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Abstract: The concept of hydraulic impedance is widely used for periodic or oscillating flow scenarios
in applied hydraulic transients. This paper proposes an equivalent circuit-based discrete hydraulic
impedance model for the hydraulic system of the power station. The equivalent hydraulic circuit is
established by an analogy between the water hammer wave propagation in pressurized pipes and
the electromagnetic wave propagation in conductors. The discrete hydraulic impedance at a given
location is obtained by calculating the total specific impedance of the series and parallel circuits from
one end to the other. In addition, the numerical solution process to obtain the natural frequencies of
the system via the proposed model is designed in detail. Furthermore, oscillation characteristics of the
pipelines in the hydropower station are investigated. The variation trends of the decay coefficients of
different orders of oscillation of the system and the influence of turbine impedance on the oscillation
frequencies are discussed, respectively.

Keywords: hydraulic impedance; equivalent circuit; hydropower station; oscillation analysis

1. Introduction

Transient analyses of hydropower systems often are carried out via numerical simula-
tion schemes based on time and space discretization, such as the method of characteristics
(MOC) [1], the finite difference/volume method [2,3], and the transfer function/differential
equations [4,5]. The basic idea of these time domain numerical schemes is to transform
continuous systems into discrete systems [6], thus reducing the degree of freedom in the
system model and calculating the time evolutions of system states with satisfactory compu-
tational cost and numerical precision. However, most time domain numerical schemes are
under the constraint of the Courant condition [7], where the Courant number is required
to be close to one to restrain the numerical dissipation. The strong constraint will bring
a substantial computational burden to the complex high-order systems. In addition, due
to the nonlinearities, such as the dissipative terms and the uncertain parameters in these
models [8], it is difficult to be implemented in the system stability analysis. Therefore,
frequency domain methods, as another alternative, were extensively explored for stability
analysis [2,9].

The conventional frequency domain schemes, e.g., the hydraulic impedance
method [10–14] and the transfer matrix method [2], are widely used in applied hydraulic
transients. The hydraulic impedance, defined as the complex head deviation divided by the
complex flow rate deviation, is always formulated as a function of the complex frequency s.
The relationship between the piezometric head and the discharge at an arbitrary longitu-
dinal position along a pipe or a channel can be explicitly described with the model. This
method shows potential for the leakage calibration [15], blockage detection [16,17], and the
resonance analysis [18]. Suo and Wylie [8] obtained the response of a steady oscillatory
flow with the linearized Saint-Venant equations of a pressurized pipe. Kim [11] formulated
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an impedance matrix model for complicated pipe networks and discussed the superiority
of the impulse response method over other time domain schemes. In addition, he also
discussed the dynamic matrix computation method [12] and incorporated the genetic algo-
rithm into the address-oriented impedance matrix for the generic calibration of the system
parameters of the pipe networks with complex topology [13]. Zhou et al. [14] investigated
the self-excited hydraulic and mechanical vibration characteristics of the pumped storage
power station based on the hydraulic impedance method. The free and forced oscillation
responses were obtained and analyzed through this approach. Yang [9] systematically
revealed the mathematical expressions of the hydraulic impedances of different compo-
nents in the hydropower station, including the hydraulic turbine, the pressurized pipe, and
the reservoir. Moreover, the stability of the hydropower station under different operating
conditions is investigated with the hydraulic impedance method.

