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Abstract: Connected and Autonomous Vehicles are predicted to drive in a platoon with the aid of
communication technologies to increase traffic flow efficiency while improving driving comfort,
safety, fuel consumption, and exhaust emissions. However, some vehicles in a group may face
communication failures. Such potential risks may even worsen the efficiency and safety of traffic
flow and increase fuel consumption and exhaust emissions. Therefore, there is a need to propose an
alternative scheme to control traffic flow effectively through vehicle-based information without the
aid of communication technologies. In this paper, a deterministic acceleration model was developed
considering the sensor’s detection range to capture the underlying process of a car following the
dynamics of autonomous vehicles. A delayed-feedback control was proposed based on the current
and previous states of throttle angle to increase traffic flow stability and improve fuel consumption
and exhaust emissions without the aid of communication technologies. Numerical simulations
were carried out to study the impact of sensor detection range on micro-driving behavior and
explore the effect of the proposed delayed-feedback control on the fuel consumption and exhaust
emissions of autonomous vehicles in large-scale traffic flow. The numerical results certified that using
delayed feedback with proper gains and delay time improved the total fuel consumption and exhaust
emissions of autonomous vehicles.

Keywords: autonomous vehicles; inactive V2X communication environment; sensor detection range;
car-following model; continuum-traffic flow; fuel consumption; exhaust emissions

1. Introduction

The 26th United Nations Climate Change Conference (COP26) again brought the
necessity of drastically reducing exhaust emissions to avoid climate catastrophe. The
COVID-19 pandemic has also reminded us how much innovation is needed to prevent a
climate disaster. To achieve the goal of reducing exhaust emissions, all economic sectors,
policymakers, scientists, and nations need to mobilize their capability of decarbonization
with a set of changes and actions. Among all economic sectors, the transportation sector
accounts for a significant portion of exhaust emissions and alone contributes to approx-
imately a quarter of the total fuel consumption and associated exhaust emissions in the
world [1].

The United States Energy Information Administration (EIA) reported that, in 2021,
motor vehicles consumed about 134.83 billion gallons of fuel in the transportation sector,
which resulted in the emission of about 1018 MMmt of carbon dioxide (CO2). This amount
was equal to about 82% of the total U.S. transportation sector CO2 emissions and to about
30% of the total U.S. energy-related CO2 emissions in 2021 [2]. As a result, the transportation
sector must take an active role in addressing the challenge of climate change mitigation
and assisting governments in meeting their exhaust emission reduction targets.
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While the transportation sector continues to be the largest contributor to fuel consump-
tion and exhaust emissions, a number of alternatives have been put forward to address the
challenges of climate change mitigation. Using low-carbon fuels, innovating new vehicle
technologies, identifying alternative power sources (e.g., hybrid and fuel cell vehicles),
and operating vehicles more efficiently are all approaches to decreasing fuel consumption
and exhaust emissions from transportation. However, traffic congestion, the most visible
and pervasive transport problem, which is the main contributor to fuel consumption and
exhaust emissions in the transportation sector, remains unsolved.

Over the last two decades, tremendous efforts have been made worldwide to address
traffic congestion by adding lanes, widening roads, and implementing road pricing. How-
ever, the impacts of capacity-based congestion improvements are only piecemeal strategies
that alone do not address the traffic congestion problem. Such a method of improvement
only scratches the surface of the problem and eventually becomes marginal. Moreover,
there may not always be enough land where there is a need to add lanes and widen roads.
Recently, Information and Communication Technologies (ICT) embedded in autonomous
vehicles have been developed dramatically in terms of hardware and software to create a
reliable internet of vehicles, where individual vehicles can communicate with each other us-
ing vehicle-to-vehicle (V2V) technologies and infrastructure using Vehicle-to-Infrastructure
(V2I) technologies, with the goal of increasing the safety and efficiency of traffic flow and
decreasing fuel consumption and exhaust emissions [3–5].

Although such new technologies typically aim to increase the reliability and safety
of autonomous vehicle operations, they also provide new opportunities for more active
transportation systems to improve traffic flow stability, fuel consumption, and exhaust
emissions. Among all these new technologies, V2V communication has been recognized
as the most effective possible solution to traffic flow instability. The potential benefits that
V2V communication can bring to traffic flow safety and stability, fuel consumption, and
exhaust emissions have been evaluated by experiments and simulations [6–16].

However, the improvement of traffic flow stability with the aid of V2V communi-
cation technology is still negligible and plagued by several challenges, such as a lack
of communication networks and cybersecurity threats. These potential risks may even
worsen traffic flow stability and safety as well as increase fuel consumption and exhaust
emissions [17–19].

