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Abstract: An urban metro network is susceptible to becoming vulnerable and difficult to recover
quickly in the face of an unexpected attack on account of the system’s complexity and the threat
of various emergencies. Therefore, it is necessary to assess the resilience of urban metro networks.
However, the research on resilience assessment of urban metro networks is still in the development
stage, and it is better to conduct said research using a technique which combines many attributes,
multiple methods, and several cases. Therefore, based on the complex network modeling and
topological characteristics analysis of metro systems, a metro network’s robustness and vulnerability
measurement method under node interruption and edge failure is proposed for the first time in
this study. Then, considering the three cases of general station interruption, interchange station
interruption, and traffic tunnel failure, a quantitative resilience assessment model of metro networks
is put forward, and the corresponding recovery strategies are discussed. Finally, a case study of
the Zhengzhou Metro Network (ZZMN) under an extreme rainstorm is conducted to demonstrate
the viability of the proposed model. The results show that ZZMN possesses scale-free and small-
world network properties, and it is robust to random interruptions but vulnerable to deliberate
attacks. ZZMN still needs to improve its effectiveness in information transmission. The centrality
distribution for each node in the ZZMN network differs significantly, and each node’s failure has a
unique impact on the network. The larger the DC, BC, and PR of a node is, the lower the network’s
robustness after its removal is, and the stronger the vulnerability is. Compared with the three cases of
general station interruption, interchange station interruption, and traffic tunnel failure, the network
loss caused by tunnel failure was the lowest, followed by general station interruption, and the
interruption at interchange stations was the most costly. Given the failures under various cases,
the metro management department should prioritize selecting the optimal recovery strategy to
improve the resilience of the metro network system. This study’s findings can assist in making urban
metro systems less vulnerable to emergencies and more resilient for a quick recovery, which can
provide scientific theoretical guidance and decision support for the safety and resilient, sustainable
development of urban metro systems.

Keywords: urban metro network; complex topology; robustness; vulnerability; resilience assessment

1. Introduction

As an essential part of all urban traffic activities, the urban metro network plays
a vital role in the sustainable development of modern cities [1–3]. The metro network
system is a complex network composed of multiple nodes and edges, and its topology
structure forms the cornerstone of how it functions [4–7]. Nowadays, with the rapid and
flourishing development of metro construction in cities all over the world, metro networks
are increasingly being developed. According to the Survey of Urban Rail Transit Lines in
Mainland China in the first half of 2022, which was released by the China Association of
Metro, up to 30 June 2022, 51 cities in mainland China had put into operation 9573.65 km
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of rail transit lines, and metro lines were 7529.02 km of them, accounting for 78.64% of the
total. Chinese urban rail transit has entered a new era of interconnection and network-based
operation [8].

The complexity of the metro network structure and the interaction of different lines and
functions make the metro system face various disruption threats (such as typhoons, rain-
storms, earthquakes, equipment breakdowns, and terrorist attacks) in daily operation, which
have a significant impact on the punctuality and safety of passenger transportation [9,10].
For instance, the Zhengzhou Metro suffered an extreme rainstorm disaster on 20 July 2021,
resulting in a terrible flooding tragedy that killed 14 people and injured 5 others. This emer-
gency triggered great concern and reflection on the whole society [11,12]. Faced with such a
drastic disturbance threat, the vulnerability [13] of a metro network system is significantly
enhanced, and it needs to have a strong absorption capacity and rapid recovery ability to
reduce losses. That aside, the resilience theory [14] runs through the system’s whole life
cycle and emphasizes the system’s adaptive ability and learning ability, which can better
capture changes in the system’s performance both before and after a disruption. The ro-
bustness [15], vulnerability [16], recovery [17], reliability [18], and other capacities of the
system may all be fully understood by a resilience assessment based on the resilience theory.
The vulnerable areas can also be located early, allowing for the implementation of targeted
resilience-improving interventions.

As a result, numerous professionals and academics began to study the robustness and
vulnerability of metro systems. The robustness [19] of a system is the ability to tolerate
perturbations that might affect the system’s functional body, and the vulnerability [20] refers
to the quality or state of being exposed to the possibility of being attacked or harmed. The
current research on the robustness and vulnerability of metro networks is mainly carried
out in the following ways. (1) The metro network’s variations in system performance in the
event of a disruption or attack are investigated using complex network theory or graph
theory [21–24]. (2) Using big data, the effects of emergencies on metro passenger flow
are examined [25–27]. (3) Passenger flow, vehicle flow, and other factors are taken into
account when building a metro-weighted network model to analyze the resistance ability
and damage implications of the metro network system under disturbance events [15,28,29].