The traditional continuous hydraulic impedance can handle complex frequency do-
main modeling of simple pipe networks, such as pipes in series, pipe networks with single
branches, and single loops. However, it cannot address the modeling of high-dimensional
hydraulic networks with multi-loops very well. To fully take advantage of the well-
developed circuit theory, the methodology of the complex frequency domain equivalent
circuit-based hydraulic impedance model is inspired to calculate the specific impedance
of any given location along the complicated pipeline by considering the pipe network as
a discrete system. The basic idea of this resolution, inspired by an analogy between the
hydraulic circuit and the electrical conductor, was first mentioned by Paynter [19] and
Jaeger [20]. Souza Jr. [21] performed the numerical analysis of hydraulic transients in a
hydropower plant using this methodology. Dr. Nicolet [22] extended the equivalent circuit
model (ECM) to the mathematical modeling of different hydraulic facilities and validated
its effectiveness in the simulation of hydraulic transients in engineering practice. Over the
past few years, Zhao et al. [23] applied ECM to the dynamic analysis of operating condition
conversion processes in a pumped storage plant. Zheng et al. [24] expanded the ECM
to describe hydraulic transients of a hydraulic system with pipe and open channel flows
and achieved satisfactory simulation precision. To the best of the authors’ knowledge,
most of the existing literature about this approach only focused on its privilege in the time
domain numerical simulation [19–24]. Seldom was the equivalent circuit-based complex
frequency-domain analysis reported. Although Nicolet [25] discussed the application of
the frequency domain ECM to obtain the frequency responses in the reservoir–pipe–valve
system, the system discussed is too simple to fully reflect the complex frequency domain
description capability of the ECM. Therefore, it is necessary to further explore the features
of the complex frequency domain ECM in more complicated hydraulic systems.

This paper proposes an equivalent circuit-based discrete hydraulic impedance model
for the power station system. The equivalent hydraulic circuit is established by an analogy
between the water hammer wave propagation in pressurized pipes and the electromagnetic
wave propagation in conductors. The discrete hydraulic impedance at any discrete node
is obtained by calculating the total specific impedance from one boundary side to the
other according to the circuit theory. Subsequently, the detailed procedure of the free
oscillation response analysis of the system via the proposed discrete impedance model is
introduced. According to the oscillation analysis process, the variation trends of the decay
coefficients of different orders of oscillation for the diversion and tailrace pipelines are
discussed. Furthermore, the influence of turbine impedance on the decay coefficients and
the frequencies corresponding to different orders of oscillation are investigated, respectively.

The rest of this paper is organized as follows: First, the methodology of the equivalent
circuit-based hydraulic impedance for different hydraulic components, such as the pres-
surized pipe and the hydraulic turbine is introduced in Section 2. In Section 3, the overall
equivalent circuit topology for the hydraulic system of the studied hydropower station
is presented, and the detailed numerical solution process of the free oscillation response
is illustrated. Then, numerical simulation results of the free oscillation responses for the
hydropower station system are presented, and the variation trends of the system oscillation
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responses are systematically analyzed in Section 4. Eventually, the conclusions are given in
Section 5.

2. Methodology of the Discrete Hydraulic Impedance
2.1. Equivalent Circuit of a Pressurized Pipe

The continuity equation and the momentum equation are the basic physical rules to de-
scribe the movement of fluids, such as wave propagation [26,27] and water delivery [28]. To
mathematically characterize the dynamic behavior of fluid transients in a pressurized pipe,
the well-known one-dimensional Saint-Venant equations [2,9] are stated in Equation (1),

∂Hi
∂x + 1

gAi

[
∂Qi
∂t + vi

∂Qi
∂x

]
+ λiQi |Qi |

2gDi A2
i
= 0[

∂Hi
∂t + vi

∂Hi
∂x

]
+

a2
i

gAi

∂Qi
∂x = 0

(1)

where the subscript i denotes the pipe number. Hydraulic phenomena are characterized by
a high wave speed a and a relatively much lower flow velocity v, so the convective terms
vi

∂
∂x related to the transport characteristic can be neglected with respect to the propagative

terms ∂
∂t in Equation (1). Thus, when the piezometric head H and discharge Q are taken as

state variables, the Saint-Venant equation in Equation (1) has the same formulation as the
telegraphist’s equations [22,25]. As expressed in Equation (2),{

∂Hi
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∂Qi
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∂Qi
∂x + Cei

∂Hi
∂t = 0

(2)

where the values of the equivalent RLC parameters per unit length are stated in Equation (3),
Rei =

λi |Qi |
2gDi A2

i

[
s/m3]

Cei =
gAi
a2

i
[m]

Lei =
1

gAi

[
s2/m3] (3)

The equivalent resistance Rei, the equivalent inductance Lei, and the equivalent capaci-
tance Cei are related to the head losses through the pipe, the inertia effect of the water, and
the storage effect caused by pressure variation, respectively. These three different circuit
components are essential to precisely model a pressurized pipe. The equivalent circuit of a
pressurized pipe containing n segments is displayed in Figure 1. The hydraulic transients
along a pipeline are characterized as a discrete RLC circuit in which the state variables, i.e.,
the piezometric head and the discharge, can be obtained only for given locations x and
given times t, according to the sizes of the time step dt and the spatial mesh dx.
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Figure 1. The equivalent circuit of a pressurized pipe.