Alternatively, another control strategy needs to be proposed that does not require
communication between vehicles and relies only on each vehicle’s information (i.e., current
and previous). This strategy will maintain its longitudinal maneuvers consistent with the
equilibrium state of traffic flow, reducing the fuel consumption and exhaust emissions
caused by unstable traffic flow [20,21]. Such flexibility allows controllers to fully exploit the
advantages of a vehicle’s internal information to regulate its state. The delayed-feedback
control strategy has proven to be one of the most convenient and effective strategies for
controlling real chaotic systems without using any external information [22,23]. This control
strategy was proposed based on the difference between the current state of the system
and the previous one, in which the amplitude of the feedback signal was considered as a
criterion of unstable periodic orbit stabilization. When the desired orbit is stabilized, the
control signal will be eliminated [23].

Pyragas [23] proposed a delayed-feedback control to stabilize the unstable periodic
orbits of a chaotic system. Considering this strategy, Just et al. [22] conducted numerical
and experimental simulations on feedback control [23] and revealed that the success of the
proposed control scheme depends on revolution around the unstable periodic orbit of the
chaotic system.

Later, to alleviate traffic congestion, several researchers successfully implemented the
delayed-feedback control to the controller design of car-following models. Konishi et al. [24]
presented a decentralized delayed-feedback control for stabilizing the unstable behavior
of a one-way coupled map model and found that incorporating the delayed-feedback
control into car-following models results in the suppression of traffic congestion [25–27].
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Zhao et al. [28], designed a new delayed-feedback control considering the velocity differ-
ence between the leading and following vehicles in a V2V environment and applied it to
the optimal velocity (OV) model to suppress the traffic congestion induced by bottlenecks.
Davis [29] developed delayed-feedback control using the velocity difference between a
leading and a following vehicle as a feedback term and incorporated it into the FVD model
to improve string stability. The impact of delayed-feedback control on traffic flow was
investigated by Zhang et.al [30] through Hopf bifurcation analysis, and the results revealed
that feedback control can postpone the occurrence of Hopf bifurcation and increase traffic
flow stability effectively.

Considering both space headway and velocity differences as a feedback term, Jin et al. [31]
developed a delayed-feedback control system to suppress traffic congestion in the OV model
and demonstrated that the anti-interference capability of the OV model becomes stronger by
using delayed-feedback control.

Furthermore, the recent advancement of vehicles’ internal state sensors and internal
communication technologies provide the opportunity for autonomous vehicles to measure
the internal values of their dynamic systems (e.g., steering angle, throttle angle, brake
torque) and transmit these data to the vehicle’s control unit via the Controller Area Network
(CAN) bus. This data, along with vehicle kinematic information (e.g., space headway,
velocity, acceleration), can provide further understanding of a vehicle’s current situation
and its changing tendency, and result in improving traffic flow stability, fuel consumption,
and exhaust emissions [32,33]

Several researchers have attempted to study the impact of throttle angle information
on traffic flow and found that the transmission of throttle angle information between
vehicles using V2V communication technologies increases the stability of traffic flow
significantly [34–38]. However, there are four shortcomings in the previous research.
(1) The existing research attempted to address the instability issue of traffic flow considering
the leading vehicles’ trajectory data through V2V communication technology, while this
technology is still negligible and plagued by several challenges, and the harsh requirement
that all vehicles must be equipped with dedicated short-range communication (DSRC)
devices and constantly receive the accurate information of several vehicles ahead (possibly
the entire traffic stream ahead) hinders the deployment of such technology (i.e., mixed traffic
flow is composed of connected, autonomous, and human-driving vehicles). It can be noted
that, when V2V communications are unavailable, autonomous vehicles exhibit similar
driving behavior to Adaptive Cruise Control (ACC) vehicles that are already available on
the market and have been proved to be string-unstable [19,39–41].

(2) The existing research captures the underlying process of acceleration decision-
making of vehicles using the car-following models proposed for human driving vehicles.
However, an autonomous vehicle has different car-following behavior considering its
sensor detection range, which needs to be considered in modeling process. (3) They are
either limited to specific scenarios or specific stability analyses at a microscopic level
with limited numbers of vehicles and can hardly assess the effect of vehicles’ topology
on the stability of traffic flow due to scalability issues. (4) There is no specific study to
explore the impact of autonomous vehicles on fuel consumption and exhaust emissions at
a macroscopic level.

To fill the gaps, a deterministic acceleration model (i.e., Full Velocity Difference (FVD)
model) that is used in the literature by the vast majority of studies [14,31,34,35,37,42–47]
was developed in this paper considering the sensor detection range to model the car-
following behavior of autonomous vehicles in an inactive V2I environment. Building upon
the valuable contribution of delayed-feedback control, a solution was explored to reduce
the fuel consumption and exhaust emissions of autonomous vehicles in an inactive V2I
communication environment by taking advantage of the vehicle’s throttle angle information
at the current time and previous time. The feasible ranges of control parameters that
ensure smooth traffic flow were derived from the perspective of the frequency domain via
Hurvitz criteria and the H∞ norm of transfer functions. Different from the previous models,
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the developed model aimed to be robustly string-stable without requiring any external
information from other unconnected vehicles.