In the meantime, the robustness and vulnerability research techniques currently in
use mostly concentrate on theoretical analysis, simulation, mathematical modeling, and
data-driven methods. Among them, theoretical analysis involves the definitions, related
concepts, and quantitative indicators of robustness and vulnerability [30,31]. The major
goal of the simulation is to represent the cascading failure of the metro network system
brought on by disturbances or attacks from unforeseen events (such as terrorist attacks
or natural disasters) [16,32,33] which may have happened or may not have occurred. In
mathematical modeling, indicators (such as network efficiency, the maximum connected
subgraph, the shortest path length, connectivity, and passenger flow distribution) are
proposed for quantitative calculation, and a mathematical model is developed to assess
the metro network’s robustness and vulnerability [29,34–36]. The development of metro
intelligence and information has a study trend called the data-driven technique [37–39],
which is still in the exploration phase. It primarily gathers large amounts of data about
factors such as passenger flow, traffic flow, cell phone signals, videos, and photos. In
summation, we may learn how well the metro system can withstand both internal and
external disturbances as well as the extent of the damage.

The study of metro resilience is currently a popular topic in the field of metro safety,
based on the robustness and vulnerability of the metro. However, metro network resilience,
which varies depending on the research scope and attributes, still lacks a uniform concept
and definition [40–43]. Some studies distinguish resilience from stability and emphasize
that it focuses on recovery, while others stress that resilience should be present throughout
the whole life cycle of the system. According to this study, a system’s resilience is a process
attribute or a time-varying attribute which necessitates consideration of the entire process,
including what happens before, during, and after disruptions occur, as well as the system
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status at various stages. Nevertheless, the ultimate objective is to quickly bring the system
to a relatively stable and acceptable level. Some academics have outlined some resilience-
related ideas (such as reliability, adaptability, redundancy, rapidity, recoverability, and
survivability) [44,45]. While each notion has a specific focus, resilience is more inclusive
and general.

Currently, the studies on metro network resilience focus mostly on developing some
assessment indexes, which can be divided into three categories. The first is resilience
indexes based on metro topology [46,47], which emphasize the structural characteristics
of the network system. The second category is resilience indexes based on some related
attributes [48–50]. The common attribute-based resilience index is Robustness, Redundancy,
Resourcefulness, and Rapidity (4R). The interference phase is represented by the robustness
and redundancy, whereas the recovery phase is represented by the resourcefulness and
rapidity. The recovery stage is the focus of resilience research at present. The third category
is resilience indexes based on the system’s functioning [51–53]. This means that the metro
system’s resilience may be assessed by using its performance or function during the entire
disturbance process. In order to accomplish this, mathematical modeling of the system
function Q(t) is typically necessary. Resilience indexes based on the system’s functioning,
which have time-varying properties and effectively describe the supply, demand, response,
and recovery of the metro system under disruption, surpass the limits of the first two
indices in comparison. Many academics are increasingly paying attention to them. A
resilience assessment based on the metro network’s system performance modeling will
also be conducted in this study.

The studies mentioned above show that the present research on the robustness and
vulnerability assessment of metro networks has produced significant findings. Studies
on metro network resilience are still in the development stage and tend to concentrate
on a single element, one method, or one particular example, while the combination of
several characteristics, methods, and cases can compensate for the shortcomings of a
single situation. Metro network resilience can be studied comprehensively based on the
topology characteristics, robustness, and vulnerability analysis results. This can deepen our
awareness of a metro network’s sustainable development, enabling us to take swift, efficient
action to lessen severe repercussions and significant losses in the event of an emergency.

According to this background, based on the complex network modeling and topologi-
cal characteristic analysis of metro systems, the robustness and vulnerability measurement
method of metro networks under node interruption and edge failure is put forward for the
first time by the simulation in this paper. Then, combined with the theory of resilience loss
triangle, a quantitative resilience assessment model of metro networks is proposed, and the
corresponding recovery strategies are discussed for three cases: general station interruption,
interchange station interruption, and traffic tunnel failure. Finally, an empirical study is
conducted on the case of the Zhengzhou Metro Network under an extreme rainstorm,
which demonstrates the effectiveness of the proposed model and method.

