consumption characteristic of a DN varies over time, the fourth scenario
consists of studying the DR using the suggested SAMPSO optimization technique applied
during the SR, over a time horizon divided into 24 h. The optimal reconfiguration problem
of the RDN is solved for the stochastic variation of the daily load consumption don4
February 2020, as given in Figure 13.
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Figure 13. Stochastic variation of daily load consumption during 04/02/2020 [52].

Results of the DRRDN for IEEE 69-Bus System under scenario 4 are tabulated in
Table 4.
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Table 4. Results of the DRRDN for IEEE 69-Bus System (scenario 4).

Hours

Before Reconfiguration After Reconfiguration TAPL
Reduction

(%)

Number
of Switches

ChangesTie-Switches TAPL
(kW)

Min. Volt
« Vmin » Tie-Switches TAPL

(kW)
Min. Volt
« Vmin »

01.00

69
,7

0,
71

,7
2,

73

297.1639 0.895512 69/17/45/56/64 120.3527 0.946359 59.49955
1

02.00 252.6092 0.903731 69/16/45/56/64 104.1738 0.949893 58.76088

3

03.00 252.6092 0.903731 10/17/45/57/64 101.2358 0.950374 59.92393

1

04.00 223.1851 0.909556 10/17/45/56/64 89.98635 0.953227 59.68085

1

05.00 207.0485 0.912911 10/17/45/58/64 83.76805 0.954881 59.54182

2

06.00 211.4775 0.911978 10/14/45/55/64 86.17345 0.95442 59.25173

3

07.00 251.6089 0.903923 69/17/45/58/64 102.8454 0.950444 59.12491

2

08.00 225.0007 0.909186 10/17/45/55/64 85.68373 0.953045 61.91864

3

09.00 381.9756 0.881393 10/17/12/57/63 138.6104 0.939804 63.71223

4

10.00 381.9756 0.881393 69/13/12/55/62 121.4813 0.949764 68.19659

4

11.00 380.6849 0.881596 10/16/45/55/64 149.1105 0.939728 60.83100

4

12.00 373.1327 0.882788 42/17/71/57/64 150.228 0.940263 59.73872

3

13.00 383.2009 0.881201 69/17/45/55/64 152.7166 0.939512 60.14712

3

14.00 380.6849 0.881596 10/13/45/58/64 150.3644 0.939728 60.50161

5

15.00 345.0147 0.887335 69/17/71/54/63 138.2998 0.942458 59.91482

4

16.00 325.0979 0.890666 10/17/45/57/62 131.9472 0.938675 59.41309

2

17.00 311.4464 0.893008 69/17/45/57/64 125.7871 0.945151 59.61195

2

18.00 320.5072 0.891448 42/17/71/57/64 130.3142 0.9444 59.34127

1

19.00 373.1327 0.882788 42/17/45/57/64 151.6482 0.940263 59.35811

2

20.00 393.5086 0.879597 9/17/45/55/64 155.1806 0.938784 60.56488

2

21.00 357.008 0.885374 42/17/45/57/64 145.5237 0.941493 59.23798

3

22.00 316.0172 0.892218 10/13/45/56/64 126.2721 0.944797 60.04266

4

23.00 288.5165 0.897057 69/13/11/54/62 105.4203 0.954075 63.46126

5
24.00 328.552 0.890082 41/19/71/56/64 133.5446 0.943744 59.35358

From Figure 13, it can be seen that the test day is segmented into 24 h. Therefore, 24
new topologies are obtained after achieving the DR of the IEEE 69-bus system.
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Table 4 clearly shows that over the 24 h of the studied day, there are several configura-
tions that have been calculated as being optimal for contiguous hour intervals. For example,
the configuration having a final state vector of X = [42, 17, 71, 57, 64] is optimal for the
hours 12.00 and 18.00 of the same day. However, switching from one optimal configuration
to another during the operating period could be a heavy task for the operation of the
RDN and, above all, a waste of time, energy, and especially money. Therefore, the idea
is to choose a single optimal configuration that best verifies the objective function of our
simulation study (reduction in TAPL, amelioration in MVV, and minimization in SCC) and
use it throughout the day.