Apart from the time domain differential equations for numerical simulation [19–25],
the ECM can also be used to investigate the complex frequency-related features of the
hydraulic system, such as the transfer matrix and the hydraulic impedance. The transfer
matrix is often used to calculate the forced oscillation responses of the system, while the
hydraulic impedance is more suitable for free oscillation analysis. In this study, we focus on
the free oscillation analysis. If a pipe is modeled by n T-shape equivalent circuit segments,
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the equivalent impedance is calculated recursively from one end of the pipe according to the
circuit theory. The equivalent impedance of the ith loop can be obtained with Equation (4),

Zequi = (Ri + s · Li/2) +

(
Ri + s · Li/2 + Zequi+1

)
· 1

s·C
Ri + s · Li/2 + Zequi+1 +

1
s·C

(4)

where, Ri = Rei · dx, Li = Lei · dx and Ci = Cei · dx. The positive directions of the piezo-
metric head and discharge are set as directions shown in Figure 1. When the impedance
is calculated from the upstream side to the downstream side, the directions of the piezo-
metric head and discharge follow the preset positive direction, otherwise, the direction
of discharge follows the negative direction. It should be emphasized that Equation (4)
works when discharges follow the directions marked in Figure 1. Otherwise, the hydraulic
impedance Z′equi

= −Zequi when the discharges are in the opposite direction, where Zequi is
the impedance calculated with Equation (4).

The proposed complex frequency domain ECM transforms the piping system into
a spatial discretization approximation of the continuous system, while the traditional
impedance method computes the impedance of a certain location directly through the
analytical solution. The pipe is divided into several pipe segments in the ECM, which
brings inevitable numerical error led by spatial discretization. However, the well-developed
circuit theory enables the ECM to be applied to systems with complex hydraulic layouts.
For complete frictionless systems, the system impedances can be calculated at one end for
a given range of frequencies and identify which satisfies the known boundary conditions.
For dissipative systems, the problem then becomes searching for the complex frequencies
satisfying all the hydraulic boundary conditions. It usually leads to an iterative numerical
solving process searching for the minimum of a predefined objective function.

2.2. Typical Hydraulic Boundary Treatments

The treatment of different boundaries is also important for hydraulic system model-
ing [29].

2.2.1. Hydraulic Turbine

The hydraulic turbine is usually considered one of the most complicated hydraulic
boundaries in the transient analysis of the hydropower station system. According to the
theory proposed by Wylie and Streeter [30], the hydraulic impedance of the hydraulic
turbine can be reflected by Equation (5),

ZT =
2n

n11D1

(
Q11 − ∂Q11

∂n11
· n11

) (5)

where the impedance is highly related to the characteristic curves of the hydraulic turbine.
n and D1 are the rotational speed and runner’s diameter, respectively. n11 and Q11 denote
the unit rotational speed and unit discharge, respectively.

Suppose that k1 = Q11/n11 and k2 = ∂Q11/∂n11, it is found that only if k1 < k2, will the
hydraulic impedance of the turbine ZT be negative, otherwise the value of ZT is positive.
Seen from Figure 2, the slope of Q11/n11 is always positive and the slope of ∂Q11/∂n11 is
negative, which means that the turbine impedance ZT > 0 when the power station is in
steady turbine operation.
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Figure 2. The discharge characteristic curve of a hydraulic turbine.

2.2.2. Reservoir

For most scenarios of applied hydraulic transients, the water level of a reservoir is
often assumed to keep constant during the whole process of interest regardless of the
possible variation in discharges, i.e., the piezometric head variation hr = 0. Therefore, the
reservoir boundary can be treated as an open end, i.e., the impedance Zr = 0.