Finally, numerical-based simulations were performed to study the impact of the sensor
detection range on micro-driving behavior and explore the effect of delayed feedback
control on the fuel consumption and exhaust emissions of autonomous vehicles in large-
system traffic flow.

This paper is organized as follows: The Section 2 describes the procedures leading to
the controlled car-following model and its stability analysis. The Section 3 proposes the
continuum-traffic model based on the developed car-following model. In the Section 4, the
numerical-based simulations are conducted, and the results are presented and discussed.
The key findings and concluding remarks are provided in the last section.

2. Modeling Autonomous Vehicles in an Inactive V2I Environment

The acceleration decision-making of human-driving vehicles during car-following maneu-
vers has been extensively modeled using deterministic acceleration frameworks. Jiang et al. [48]
proposed a deterministic acceleration model, called the full-velocity difference (FVD) model,
as shown in Equation (1a), considering both negative and positive velocity differences be-
tween two consecutive vehicles to capture the underlying process of the acceleration decision
making of human-driving vehicles during car-following maneuvers.

an(t) = a(Vn(yn(t))− vn(t)) + λ∆v (1a)

where a is the sensitivity coefficient of the driver, λ represents the weight coefficient of
velocity difference, ∆vn(t) is the velocity difference between the following and leading
vehicles, and Vn(yn(t)) is the optimal velocity proposed by Bando et al. [49] to calculate
the optimal velocity of the human-driving vehicles at every decision point.

Vn(yn(t)) =
vmax

2
(tanh(yn(t)− ysa f e) + tanh(ysa f e)) (1b)

where vmax is the maximum velocity constraint from road signs (both VMS and conven-
tional signs), and ysa f e is the safe space headway, and yn is the space headway between
the following and leading vehicles. Considering the capability of autonomous vehicles to
constantly monitor the surrounding vehicles via sensors (e.g., Lidar, Radar), an autonomous
vehicle is certain about other vehicles’ behavior and can react almost immediately to any
changes in the leading vehicles (the reaction time of autonomous vehicles depends on the
sensor’s delay and other mechanical delays) [50,51]. Hence, a deterministic acceleration
framework is suitable for modeling the car-following dynamics of autonomous vehicles [8].

In this study, the FVD model was developed considering sensor characteristics in the
modeling process to capture the following dynamics of autonomous vehicles in the absence
of communication. The developed model provides a greater realism than most deterministic
acceleration models while capturing different congestion dynamics. It is worth mentioning
that sensors are considered to produce the input data for the acceleration model.

In model (1a), the acceleration decision of an autonomous vehicle is affected by two
terms: the difference between the optimal velocity, which depends on space headway and
the current velocity, and the velocity difference between two successive vehicles. Since
an autonomous vehicle cannot monitor a leading vehicle that is located outside of its
sensors’ detection range, it will be reasonable to presume that there is a stopped vehicle
right outside of the sensors’ detection range at the time of acceleration decision making [52].
Furthermore, if the leading vehicle is in the detection range of the autonomous vehicle’s
sensors, it will be reasonable to presume that the velocity of the autonomous vehicle needs
to be low enough to allow the vehicle to stop when its leading vehicle decides to stop with
its maximum deceleration rate [8].
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Considering the above discussion, the maximum safe velocity (vmax) of the FVD model
can be calculated at every decision point by using the following equation:

ysa f e = vnτ +
v2

n+1(t)

2amax,decc
n+1

y = (xn+1 − xn) + ysa f e
yn = min{sensor detection range, y}

vmax =

√(
−2amax,decc

n yn

) (2)

where amax,decc
n is the maximum deceleration of vehicle n, amax,decc

n+1 represents the maximum
deceleration of vehicle n + 1, xn and xn+1 show the locations of vehicle, n and its leading
vehicles respectively, and vnτ is the distance travelled during the reaction time.

Figure 1 depicts maximum safe velocity profile; any velocity is considered to be safe
as long as it is below the maximum safe velocity.
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Figure 1. Maximum safe velocity profile [52].

Figure 2 shows the headway-equilibrium velocity curves under different values of
sensor detection ranges. As we can see, under the same space headway variation, the
equilibrium velocity decreases when the sensor detection range is reduced. From Figure 2,
we can draw the conclusion that the stability of traffic flow becomes stronger when the
sensor detection range is reduced, and such an improvement will be achieved at the expense
of reducing the traffic flow velocity, which is undesirable in a real traffic environment.
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When any external disturbances force traffic flow out of a steady state, the traffic
flow remains stable if stability condition (3) is satisfied [48], otherwise any small traffic
disturbance will gradually aggravate during the propagation process, eventually resulting
in traffic congestion and increase fuel consumption and exhaust emissions.