Overall, among all the resulting configurations, the optimal configuration which will
be maintained throughout the day is X = [69, 13, 12, 55, 62] obtained at 10 h. The adopted
configuration ensures a TAPL reduction equal to 68.19% and an increase in the MVV
varying from 0.8813 pu to 0.9497 pu as shown in Figures 14a and 14b, respectively.
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Figure 14. Hourly variation of the objective function for scenario 4: (a) TAPL and (b) Minimum
voltage variation.

The study discussed in scenario 4 highlights that the operation of RDN with the
configuration identified as optimal for a specific load consumption point (point correspond-
ing to the NL), studied during the SR, is no longer optimal when switching from one
load consumption point to another during the entire day (all the points of the daily load
consumption curve) studied during the DR.

4.3.2. Scenario 5

As the wind speed is stochastic and varies over time, the DRRDN with the addition of
variable wind power becomes an important application before closing the simulation study.
This fifth scenario consists of determining the optimal configuration of the system, always
verifying the same objective function of our study, based both on a temporal characteristic
of load consumption and on an optimal insertion of WTDG which are characterized by a
variable output power.

The study at this stage will be based on the results of our previous work made in [52],
presenting a temporal estimation of wind power production during the day, as shown in
Figure 15. This estimation procedure was made based on the meteorological data from the
Metline/Tunisia region (characterized by wind fluctuation as shown in Figure 16) and on
the parameters of the chosen wind system (MADA). In fact, the meteorological data are
essentially the evolution of the daily load consumption and the variation of the wind speed
in this study region collected on 4 February 2020 as mentioned in Figure 17.
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Figure 15. Result of the temporal estimation of wind power production of the WTDG.
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Figure 16. Tunisian Atlas of the wind at 80 m height according to ANME.
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Figure 17. Temporal evolution of the daily load consumption and variation of the wind speed in the
Metline region.

After achieving the simulation of this fifth scenario, all results obtained following this
DR are recapitulated in Table 5 and Figure 18.
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Table 5. Results of the DRRDN for IEEE 69-Bus System (scenario 5).

Hours
Before Reconfiguration After Reconfiguration TAPL

Reduction
(%)

Number
of Switches

ChangesTie-Switches TAPL
(kW)

Min. Volt
« Vmin » Tie-Switches TAPL

(kW)
Min. Volt
« Vmin »