3. Oscillation Analysis of the Hydraulic System of a Hydropower Station
3.1. Introduction to the System Plant

A hydropower station system, firstly introduced in [9], is taken as the system plant in
this study. The structural schematic of the system is depicted in Figure 3.
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Figure 3. Structural schematic of the power station of interest.

The system is composed of an upstream reservoir, a diversion pipeline, a hydraulic
turbine, a tailrace pipeline, and a downstream reservoir. The equivalent circuit of the
hydropower station system is illustrated in Figure 4. The essential parameters of the
pipeline system in the hydropower station are given in Table 1.
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Table 1. Parameters of the pipeline system in the hydropower station.

Pipe No. L (m) A (m2) a (m/s) Zc (s/m2) f 10 (Hz)

#1 1000.0 50.24 1100.0 2.2308 0.2751
#2 100.0 78.50 1000.0 1.2979 2.5013

3.2. Frequency Response Validation of ECM

The frequency responses of the downstream end of the diversion pipe of the hy-
dropower station in Figure 3, obtained with the proposed equivalent circuit-based impedance
and the traditional continuous model [9] under different spatial steps, are displayed in
Figure 5, respectively.
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The modeling accuracy of the discrete system models is sensitive to the choice of spatial
discretization. Compared with the frequency-related analytical solutions obtained from
the continuous model, the discrete impedance model tends to have more precise responses
for lower frequency regions. The modeling performances for higher-order oscillations are
more prone to deteriorate if dx is not small enough, as shown in Figure 5. In addition, the
modeling precision for higher frequency oscillations increases when the value of the spatial
step further decreases.

3.3. Free Oscillation Response Analysis of the Hydropower Station System

From Figure 5, the impedance at the upstream reservoir Zequ also can be obtained
by calculating the total impedance of the series and parallel circuits using Equation (4)
from the downstream side to the upstream side according to the circuit theory. Since the
upstream and downstream reservoirs are considered to be two open ends, the impedances
of the two reservoir boundaries are Zu = Zd = 0. The system stability is highly related to
the oscillation characteristics of the hydraulic circuit in the power station. The oscillation
patterns of different orders of the hydropower system are obtained by searching for the
complex frequencies that satisfy the boundary condition Zequ(s) = Zu = 0 via the free oscil-
lation response analysis. The real and imaginary parts of each complex frequency represent
the decay coefficient and the angular frequency of the oscillation of the corresponding
order, respectively.

It is not easy to obtain the analytical solutions to the equation Zequ(s) = Zu = 0, for
the expression of the equation is quite complex. For this reason, the well-known Newton–
Raphson method [2,9,25] is used here to calculate the numerical solutions. Due to the
spatial discretization of the pipeline, the mathematical expression of the overall complex
frequency domain ECM model is quite complicated, and the model’s order is pretty high.
Hence, it is usually rather difficult to deduce the derivative of the objective function of the
optimization problem directly. For this reason, we use the first-order linear approximation
of the Newton iterative method to avoid the derivation deduction process. The detailed
process for this problem is shown in Figure 6.
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Figure 6. Flow chart of the free oscillation responses analysis.

4. Simulation Result Analyses

Simulation experiments were conducted to reveal the features of different orders of
oscillation in the hydropower station system. Since there are two pipelines in the system
plant, i.e., the diversion pipeline and the tailrace pipeline, the oscillation characteristics
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of either pipe may be influenced by the other. In addition, the influence of the hydraulic
turbine impedance on the system’s oscillation patterns needs further investigation. Note
that the friction losses along the pipelines are neglected to explore the damping effect of
the hydraulic turbine.

4.1. Oscillation Mode Characteristics of the Overall Hydropower Station System

It is known that the continuous model of the hydropower station system has infinite
degrees of freedom. Therefore, the oscillation order for this system can be as high as
infinite. However, as the proposed ECM is a discrete approximation to the system, only the
characteristics of the lower orders of oscillation are precise in the modeling, as discussed in
Section 2.1. Firstly, we investigate the decay coefficients of different orders of oscillation.
It is found that the damping characteristics of the system oscillations when ZT ≤ 3.5 and
ZT ≥ 3.6 are quite different from each other. The variation curves of the decay coefficients
of the oscillations under different hydraulic turbine operating conditions with relatively
small values of ZT (ZT ≤ 3.5) are illustrated in Figure 7.