V′n(h) <
a
2
+ λ (3)

where h is the space headway between vehicles at steady-state traffic flow, a is the sensitivity
coefficient of the driver, and λ is the weight coefficient of the velocity difference term in
Equation (1a). In order to suppress traffic congestion when condition (3) is not satisfied, we
designed a new delayed-feedback control based on throttle angle differences. The control
signal is defined as follows:

ui(t) = k(θn(t)− θn(t− ε)) (4)

where k is the feedback gain of the throttle angle difference, which can be adjusted, and ε is
the delay time of the throttle angle. The control signal ui(t) is proportional to the electronic
throttle angle difference of the considered AV vehicle at current time t and previous time
(t− ε). It should be noted that the control signal is activated only if traffic flow is unstable,
otherwise it vanishes in stable traffic flow.

The control signal term is added to the developed model as follows:

dvn(t)
dt

= a(V(yn(t))− vn(t)) + λ ∆vn(t) + ui(t) (5)

where θn(t) and θn(t− δ) represent the throttle angle at current time t and previous time
(t− δ), respectively. Since the electronic throttle angle directly affects both velocity and ac-
celeration, the delayed-feedback control of throttle angle can be considered as an integration
of the acceleration and velocity terms with time delay as follows [53]:

θn(t)− θn(t− ε) =
1
ω

[
dvn(t)

dt
− dvn(t− ε)

dt
+ α(vn(t)− vn(t− ε))

]
(6)

where, θ0 represents the steady state throttle angle for the corresponding steady state
velocity v0

θ , ω and α are parameters that change with v0
θ and need to be computed in

advance at each type of engine operating point (θo, v0
θ) and sorted in the look-up table for

(θo, v0
θ), and d is unmodeled disturbances [53].
Putting Equation (6) into Equation (5), the equation of the controlled system becomes

a neutral delay differential equation as follows:

dvn(t)
dt = a(V(yn(t))− vn(t)) + λ ∆vn(t) + k

ω

[
dvn(t)

dt −
dvn(t−ε)

dt + α(vn(t)− vn(t− ε))
]

dyn(t)
dt = vn+1(t)− vn(t)

(7)

To obtain the range of control gain k, we can conduct a stability analysis on a closed-
loop traffic flow model with a delayed-feedback controller by using the traditional control
theory. Zhang and Jarrett [54], noted that a slight deviation of the leading vehicle from
steady state (e.g., a small variation in space headway or velocity) will force the following
vehicle to react to this deviation. Then, we can add a slight deviation to Equation (7)
as follows:

dδvn(t)
dt = a(Λδyn − δvn(t)) + λ (δvn+1(t)− δvn(t)) + k

ω

[
dδvn(t)

dt − dδvn(t−ε)
dt + α(δvn(t)− δvn(t− ε))

]
dδyn(t)

dt = δvn+1(t)− δvn(t)
(8)

where δvn(t) = vn(t) − V(h), δvn(t − ε) = vn(t − ε) − V(h), δyn(t) = yn(t) − h, and
Λ = dV(yn(t))

dyn(t)

∣∣∣Sn(t)=h .
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Performing Laplace transform on Equation (8) as follows:

sVn(s) = a(ΛYn(s)−Vn(s)) + λ (Vn+1(s)−Vn(s)) + k
ω [(1− e−εs)sVn(s) + α((1− e−εs)Vn(s))]

sYn(s) = Vn+1(s)−Vn(s)
(9)

The matrix form of Equation (9) can be written as follows:(
Vn(s)
Yn(s)

)
= M.

(
λ
1

)
Vn+1(s)

P(s)
(10)

herein, Yn(s) = L(δyn(t)), Vn(s) = L(δvn(t)) and L(.) denotes the Laplace transform,

M =

[
s aΛ
−1 ωs + ωa + ωλ + k(s + α)(1− e−εs)

]
, and P(s) represents the characteristics

polynomial as:

D(s) = (ω + k(1− e−εs))s2 + (ωa + ωλ + kα(1− e−εs))s + aΛ (11)

Then, the transfer function can be described as follows:

G(s) =
λs + aΛ

(ω + k(1− e−εs))s2 + (ωa + ωλ + kα(1− e−εs))s + aΛ
(12)

According to classical control theory [26], traffic flow is stable and traffic jams will be
dissipated if two of the following conditions are satisfied:

(I) D(s) is stable.
(II) ‖G(s)‖∞ ≤ 1.