01.00

69
,7

0,
71

,7
2,

73

104.7259 0.957975 41/14/45/58/64 52.23869 0.969227 50.11864
4

02.00 86.30166 0.96509 10/16/11/56/64 40.93168 0.973008 52.57139

3

03.00 86.30166 0.96509 10/13/45/55/64 40.84776 0.9757 52.66863

2

04.00 74.86055 0.970152 10/14/43/55/64 36.35332 0.977243 51.43862

4

05.00 68.88644 0.973075 42/13/45/57/64 35.14914 0.976825 48.97525

4

06.00 70.50278 0.972261 10/70/11/56/64 32.24492 0.969809 54.26432

3

07.00 95.04204 0.956604 10/14/45/55/64 44.04 0.969747 53.66261

1

08.00 91.43782 0.954622 10/14/45/58/64 41.93565 0.956927 54.13752

2

09.00 177.825 0.929879 41/15/45/58/64 82.78079 0.957154 53.44816

2

10.00 176.1684 0.930494 42/15/45/56/64 82.16575 0.957245 53.35954

2

11.00 175.431 0.930673 41/15/45/55/64 81.84752 0.958553 53.34489

1

12.00 165.8212 0.933806 42/15/45/55/64 78.01013 0.961037 52.95527

1

13.00 151.753 0.941009 42/15/45/56/64 73.09453 0.962956 51.83322

0

14.00 141.8846 0.946 42/15/45/56/64 69.30393 0.965527 51.15473

2

15.00 125.6644 0.950927 42/14/45/55/64 61.9205 0.965879 50.72552

2

16.00 121.18 0.950747 69/16/45/57/64 58.11102 0.966951 52.04569

2

17.00 114.9081 0.952777 69/16/12/58/64 50.03663 0.9638 56.45507

2

18.00 137.0866 0.941446 69/16/12/55/63 56.62906 0.9783 58.69104

4

19.00 172.7407 0.931113 69/17/45/57/64 79.70908 0.957558 53.85623

2

20.00 203.4257 0.921945 69/14/45/56/64 90.58937 0.953789 55.46808

2

21.00 161.9798 0.934014 69/15/45/55/64 74.0504 0.958957 54.28411

3

22.00 139.0731 0.940083 10/13/45/55/64 62.3070 0.962101 55.19831

4

23.00 125.2372 0.943787 15/42/45/58/64 59.8045 0.96408 52.247

5
24.00 54.94408 0.95329 10/14/45/56/64 54.94408 0.966787 53.5728
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Figure 18. Temporal variation of the objective function following the DRRDN for IEEE 69-Bus System
with Stochastic Integration of WTDG (scenario 5): (a) TAPL and (b) Minimum voltage variation.

From Table 5, it can be seen that the best TAPL reduction following the DRRDN for
IEEE 69-Bus System with a stochastic integration of WTDG is in the order of 58,69104%,
with a clear amelioration of MVV up to 0.9783 pu at 18:00 of the test day. Hence, the
optimal topology chosen for this scenario is that of the state vector X= [69, 16, 12, 55, 63].
Figure 18a,b show that the objective functions of TAPL and minimum voltage variation are
clearly optimized.

According to this table and by focusing on hour 08.00 of the study day, which is
characterized by a constant value of load consumption, we notice that following an optimal
insertion of WTDG, and even before the ORRDN, there is a significant decrease in TAPL
from an initial value equal to 225 kW to an optimal value equal to 91 kW. There is also
an important improvement in the MVV from the value of 0.9092 pu to a better value of
0.9546 pu. This clearly justifies the positive effect of the optimal integration of WTDG on
the tested DN performances.

Broadly speaking, to the best of the authors’ knowledge, the DRRDN based on the
SAMPSO optimization method used throughout this manuscript remains valid for any
other region or day of study. Therefore, for any other meteorological data (daily load
consumption curve and/or temporal variation of the wind speed curve taken during the
same day and from the same study area), the optimal reconfiguration methodology remains
the same and leads to convincing results. In fact, by changing the two curves of Figure 17,
it is only necessary to make another estimate of the wind power produced as presented
in [52] and to keep the same proposed reconfiguration technique.

5. Conclusions

This paper presented a new approach combining the proposed hybrid SAMPSO
method with the MATPOWER calculation toolbox for both SRRDN and DRRDN. The pro-
posed approach was applied to the standard IEEE 69-bus RDN with the aim of improving
the VP and reducing TAPL for the SRRDN problem and to reduce TAPL, improving MVV,
and also minimizing SCC for the DRRDN. The effectiveness of the suggested SAMPSO
technique was verified and validated by comparison with the MPSO method under several
operating constraints.

Moreover, by investigating five scenarios, it was demonstrated that the topology
identified as optimal for the SR (scenarios I, II, and III), from an economic point of view, is
no longer optimal over an entire time interval (scenarios IV and V). So that the dynamic
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analysis, with the calculation of the DRRDN at each time interval, makes it possible to
identify several configurations and to choose the one which leads to the most optimal
solution corresponding to the best objective function.

On the basis of the promising findings presented in this study which are encouraging
and clearly reflect the quality of this study, work on other remaining issues is continuing
and will be presented in future papers.
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