Sustainability 2022, xx, x FOR PEER REVIEW 9 of 16 
 

plant, i.e., the diversion pipeline and the tailrace pipeline, the oscillation characteristics of 
either pipe may be influenced by the other. In addition, the influence of the hydraulic 
turbine impedance on the system’s oscillation patterns needs further investigation. Note 
that the friction losses along the pipelines are neglected to explore the damping effect of 
the hydraulic turbine. 

4.1. Oscillation Mode Characteristics of the Overall Hydropower Station System 
It is known that the continuous model of the hydropower station system has infinite 

degrees of freedom. Therefore, the oscillation order for this system can be as high as infi-
nite. However, as the proposed ECM is a discrete approximation to the system, only the 
characteristics of the lower orders of oscillation are precise in the modeling, as discussed 
in subsection 2.1. Firstly, we investigate the decay coefficients of different orders of oscil-
lation. It is found that the damping characteristics of the system oscillations when T 3.5Z   
and T 3.6Z   are quite different from each other. The variation curves of the decay coeffi-
cients of the oscillations under different hydraulic turbine operating conditions with rel-
atively small values of ZT ( T 3.5Z  ) are illustrated in Figure 7. 

 
Figure 7. Decay coefficients of different orders of oscillations under different operating conditions 
of the hydraulic turbine when T 3.5Z  . 

Figure 7 shows that the all the decay coefficients gradually move towards zero when 
the angular frequency is less than 15 rad/s. At the 5th order of oscillation (about 15.58 
rad/s), the decay coefficient reaches the crest and is quite close to zero (but is still nega-
tive). When the angular frequency is within 15 rad/s to 32 rad/s, the decay coefficient first 
decreases gradually as the angular frequency increases. At the 10th order of oscillation 
(about 31.16 rad/s), the decay coefficient reaches the nadir and its value is much smaller 
than those of the neighboring orders. Then, the decay coefficient gradually increases and 

Figure 7. Decay coefficients of different orders of oscillations under different operating conditions of
the hydraulic turbine when ZT ≤ 3.5.

Figure 7 shows that the all the decay coefficients gradually move towards zero
when the angular frequency is less than 15 rad/s. At the 5th order of oscillation (about
15.58 rad/s), the decay coefficient reaches the crest and is quite close to zero (but is still
negative). When the angular frequency is within 15 rad/s to 32 rad/s, the decay coefficient
first decreases gradually as the angular frequency increases. At the 10th order of oscillation
(about 31.16 rad/s), the decay coefficient reaches the nadir and its value is much smaller
than those of the neighboring orders. Then, the decay coefficient gradually increases and
reaches another crest at the 15th order of oscillation (about 46.73 rad/s), where the value at
this crest is also negative and close to zero.

The decay coefficients of the oscillations of the 1st, 2nd, 3rd, 4th, 6th, 7th, 8th, 9th,
11th, 12th, 13th, 14th, and 15th orders are within the range of [−2, 0], but the value of the
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decay coefficient of the 10th-order oscillation varies from −22 to 0, which is quite different
from the oscillations of other orders. The corresponding angular frequency ranges from
31.1 rad/s to 31.4 rad/s, which is very close to twice the base natural frequency of pipe #2
given in Table 1.