For condition (I), the characteristic function D(s) can be described as:

D(s) = P(s)−Q(s)e−εs (13)

where P(s) = (ω + k)s2 + (ωa + ωλ + kα)s + aΛ, Q(s) = (ks2 + kαs)e−εs.
When ε = 0, Equation (13) can be written:

s2 + (a + λ)s +
aΛ
ω

= 0 (14)

The Routh–Hurwitz stability criterion shows that Equation (14) is asymptotically
stable for the following condition:

(a + λ) > 0 and
Λ
ω

> 0 (15)

To derive the stability condition of the characteristic function D(s), we can define the
critical function F(w) [55]:

F(w) = [ReP(iw)]2 + [ImP(iw)]2 − [ReQ(iw)]2 − [ImQ(iw)]2(
−(ω + k)w2 + aΛ

)2
+ (ωa + ωλ + kα)2w2 − k2w4 − k2α2w2 = w4 + m1w2 + m2

(16)

where m1 = ω2(a + λ)2 + 2kαω(a + λ)− 2(ω + k)aΛ, m2 = a2Λ2.
The characteristic function D(s) is stable if its critical function (F(w) has no real roots [56,57],

that is, when m1 and m2 hold the following conditions:

m1 ≥ 0, m2 ≥ 0 or m1 < 0, m1 − 4m2 < 0 (17)

Substituting m1 and m2 into Equation (21), we have:
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ω2(a+λ)2

2 −ωaΛ ≥ k(aΛ− αω(a + λ)), Λ2 ≥ 0
or

ω2(a+λ)2

2 −ωaΛ < k(aΛ− αω(a + λ)),
(

ω2(a + λ)2 + 2kαω(a + λ)− 2(ω + k)aΛ
)2

< 4a2Λ2
(18)

As long as condition (18) is satisfied, the characteristics polynomial P(s) is stable. To ensure
that the self-delayed feedback controller meets condition (II), the H∞-norm of G(s) needs to
be 1 or less, i.e., [43,44]:

‖G(s)‖∞ = |G(jw)| =
√
|G(jw)G(−jw)| ≤ 1 (19)

Therefore, the inequality |G(jw)| ≤ 1 is satisfied for any w ∈ [0,+∞), if the following
condition holds:[

−(ω + k(1− cos(εw)))w2 + aΛ + kαw sin(εw)
]2

+
[
(ωa + ωλ + kα(1− cos(εw))w− k sin(εw)w2]2−

a2Λ2 − λ2w2 ≥ 0
(20)

Consequently, the traffic congestion can be effectively suppressed using the delayed-
feedback controller when the condition Equations (18) and (20) are met.

Theorem 1. Suppose that the stability condition of an FVD model without delayed-feedback control
fails to maintain the stability conditions and traffic congestion occurs in the uncontrolled proposed
model. Traffic congestion can be suppressed using a delayed-feedback controller if the control gain k
of the throttle angle difference and delay time ε can yield conditions (18) and (20) simultaneously.

3. Continuum-Traffic Flow Formulation

Road network capacity and mobility at the macroscopic level are directly influenced by
driving behavior at the microscopic level [58]. In order to study the impact of the delayed-
feedback controller on continuum-traffic flow, we can derive a continuum-traffic-flow
model from the controlled FVD model presented by Equation (7). The discrete variables
of a following autonomous vehicle n in relation to its leading vehicle n + 1 need to be
transformed into continuous variables through a simple Taylor expansion [59].

We can transform the microscopic variables of Equation (7) into macroscopic ones
through a simple Taylor expansion as follows [60].

vn+1(t)→ v(x + S, t),
vn(t)→ v(x, t),

V(yn(t))→ Ve(ρ(x, t)), λ→ 1/τ, a→ 1/T, V′(yn(t))→ V′(h)

vn(t)− vn(t− ε)→ εvt,
vn(t− ε)→ v(x, t− ε),

dvn(t)
dt −

dvn(t−ε)
dt → εvvxt, ∆vn(t)→ vxS + 1

2 vxxS2

where T is the traffic flow relaxation time. Through the density ρ and mean space head-
way, the equilibrium velocity Ve(ρ(x, t)) and V(h) are defined, respectively, to satisfy
Ve(ρ(x, t)) = V(h) and V′(h) = −ρ2V′e (ρ(x, t)).

The coefficient c represents the backward propagation velocity of small disturbances
relative to the moving traffic stream and captures the leading term in the vehicle’s reaction
to the space headway variation. The new continuum-traffic-flow model can be established
as follows:

∂ρ
∂t +

∂(ρv)
∂x = 0

∂v
∂t + (v− c

1−φα )
∂v
∂x = 1

T(1−φα) (Ve(ρ)− v) + φ
1−φα vvxt + µ(ϕ) vxx

µ(ϕ) = c2τ
2(1−φα)

(21)

where c = S
τ , φ = kε

ω .
The first term on the right side of Equation (21) constrains the system to behave

as the LWR model and depicts the tendency of traffic-flow velocity for approaching the
equilibrium velocity. The second term on the right side of Equation (21) captures the
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unexpected deceleration and acceleration of vehicles in the traffic flow, which has significant
impacts on traffic movement, fuel consumption, and exhaust emissions. The viscosity
term µ(ρ) involving the second derivative term of velocity is seen on the right side of
Equation (21). The viscosity term in macroscopic traffic models has been detailed in [61]
based on the strong resemblance between the Navier–Stokes equations of compressible
fluids in one space dimension and macroscopic traffic flow models.