This study’s practical usefulness is highlighted by the following in particular. First
of all, the investigation of the complex topological features of the metro network in this
study can help transport planners and policy makers comprehend the structural complexity
of a metro network and the differences in importance distribution between all metro sta-
tions. Second, we can clearly determine which stations have a greater impact on the metro
network after failure and which stations have a higher vulnerability from the robustness
and vulnerability measurement results. This information allows the metro management
department to develop targeted policies and put in place appropriate safety supervision
measures for these stations. Finally, based on the findings of the metro network’s resilience
assessment, they can comprehend the optimal recovery strategies under the three cases
of common station interruption, transfer station interruption, and tunnel failure, enabling
them to respond quickly and effectively to major disasters in the future while minimizing
losses to the greatest extent possible. On the other hand, for urban metro networks under
construction (such as the Zhengzhou Metro), transport planners and policy makers can
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learn from the existing operation and management of metro networks to carry out sustain-
able planning and construction for future lines so as to improve the operation and service
level of the entire metro network. The related study results are helpful for lowering the
metropolitan metro network’s vulnerability to emergencies and boosting its resilience for
quick recovery. This study can provide scientific theoretical guidance and decision support
for the safety and resilient sustainable development of urban metro systems, which has
significant practical implications.

2. Methodology
2.1. Complex Network Modeling and Topological Index Measurement of a Metro System

A complex network is composed of many nodes and connections between the nodes,
while metro stations and lines between the stations make up a metro network. Considering
the analogy between complex network and metro network as well as the characteristics
of several classical spatial models of complex networks (such as Space L, Space P, Space
B, and Space C) [54], the Space L model was selected to conduct the complex topology
model G = (N, E) for the metro network in this study to restore the authenticity of
the metro network, and N = {vi, i = 1, 2, · · · , N} was the set of nodes (i.e., the metro
stations). E = eij, i, j = 1, 2, · · · , N, i 6= j was the set of edges, and eij = (vi, vj) represented
a connection consisting of two adjacent nodes (i, j) (i.e., a line in the metro). The Space L
model emphasizes whether nodes i and j are adjacent. If so, there will be an associated
adjacency matrix A = [aij], where aij = 1; otherwise, aij = 0.

In complex networks, the node centralities (such as the degree centrality (DC), eigen-
vector centrality (EC), betweenness centrality (BC), closeness centrality (CC), and PageRank
(PR)) are often used to measure the roles and effects of different nodes in the network [55–57].
In urban rail transit networks, node centrality describes the degree to which a station is
associated with other stations throughout the entire system. This study also chose several
widely used node centralities to measure the importance of nodes and the topological
characteristics of a network. The specific definitions and calculation formulae are shown
in Table 1.

Table 1. The definitions and calculations of node centralities in complex networks.

Index Definition Formula

DC [58] DC is the total number of the connected
edges of a node. ki = ∑N

j aij, DCi =
ki

N−1

EC [58] EC can identify the different effects of
neighbors of a node on it. λei = ∑N

j=1 aijej, e = [e1, e2, · · · , en]T

BC [59] BC is the shortest number of paths through
a node. BCi = ∑i 6=j 6=k

σjk(i)
σjk

CC[59] CC is used to measure the ability of a station
to affect another node through the network. CCi =

N−1
∑N

j=1,i 6=j dij

PR [60]
PR is used to calculate the ranking of nodes
in G based on the structure of incoming
links.

PRi = (1− λ) 1
n + λ ∑j:j→k

PRj

dj
, λ ∈ [0, 1]

In addition to some node centralities, the following indicators are commonly used
to measure the topological characteristics of complex networks: the network diameter D,
average shortest path length APL, network connectivity β, network density ρ, and network
efficiency Eff . Their corresponding meanings and calculation methods are shown in Table 2,
where N and E are the number of network nodes and connected edges, respectively, and dij
is the distance between nodes i and j. Aside from that, δ (degree_assortativity_coefficient)
reveals the level of network coordination and is used to measure the similarity of links [61].
The values of δ vary in the range of [−1, 1]. When δ ∈ [0, 1], the network is assortative. This
means that in the network, high-degree nodes prefer to be linked to other high-degree
nodes, and low-degree nodes tend to be linked to other low-degree nodes. In contrast, the
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network is disassortative when δ ∈ [−1, 0], which means that the high-degree nodes are
more likely to connect to the nodes with low degrees.