Different from that of the hydraulic turbine operating conditions with smaller values of
ZT (ZT ≤ 3.5), the variation curve of the decay coefficient of the system frequency responses
under the hydraulic turbine operating conditions with larger values of ZT (ZT ≥ 3.6) is
illustrated in Figure 8.
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Figure 8 shows that all the decay coefficients gradually increase to zero when the
angular frequency is less than 15 rad/s, which is the same trend compared to that in
Figure 7. At the 6th-order oscillation (about 15.70 rad/s), the decay coefficient suddenly
decreases sharply to the nadir (which is much smaller than the value of neighboring orders)
and then rapidly surges to a normal value (about σ = −0.28) at the 7th-order oscillation.
The decay coefficient at the 6th-order oscillation ranges from −18.11 to −2.32 when ZT
decreases from 8 to 3.6. While the angular frequency is within 16 rad/s to 33 rad/s,
the decay coefficient at first decreases gradually as the angular frequency increases. The
decay coefficient reaches the nadir at the 11th-order oscillation (about 32.88 rad/s). Then,
the decay coefficient gradually increases and reaches another crest at the 15th order of
oscillation (about 46.72 rad/s), where its value is negative and close to zero. Afterward, the
decay coefficient suddenly decreases sharply to the unusual nadir again at the 16th-order
oscillation (about 47.11 rad/s) and rapidly rises to the normal crest (within the range of
[−0.26, −0.21]) at the 17th-order oscillation (about 49.85 rad/s). From Figure 8, we can
also observe the angular frequencies of the two unusual oscillations (the 6th-order and
the 16th-order) are 15.70 rad/s and 47.11 rad/s, respectively. Their values are close to the
1st-order (15.71 rad/s) and 3rd-order (47.12) natural frequencies of pipe #2, respectively.
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It is proven that in a simple reservoir–pipe–valve hydraulic system [25], the frequencies
of the free oscillation responses at the valve inlet are even harmonics when the hydraulic
impedance of the valve Zv is smaller than the characteristic impedance of the pipe Zc (i.e.,
Zv < Zc). In contrast, the frequencies of the free oscillation responses at the valve inlet are
odd harmonics when Zv > Zc. This result is quite related to our aforementioned findings.
In this study, the oscillation frequency distribution obtained in the hydropower station
system also presents obvious odd harmonics performance when ZT is relatively large and
even harmonics performance when ZT is relatively small. The hydraulic turbine acts as
the valve in the reservoir–pipe–valve system. However, the system plant is more complex
and consists of multiple pipelines, the coupling effect of the pipes greatly influences the
frequency responses of the overall system. The critical hydraulic turbine impedance ZT
to determine the two different oscillation modes is located within the range of [3.5, 3.6].
According to the analysis above, the 10th-order oscillation when ZT ≤ 3.5 and the 6th-order
and 16th-order oscillations when ZT ≥ 3.6 are considered to correspond to the natural
frequencies of pipe #2.

4.2. Variation Trends of the Decay Coefficients of Oscillations of the Two Pipes

Apart from the three oscillations related to pipe #2, all other oscillations are considered
related to pipe #1. The decay coefficients corresponding to different orders of oscillation
related to pipe #1 under the different conditions of ZT are depicted in Figure 9. As seen in
Figure 9, the decay coefficients of the 5th-order oscillation and the 14th-order oscillation
are kept close to zero for all values of ZT. The angular frequencies of the two orders are
15.58 rad/s and 46.73 rad/s, respectively. These two frequencies are close to the 1st-order
and 3rd-order oscillations of pipe #2. The 4th-order, 6th-order, 13th-order, and 15th-order
oscillations of pipe #1 have relatively weak damping capability because the absolute values
of their decay coefficients for all ZT are relatively small. The reason why they have slow
convergence characteristics is that the 4th-order and the 6th-order oscillations are next
to the 5th-order oscillation, and the 13th-order and 15th-order oscillations are next to the
14th-order oscillation. On the contrary, the 1st-order, 9th-order, and 10th-order oscillations
have a relatively strong damping capability because the absolute values of their decay
coefficients for all ZT are relatively large. The reason why they have fast convergence
characteristics is that the angular frequencies of the 9th-order oscillation and the 10th-order
oscillation are next to the 2nd-order oscillation of pipe #2, and the 1st-order oscillation is
next to the 0th-order oscillation (i.e., the DC component).

In addition, the decay coefficients of the oscillation modes related to pipe #1 are within
the range of [−1.6, 0]. For each order of oscillation, the decay coefficient value decreases
to the corresponding nadir as ZT increases when ZT is small, then the decay coefficient
increases as ZT continues to increase. However, the critical hydraulic turbine impedance of
the decay coefficient nadir for each oscillation order is different.