Lu Sun et al. [61], noted that continuum-traffic flow can be treated as same as a contin-
uum fluid from the perspective of kinematic wave theory considering some constraints,
and the viscosity term arises from fluid dynamic resembling the tendency of the driving
behavior in resisting unexpected velocity variations in leading vehicles at the microscopic
level, and results in constant velocity fluctuation in the phase plane [61]. The viscosity
term µ(ρ) is proportional to the product of the propagation velocity of a small disturbance,
propagation time, control gain of a self-stabilizing controller, traffic density, and sensitivity
coefficients. The viscosity term µ(ρ) describes bottle-neck behavior, stop-and-go waves,
unexpected acceleration/deceleration, and non-local changes in traffic conditions.

The new controlled continuum-traffic model preserves the anisotropic property of
traffic flow, overlooked in most continuum-traffic-flow models [61], and responds only to
downstream traffic variation. In addition, incorporating a delayed-feedback controller into
the FVD model leads to an additional term for capturing the impact of unexpected deceler-
ation and acceleration of vehicles in traffic flow. The replacement of the velocity gradient
term with the density gradient term allows our model to outperform other macroscopic
models in overcoming negative velocities (i.e., wrong-way travel).

4. Numerical Simulations and Discussion

In this section, numerical-based investigations were conducted to explore the impacts
of the sensor detection range and delayed-feedback control on the fuel consumption and
exhaust emissions under two different traffic situations, where Case I was the departure
process of autonomous vehicles using different sensor detection ranges, and Case II was the
evolution of a small perturbation in large scale traffic flow using delayed-feedback control.

4.1. Case I

Emulating the same scenario used by Jiang et al. [48], we studied the impact of the
sensor detection range on each vehicle’s velocity, total fuel consumption, and exhaust
emissions at different time steps.

Assuming eight autonomous vehicles (Figure 3) are stopped in a group during the
red period of a traffic signal with an identical space headway of 7.4 m at time t < 0. At
time t = 0, the traffic signal shifts from red to its green period, and the first leading vehicle
of the group instantly starts up, and the other vehicles gradually move and follow their
direct leading vehicle. We chose the second vehicle and the seventh vehicle in the group to
explore how different sensor detection ranges can affect the velocity and acceleration of the
following vehicles during the departure process.

Figure 4a–d depicts the second and seventh vehicles’ velocities and accelerations
during the departure process using different sensor detection ranges. Figure 4a,c shows
that as the sensor detection range increased, the autonomous vehicle’s equilibrium velocity
increased, and the following vehicles’ starting delay decreased.

From Figure 4a–d, we can see that the seventh vehicle, which was close to the leader of
the group, quickly responded to traffic signal changes using a large sensor detection range
(50 m), but second vehicle, which was located far from the leader of the group, accelerated
after some delay. This delay increased when the sensor detection range decreased. Comparing
Figure 4a and Figure 4c, it can be found that when sensors detected one or two leading vehicles,
the delay time was almost negligible. In contrast, more leading vehicles caused more delay time
due to the potential confusion of echoes from previous or subsequent pulses of the sensors and
also the accuracy range of distance, which is usually limited to 1–4 m.
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It is worth mentioning that autonomous vehicles use active and passive methods
to measure the distance between leading vehicles [62]. The active methods measure the
distance of leading vehicles on the principle of time-of-flight (ToF), in which the round-trip
travel time of transmitted electromagnetic waves from a sensor to an object is measured,
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while the passive methods do not emit electromagnetic waves and work on the basic
principle of perceiving the light emitted from objects on a photosensitive surface through a
lens to estimate the distance of the leading vehicle. In this paper, we assumed all vehicles
were equipped with active sensors.

Figure 4b,d indicate that the acceleration process can be split into two phases. In the
first phase, the vehicle using a large sensor detection range (50 m) applies the throttle
pedal faster than the one using a short sensor detection range (10 m) and reaches a higher
equilibrium velocity.