Table 2. The definitions and calculations of network topological indexes.

Index Definition Formula

D The maximum distance between any two nodes in a network. D = max dij

APL The average of the shortest distances between all pairs of
nodes. APL = 1

N(N−1) ∑i 6=j dij

β The connectivity degree of a network. β = E
3N−6

ρ The intensive degree of a network. ρ = 2E
N(N−1)

2.2. Robustness and Vulnerability Measurement of a Metro Network

For the metro system, there will be inevitable emergencies (such as vehicle failure,
signal failure, power failure, and deliberate attacks) in daily operation, which will lead to
the suspension of stations or lines or even interruption of the whole network. Then, the
metro network’s capacity for connectivity and the effectiveness of information transmission
will inevitably suffer as a result. Numerous professionals and academics have started
looking into the reliability of the metro network to help ease this reduction. Robustness
describes a metro network’s capacity to withstand disruption and continue information
transmission in the event of an emergency. A system with strong robustness means that the
system has strong resistance to accidents. Vulnerability refers to the degradation of network
connectivity performance and the severity of system loss after the network encounters
an emergency.

Here, we put forward the key index for a complex network: network efficiency (Eff ).
Eff is used to measure the ability to transmit information [23,24,46], which is global in
this study. Eff is also used to characterize the connectivity between network nodes. The
calculation formula of Eff is shown in Equation (1), and it is in the range of [0, 1]. APL and
Eff can represent the global transmission capability of the network. The shorter the APL is,
the higher the Eff is, and the faster the information transfer rate between nodes is.

In the event of an attack on the metro network, node connectivity is jeopardized,
making the network vulnerable. Through the removal of nodes and connecting edges,
the actual station interruption and tunnel failure are simulated in this study. Although
partial failures [62,63] are typical in daily metro operations, this analysis exclusively took
cases of complete failures into account. Then, the network efficiency would become a new
one: Eff ′. Two modes of node failure were set as a random attack and intentional attack.
This study assumes that all stations are subject to an equal probability of random attack,
while an intentional attack targets those nodes that are more important to the network. In
these two modes, robustness reflects the new network connectivity of the metro network
after removing nodes or edges. Therefore, robustness can be measured quantitatively by
Equation (3). Vulnerability measures the decline and damage degree of the connectivity
performance of the metro network, which can be described by the change in network
efficiency ∆Eff [46], as shown in Equation (4).

For the random attack, the simulation process set-up in this study was as follows. For
all nodes, one was randomly removed each time until the last one, and the new network
efficiency Eff ′ after each removal was calculated and updated. The specific process of a
random attack on the nodes is shown in Figure 1a. For the intentional attack, only one
node was removed each time in the order of node_id, and the number of nodes was N − 1.
The network efficiency Effi

′ after node i was removed could be calculated correspondingly.
Figure 1b shows the specific process of an intentional attack on the nodes.

With relative simplicity, we could remove the edge between i and j to simulate a tunnel
failure. Furthermore, the robustness and vulnerability could be calculated according to the
corresponding formula to measure the impact of the tunnel failure on the network:
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Eff =
1

N(N − 1) ∑
i 6=j

1
dij

(1)

Eff ′ =
1

N′(N′ − 1) ∑
i 6=j

1
d′ij

(2)

R(Robustness) = Eff ′ (3)

V(Vulnerability) = Eff − Eff ′ (4)

(a) (b)

Figure 1. (a) The simulation process of a random attack on a node. (b) The simulation process of an
intentional attack on a node.

2.3. Resilience Assessment Modeling of a Metro Network

Figure 2 shows the variation trend of the system performance Q(t) of the metro
network under an attack over time. The Q(t) of the metro network defined in this study
can be quantitatively expressed by the network connectivity, as in the network efficiency
Eff . The initial network performance of the metro network was Q(t0), and Q(t) plunged
precipitously to a low point at t0 following the attack. According to the robustness and
vulnerability measurement of the metro network in Section 2.2, it can be concluded that
the network performance corresponding to the time t0 is the network robustness level, and
the reduced network performance ∆Q(t) is the network vulnerability under this attack.
From t0, a series of response measures were taken, and the network performance began
to recover gradually. After the period th, the network reached a state of full recovery at
t1. It should be mentioned that different recovery times were difficult to calculate because
of the station’s complex condition in the actual world. Therefore, the corresponding time
under various recovery sequences was the same, according to our proposed resilience
evaluation methodology.