The decay coefficient variation curves of the first three orders of oscillation related to
pipe #2 with different ZT are shown in Figure 10. It is seen that the 1st-order oscillation
and the 3rd-order oscillation can be observed when ZT ≥ 3.6 and their decay coefficients σ
nearly have the same variation trend with each other. σ increases gradually as the value of
ZT increases. On the contrary, the 2nd-order oscillation is observed when ZT ≤ 3.5, and σ

gradually decreases as the value of ZT increases.
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4.3. Influence of the Turbine Impedance on the Oscillations Frequencies Distribution

In Sections 4.1 and 4.2, the decay coefficients corresponding to different orders of
oscillation are investigated. In this subsection, we reveal the variation trend of the os-
cillation frequencies of the system. From Figures 7 and 8, the oscillation modes of the
hydropower system are separated into two parts, i.e., the oscillations related to pipe #1 and
the oscillations related to pipe #2. As discussed in Section 4.1, the oscillation frequencies’
distribution of the hydropower station system tends to present odd harmonics performance
when ZT is relatively large and even harmonics performance when ZT is relatively small.
The critical turbine impedance of the two oscillation patterns is within the range of [3.5,
3.6]. Therefore, the variation trends of the frequencies of different orders of oscillation of
the system with different ZT are illustrated in Figure 11.
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Both frequency responses of pipe #1 and pipe #2 when ZT ≤ 2 can be considered even
harmonics, although the frequencies of some oscillation orders of pipe #1 in this region
are greatly affected by the coupling effect of the two pipes. On the contrary, the frequency
responses of pipe #1 and pipe #2 when ZT ≥ 5 are odd harmonics for pipe #1 and pipe #2.
Furthermore, an obvious frequency transition region can be observed between ZT = 2 and
ZT = 5. The oscillation modes of pipe #1 gradually shift to the odd harmonics from the
even harmonics as ZT increases. During this transition, the oscillation modes of pipe #1 are
between the two oscillation modes. However, the oscillation modes of pipe #2 suddenly
change at a critical turbine impedance (within the region of ZT ∈ [3.5, 3.6]).
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5. Conclusions

An equivalent circuit-based hydraulic impedance model for a hydropower station
is proposed in this paper. The free oscillation analysis of the hydraulic system of the
hydropower station with this method is carried out. Several conclusions are condensed
below:

(1) Compared with the analytical frequency responses of the traditional continuous
hydraulic impedance method, the frequency responses of the proposed equivalent circuit-
based discrete impedance method for higher frequency impulses are more prone to being
inaccurate. The overall modeling accuracy is sensitive to the precision of the spatial
meshing.

(2) There exists a critical hydraulic turbine impedance ZTC to determine the oscillation
modes of the system. Performances of the system’s oscillation pattern for a relatively small
ZT and a relatively large ZT are different. When ZT < ZTC, the oscillation modes are even
harmonics, and when ZT > ZTC, the oscillation modes are odd harmonics.

(3) An obvious transition region of the frequency response for pipe #1 can be ob-
served around the critical turbine impedance. The oscillation frequency modes of pipe #1
gradually shift to the odd harmonics from the even harmonics as ZT increases. However,
the oscillation modes of pipe #2 suddenly change at a critical turbine impedance, and no
transition process is observed.
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Nomenclature
v Flow velocity
a Wave propagation speed
t Time
x Horizontal location along the pipeline
H Piezometric head
Q Discharge
A Sectional area of the pipe
D Diameter of the pipe
g Gravitational acceleration
λ Friction loss coefficient of the pipe
Rei Equivalent resistance per unit length
Lei Equivalent inductance per unit length
Cei Equivalent capacitance per unit length
R Equivalent resistance
L Equivalent inductance
C Equivalent capacitance
Zequ Equivalent hydraulic impedance
s Laplace operator, also the complex frequency
ZT Turbine impedance
D1 Diameter of the runner
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n11 Unit rotational speed
Q11 Unit discharge
Zr Reservoir impedance
hr Piezometric head variation of the reservoir
Zc Characteristic impedance of the pipe
ω0 Base frequency of the pipe
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