In the second phase, the vehicle using a short sensor detection range (10 m) releases
the throttle pedal faster than the one using a large sensor detection range to reach the
equilibrium velocity. The large sensor detection range not only increases the equilibrium
velocity, but also benefits the following vehicles during the departure process because
they can start applying the throttle pedal earlier to move forward faster when the traffic
signal shifts to green and can avoid a higher level of acceleration and then release the
throttle pedal a little to feel safe until they reach the equilibrium velocity. Furthermore,
the results of Figure 4b,d show that the acceleration of autonomous vehicles simulated by
our proposed model was within the limited range of empirical accelerations (0.4 m/s2)
observed by Helbing and Tilch [63]. From Figure 4a–d, we can draw the conclusion that
the sensor detection range has prominent impact on autonomous vehicle micro-driving
behavior during the departure process, which increases the equilibrium velocity of traffic
flow and decreases delay time.

Next, we studied the impact of the sensor detection range on the vehicle’s fuel con-
sumption and exhaust emissions during the departure process using Tang’s model [64]
as follows:

ln(MOEe) =
3

∑
i=0

3

∑
j=0

Ke
i,j × vi × (vt + vvx)j (22)

where i and j are velocity power and acceleration power, respectively, MOEe is the en-
ergy consumption rate (mL/s) or emission rate (mg/s), vi is the instantaneous velocity,
(vt + vvx)j is the instantaneous acceleration, and ke

i,j represent the coefficients of the regres-
sion model. The detailed values of the regression coefficients ke

i,j can be found in Table 1 [64].
Tang’s model computes the total fuel consumption and exhaust emissions based on the
vehicle group trajectory data (i.e., position, velocity, and acceleration) of each road unit at
each time step in the whole traffic flow.

Table 1. The regression coefficient [64].

Fuel CO HC NOx

ke
0,0 −0.679439 0.887447 −0.728042 −1.067682

ke
0,1 0.135273 0.148841 0.012211 0.254363

ke
0,2 0.015946 0.030550 0.023371 0.008866

ke
0,3 −0.001189 −0.001348 0.000093243 −0.000951

ke
1,0 0.029665 0.070994 0.024950 0.046423

ke
2,0 −0.000276 −0.000786 0.000205 0.000173

ke
3,0 −0.000001487 0.000004616 0.000001949 0.000000569

ke
1,1 0.004808 0.003870 0.010145 0.015482

ke
1,2 −0.000020535 0.000093228 0.000103 −0.000131

ke
1,3 5.5409285 × 10−8 0.000000706 0.000000618 0.000000328

ke
2,1 0.000083329 −0.00926 0.000549 0.002876

ke
2,2 0.000000937 0.000049181 0.000037592 0.00005866

ke
2,3 −2.479644 × 10−8 −0.000000314 −0.000000213 0.00000024

ke
3,1 −0.000061321 0.000046144 −0.000113 −0.000321

ke
3,2 0.000000304 −0.000001410 0.000003310 0.000001943

ke
3,3 −4.467234 × 10−9 8.1724008 × 10−9 −1.739372 × 10−8 −1.257413 × 10−8
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Figure 5a–d illustrates the total fuel consumption and exhaust emissions of eight
vehicles using different sensor detection ranges at t = 10 s, t = 50 s, and t = 50 s, where
the different colors of columns stand for different sensor detection ranges at given time
steps. From Figure 5a, it can be obviously seen that when the sensor detection range at the
time step of t = 10 s increased, the total fuel consumption was enhanced since the vehicles
needed more energy to speed up for the departure process. During the time steps (t = 50 s,
t = 200 s), the total fuel consumption of the group of vehicles with a large detection range
(50 m) gradually decreased through time, and the sensor detection range had little impact
on the total fuel consumption as the vehicles at these time steps already reached their
equilibrium velocity.
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Figure 5. The total fuel consumption and exhaust emissions of eight vehicles at different time steps
using different sensor detection ranges; (a) Fuel consumption, (b) HC, (c) CO, (d) NOx.

Considering Figures 4a,c and 5a, we can conclude that, however, the equilibrium
velocity of autonomous vehicles significantly increased with the increase in the sensor
detection range, but the total fuel consumption emissions decreased.

From Figure 5b–d, we have:
(1) The sensor detection range had a lower impact on the total amount of HC than fuel

consumption, and this impact increased over time. As the time increased, sensors with
large detection ranges resulted in a bigger amount of HC,

(2) The total amount of CO did not change at different time steps and increased when
the sensor detection range was enhanced,
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(3) At time step of t = 10 s, when the sensor detection range increased, the total amount
of NOx was enhanced, but this amount decreased significantly over time as the vehicles
returned to the equilibrium velocity.

Consequently, the impact of the sensor detection range on the total amount of NOx
and CO was more significant than the total amount of HC.

4.2. Case II

The purpose of the numerical simulation conducted in this subsection was to evaluate
the impact of the proposed delayed-feedback control of throttle angle difference on fuel
consumption and exhaust emissions of autonomous vehicles in large scale traffic flow. We
assumed that all autonomous vehicles were moving downstream in traffic with equilibrium
velocity on a road with a length of L = 32.2 km, were equipped with the same delayed-
feedback controller and the same (Smart Micro) Automotive Radars (UMRR-00 Type 30)
with a 50 m ± 2.5% detection range.