In this study, the resilience Re of the metro network system is defined as the recovery
capability after an emergency attack (as shown in the orange shaded part of Figure 2),
which can be calculated by Equation (5). The definite integral

∫ t1
t0

Q(t)dt can be obtained
by the trapezoidal sum method, Monte Carlo method, shoelace Gaussian area formula,
etc. Since the data involved in this study were discrete, the trapezoidal sum method was
chosen to roughly estimate the area of the shaded part. In addition, there existed resilience
loss in the failure-response-recovery process, namely the resilience loss triangle, as shown
in the green shaded part of Figure 2, which can be calculated quantitatively by Equation (6).
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Based on Section 2.2, we can supplement the mathematical expressions of robustness and
vulnerability as shown in Equations (7) and (8):

Re =

∫ t1
t0

Q(t)dt

thQ(t0)
=

∫ t1
t0

E f f (t)dt

thE f f0
(5)

Reloss =
∫ t1

t0

[Q(t0)−Q(t)]dt (6)

R = Q(t)min = Eff ′ (7)

V = Q(t0)−Q(t)min = Eff − Eff ′ (8)

In Section 2.2, the station and tunnel failures are simulated by removing the corre-
sponding node and edge. Based on this, the resilience assessment modeling of a metro
network under node and edge failures can be carried out. The following three cases
are described.

Figure 2. Resilience assessment model of metro network under attack.

Case 1: General station interruption
In a metro system, a general station is one where lines cannot be changed to other

lines. For a general station failure, the specific process can be illustrated by Figure 3a.
Stations A, B, and C are three adjacent general stations on Line 1. Stage (1) is the normal
operation state, and in stage (2), station A is interrupted and cannot be connected with B or
C. Stage (3) is the recovery process, and there are two types: e1→ e2 and e2→ e1; that is,
the connection sequence is between A and B as well as A and C. Stage (4) is the complete
recovery to the state in stage (1). The whole process from node failure to complete recovery
is rather straightforward for general stations. Combined with the resilience assessment
model and the calculation of relevant parameters, the robustness, vulnerability, resilience,
and resilience loss of general stations after disruption can be quantitatively assessed.

Case 2: Interchange station interruption
The metro network is more severely affected when interchange stations fail than

general stations are. Taking the two-line interchange station A as an example, Figure 3b
depicts the whole process from interruption to recovery. Station A is connected to four other
stations in stage (1), which is the initial normal state. When station A is interrupted after
deliberate attack, it will present as stage (2) and will be disconnected from the other four
stations. From this moment forward, the response measures are taken to recovery. Since
station A owns four linked edges, there will be A4

4 = 24 recovery sequences. Furthermore,
we can conclude that there are A2n

2n restoration sequences for an n-line interchange station.
Network resilience varies under different recovery sequences. The corresponding Q(t)
and network resilience indexes can be obtained for each recovered sequence by combining
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Figure 2 and Equations (5)–(8). By comparing the network resilience in different sequences,
the optimal network recovery strategy can be obtained to improve the effectiveness of
network recovery.

(a) (b)

Figure 3. (a) Schematic diagram of recovery process under general station interruption. (b) Schematic
diagram of recovery process under interchange station interruption.

Case 3: Tunnel failure
Tunnel failure in a metro network is represented by the removal of the connection

between a node pair (i, j). As shown in Figure 4, stages (2) and (3) describe the failure
process of edge (A, B). The total number of nodes N remains the same, and the Eff ′ can be
calculated after removing the connected edge. The recovery process can be simulated by
appending the connection between (A, B), and network efficiency is the initial Eff0. Simi-
larly, the corresponding network resilience indexes under tunnel failure can be calculated
by combining Figure 2 and Equations (5)–(8).

Figure 4. Schematic diagram of recovery process under metro tunnel failure.

3. Case Study: Zhengzhou Metro Network

On 28 December 2013, Line 1 (L–1) of the Zhengzhou Metro (ZZM) was opened,
making it the first urban rail transit system in Henan province and the 17th overall on the
Chinese mainland. Up to July 2022, Zhengzhou Metro has opened a total of seven lines
(L–1, 2, 3, 4, 5, 14, and Chengjiao) with an operation length of 215.5 km and owns a total of
131 stations, including 17 two–line interchange stations.

According to the line number sequence, all stations can be coded successively. For
instance, the ID of Henan University of Technology station on L–1 is 0, followed by
Zhengzhou University Sci–Tech Park station (ID = 1). For the interchange stations, they are
coded with a smaller line number. For example, the ID of the Tielu station on L–1 is 5, and
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it will be skipped on L–14. Thus, all stations of the Zhengzhou Metro in 2021 can be coded
from 0 to 130, as shown in Figure 5.

Figure 5. ZZMN in 31 December 2021.

3.1. Complex Topological Characteristic Analysis

Based on Section 2.1, the topological structure and node centrality characteristics of
the ZZMN can be quantitatively analyzed. The basic information of the ZZMN is shown in
Table 3, from which it can be seen that the ZZMN has 131 nodes and 142 undirected edges.
The average degree k is 2.168, and the maximum degree is 4. The highest proportion of
nodes with k = 2 occupies the highest proportion of 81.68%, indicating that a small number
of nodes with a larger degree take up the critical positions in the network. The fitting result
of the cumulative degree was a power-law distribution p(k) = 20.82 k−4.47, and the fitting
accuracy was R2 = 0.977. The fitting curve shows a straight line in the log-log coordinate
system, indicating that the ZZMN characterizes a scale-free network. Combined with the
properties of scale-free networks [28,46,64], it can be concluded that the ZZMN is robust to
random interruptions but vulnerable to deliberate attacks.

Table 3. The basic topological indexes of the ZZMN.

Indexes Values Indexes Values

N 131 ρ 0.0167
E 142 δ −0.105
k 2.168 DC 0.0181
C 0 EC 0.0531
D 35 BC 0.0952

APL 11.77 CC 0.0920
β 0.367 PR 0.0081

The APL and D of the ZZMN were 11.77 and 35, respectively. The density and
connectivity degree of the ZZMN were ρ = 0.0167 and β = 0.367, respectively. The
clustering coefficient C measures the local clustering of the network or the local efficiency
of information transmission and represents the possibility that the neighbors of a node i are
neighbors of each other. The C of the ZZMN was zero, indicating that the local efficiency
among nodes was a little bit low. At present, the ZZMN is in the process of construction and
development, and the network efficiency is being improved. According to the literature [46],
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if a network meets two conditions of APL > ln(N)/ ln(k) and C < k/N, it will be a small-
world network. For the ZZMN, we could obtain the results of ln(N)/ ln(k) = 6.30 < 11.77
and k/N = 0.0166 > 0, so it can be concluded that the ZZMN characterizes a small-
world network. The δ (degree_assortativity_coefficient) was −0.105, and the ZZMN is
disassortative, indicating that nodes with a high degree tend to connect with ones with a
low degree, and nodes with a low degree tend to be connected to ones with a high degree.

Figure 6 displays the centrality distributions of each node based on an understand-
ing of the topological properties of the ZZMN. Among the five centralities, BC and CC
accounted for the largest proportion on the whole, while PR accounted for the lowest
proportion. Comparatively speaking, the nodes with the largest DC were 14 two-line
interchange stations with k = 4. The EC and CC of Zijingshan Station (ID = 17) were the
largest among all nodes, which were 0.421 and 0.133, respectively. Huanghelu Station
(ID = 42) owned the largest BC with 0.393, while Henan Orthopaedics Hospital Station
(ID = 67) had the largest PR of 0.013. Table 3 shows the average values of the different
centralities of all nodes. Among them, BC and CC were larger than the others, while PR of
the ZZMN was only 0.0081.

Figure 6. The distributions of node centralities in the ZZMN.

3.2. Robustness and Vulnerability Assessment

The number of nodes in the ZZMN was N = 131, and dij could be obtained by the
Dijkstra algorithm [64]. According to Equation (1) for network efficiency, the Eff 0 of the
ZZMN under normal operation is 0.1320. Based on the measurement method of robustness
and vulnerability of metro networks in Section 2.2, the R and V of the ZZMN subjected to
different failures can be calculated and discussed.