In the first scenario, the initial density of these vehicles was assumed to be
ρ0 = 0.055 veh/m. A local small perturbation at t = 0 on the distance (x = 10 km) from the
beginning of the road forced traffic flow out of its equilibrium state. The fuel consumption
and exhaust emissions of the vehicles throughout the road, under different delayed times,
and at time step t = 300 s are depicted in Figure 6a–d. The fuel consumption and exhaust
emissions were evaluated based on the vehicle trajectory data at each section of the road.
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From Figure 6a–d, we can see that the traffic flow was most unstable when the delayed
feedback control of vehicles in traffic was inactive (ε = 0), and evolved into uniform flow
with the increase in delayed feedback time ε. It is obvious that the fuel consumption and
exhaust emissions fluctuated the most when the delayed feedback control of the vehicles in
traffic were inactive (ε = 0) due to the frequent acceleration and deceleration in stop-go
traffic. As shown in Figure 6a–d, the fuel consumption and exhaust emissions gradually
reduced as the value of the delayed time ε was enhanced.

The fuel consumption and exhaust emissions of continuum-traffic flow with a higher
initial density ρ0 = 0.065 veh/m at time step t = 300 s and under different values of k are
shown in Figure 7a–d as the second scenario of our simulation. From Figure 7a, it is obvious
that when the delayed feedback control of vehicles was not activated, the fuel consumption
was most unstable due to frequent velocity and acceleration changes during car-following
maneuvers and was higher than when the delayed-feedback control was considered in the
traffic flow. The effects of the delayed feedback control using the historical throttle angle
information on the exhaust emissions presented in Figure 7b–d was the same as the impact
of the delayed-feedback control on fuel consumption. It can be seen that when control gain
k increased by a small number, the amplitude of exhaust emission fluctuations significantly
decreased. When comparing Figure 6a–d with Figure 7a–d, we can see that when initial
density was higher, the amplitude of fuel consumption and exhaust emission fluctuation
increased when small perturbations occurred, and the controller was inactive. However,
the trend of the horizontal curve in Figure 6 is almost the same as Figure 7. Consequently,
choosing the proper delay time and feedback gain improved the traffic flow stability,
suppressed traffic congestion, and also reduced fuel consumption and exhaust emissions.
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5. Conclusions

In this paper, a deterministic acceleration model was developed considering sensor
detection range to capture the underlying process of the car-following dynamics of au-
tonomous vehicles in an inactive V2I environment. The stability criterion of the developed
car-following model was derived through the classical control method. The impact of the
sensor detection range on the equilibrium velocity was investigated through numerical
simulation. From the simulation results, we revealed that the equilibrium velocity of
traffic flow reduced with the decrease in sensor detection range. The impact of the sensor
detection range on the total fuel consumption and exhaust emissions during the departure
process is being studied. The numerical simulations indicated that when the sensor detec-
tion range increased, the total fuel consumption and exhaust emissions at the beginning of
the departure process increased, and then decreased over the time. Furthermore, when the
stability condition of the deterministic acceleration model was not satisfied, we designed a
delayed-feedback control using the difference between the current state of throttle angle
and the previous state and integrated it with the developed deterministic acceleration
model to improve traffic flow stability, fuel consumption, and exhaust emissions without
the aid of communication. The impact of the designed delayed-feedback control on the fuel
consumption and exhaust emissions of autonomous vehicles in large-scale traffic flow was
studied through numerical-based investigations. The numerical results revealed that the
fluctuating amplitude could be effectively alleviated when the designed delayed-feedback
controller was applied with a proper delay time and feedback gain, and the traffic flow
could quickly return to a steady state, which resulted in improving fuel consumption and
exhaust emissions.

Without V2I communication, the autonomous vehicles’ perception of the environment
would be largely limited to their sensor detection range. The proposed controller utilized
the throttle angle difference as the control input, which could directly control the engine
without transcoding and editing the control signal. This could effectively decrease the
response time of the control scheme, which is particularly suitable for roads without
communication networks. The example presented in this study provided an insight into the
impact of autonomous vehicles on fuel consumption and exhaust emissions. In addition,
this paper studied the stability of macroscopic traffic flow on a single lane, while some
important content, such as traffic flow safety and lane changing, were not considered.

In future work, we will investigate the impact of passive sensors, including mono-
vision systems and stereo-vision systems on the car-following behavior of autonomous
vehicles. Therefore, other research directions will study the impact of delayed feedback
control on traffic flow safety and will consider more complex driving behaviors during the
modeling process to depict real traffic environments.
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