Case 1: Node interruption
Node interruption can be divided into two types: (1) random attacks and (2) inten-

tional attacks.
(1) Random attacks
According to the simulation flow chart of network cascade failure in Figure 1a, one

node is randomly selected from all nodes for removal, with the next one being chosen
similarly, and this process continues until only one node remains. The results for network
efficiency obtained by this simulation method have a certain randomness. In order to
acquire the declining trend of network effectiveness along with the proportion of eliminated
nodes, as shown in Figure 7, we performed the simulation 10 times at random. Figure 7a
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shows the results of 10 random simulations, and Figure 7b shows their mean results. The
number of network nodes decreased as the percentage of eliminated nodes rose, and the
Eff steadily decreased. Figure 7b shows that the network efficiency fell from 0.1320 to
0.0269 when the eliminated nodes made up 55.73% of the network; that is, the robustness
at the time was 20.35% of the initial efficiency, indicating that the ZZMN has certain
robustness to random interruptions, which is also demonstrated by the characteristics of a
scale-free network.

Figure 7. The robustness and vulnerability of the ZZMN after removing nodes randomly: (a) All
results of 10 random simulations and (b) The mean results of 10 random simulations.

(2) Intentional attacks
All nodes of the ZZMN were removed in accordance with the sequence of node_ID,

and the corresponding network efficiency Eff ′ could be obtained for different nodes. By
combining Equations (3) and (4), we could obtain the network robustness and vulnerability
corresponding to intentional attacks on different nodes. As shown in Figure 8, various
node failures had different effects on the network. Among them, Nanwulibao (ID = 46) is a
two–line interchange station, and Xinzheng International Airport (ID = 130) is a general
station. After removing the Nanwulibao station, the network possessed the lowest robust-
ness Rmin = 0.1135 and the highest vulnerability Vmax = 0.0185. Meanwhile, the network
robustness reached the highest value Rmax = 0.133 after removing the Xinzheng Interna-
tional Airport station, which had a network efficiency Eff 0 even larger than the original one.
In addition, the network vulnerability was larger after the removal of interchange stations
compared with removing general stations, demonstrating that interchange stations have
stronger impacts on the network. Therefore, the metro management department should
strengthen the safety supervision of interchange stations.

Figure 8. The robustness and vulnerability of the ZZMN under intentional attacks.
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Combined with the difference in node centrality of the ZZMN in Section 3.1, we
measured the impacts of node failure under different centralities by removing the node
with the largest centrality index. After removing Zijingshan Station (ID = 17), which had
the largest EC and CC, the APL of the ZZMN rose to 12.46, and the D went up to 38. The
network assortativity δ became worse, the Eff decreased to 0.126, and the vulnerability
V was 0.006. Nevertheless, when we removed the Huanghelu station, which had the
largest BC, the APL of the ZZMN increased to 13.33, and the D increased from 35 to 42. The
network robustness and vulnerability were R = 0.122 and V = 0.010, respectively. As
can be observed, the effects of removing related nodes for various centrality indexes on
the network varied significantly. To evaluate the relationships between the robustness
R, vulnerability V, and node centralities (DC, EC, BC, CC, and PR), Pearson correlation
analysis was conducted, and the results are shown in Figure 9. It can be seen that R was
negatively correlated with V, DC, BC, and PR. The P value was at a 0.01 level (two–tailed),
showing significant correlation. In other words, the network was less robust and more
vulnerable when the nodes with bigger DC, BC, and PR values were removed.

Figure 9. The heat map of correlation analysis.

Case 2: Tunnel failure
This study used the extreme rainstorm event that hit the Zhengzhou Metro on 20

July 2021 as its research background for tunnel failure. The extreme rainstorm caused a
large amount of water to break down the retaining wall of the entrance line and enter the
tunnel between the Haitansi station (ID = 56) and Shakoulu station (ID = 94) of Line 5,
leading to the subsequent tragedy. In this context, this study simulated the metro tunnel
failure by removing the edge between nodes ID = 56 and ID = 94, and the basic network
indicators obtained are shown in Table 4. The D of the ZZMN after tunnel failure remained
the same, and the APL increased from 11.77 to 12.18, indicating that the average shortest
path of the network became longer and the cost of network travel rose. In addition, the
fact that connectivity β decreased from 0.367 to 0.364 also proved this. Network density ρ
barely changed, and the assortativity δ increased from −0.105 to −0.087, indicating that
the broken ZZMN was still disassortative. Moreover, the network efficiency Eff decreased
from 0.132 to 0.1288. Combined with the definition of robustness and vulnerability in
this study, we could obtain the results of R = 0.1288 and V = 0.0032. This displays the
effects of the traffic tunnel failure between the Haitansi station and Shakoulu station on the
ZZMN network.
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Table 4. The basic indexes of the ZZMN after tunnel failure.

Indexes Values Indexes Values

N 131 ρ 0.0167
E 141 δ −0.087
D 35 Eff ′ 0.1288

APL 12.18 R 0.1288
β 0.364 V 0.0032

3.3. Resilience Assessment

Based on Sections 2.3 and 3.2, we can achieve the quantitative resilience assessment
of the ZZMN under different scenarios. The extreme rainstorm event in the ZZMN was
selected as the research background, where the accident locations were the Shakoulu station
(a general station) and Haitansi station (a two–line interchange station). Therefore, we set
the following three cases. Case 1 is the recovery strategy and resilience assessment under
the interruption of a general station (Shakoulu). Case 2 discusses the optimal recovery
strategy and resilience measurement of an interchange station (Haitansi) interruption. In
Case 3, resilience assessment is carried out based on a traffic tunnel failure between the
Shakoulu station and Haitansi station.

Case 1: General station interruption
In this case, the interruption simulation was run at the Shakoulu station during an

extreme rainstorm. Between Yuejigongyuan Station (ID = 93) and Haitansi Station (ID = 56) is
Shakoulu Station (ID = 94). When combined with the recovery flow chart in Figure 3a and
the resilience assessment model in Figure 2, the trend chart of the network performance of
Shakoulu Station over time in the process of an extreme rainstorm could be obtained (seen
in Figure 10). The initial network performance was Q0 = Eff 0 = 0.1320, and it changed to
Q1 = Eff 1 = 0.1273 after removing Shakoulu Station. According to Figure 3a, there are two
recovery strategies: (93,94)→ (94,56) and (94,56)→ (93,94). If the edge (93,94) is recovered first,
then the network performance is Q2 = Eff 2 = 0.1288, while it will be Q′2 = Eff ′2 = 0.1292
if we initially recover the edge (94,56). In both cases, the network performance was finally
restored to Q3 = 0.1320. Therefore, the network resilience of the above two recovery strategies
can be calculated to be Re1|i=94 = 0.9790 and Re2|i=94 = 0.9805, respectively, and the cor-
responding resilience losses are Reloss1|i=94 = 0.0056 and Reloss2|i=94 = 0.0052, respectively.
In contrast, Re2|i=94 was larger. It can be determined that the Shakoulu station’s optimal
network recovery strategy involved recovering the first edge (94,56) before recovering the
second edge (93,94), and the resilience attained in this circumstance was the highest:

Re1|i=94 =
Q1 + 2Q2 + Q3

2× 2Q0
=

0.1273 + 2× 0.1288 + 0.1320
4× 0.1320

= 0.9790 (9)

Re2|i=94 =
Q1 + 2Q′2 + Q3

2× 2Q0
=

0.1273 + 2× 0.1292 + 0.1320
4× 0.1320

= 0.9805 (10)

Reloss1|i=94 =
4Q0 − (Q1 + 2Q2 + Q3)

2

=
4× 0.1320− (0.1273 + 2× 0.1288 + 0.1320)

2
= 0.0056

(11)

Reloss2|i=94 =
4Q0 − (Q1 + 2Q′2 + Q3)

2

=
4× 0.1320− (0.1273 + 2× 0.1292 + 0.1320)

2
= 0.0052

(12)
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Figure 10. The recovery strategy after the failure of Shakoulu Station.

Case 2: Interchange station interruption
As shown in Figure 11, Haitansi Station (ID = 56) is the interchange station of L–3 and

L–5, which also suffered heavy losses in the extreme rainstorm disaster on 20 July 2021.
In L–3, it is adjacent to Nanyangxincun Station (ID = 55) and Dashiqiao Station (ID = 57),
and in L–5, it is between Shakoulu Station (ID = 94) and Zhengzhou People’s Hospital
Station (ID = 95). It is shown in Figure 11a that the Haitansi station has four connected
edges, and we define e1, e2, e3, and e4 as the connected edges (55,56), (56,57), (93,56), and
(56,95), respectively. The network performance under the failure of Haitansi Station was
Q1 = 0.1237. Therefore, the network robustness was R = 0.1237, and the vulnerability was
V = Q0 −Q1 = 0.0083. According to Figures 2 and 3b, we could obtain a total of A4

4 = 24
recovery sequences. Thus, the network efficiency and performance could be measured in
each sequence, and the results are displayed in Table 5.

Figure 11. The schematic diagram of the failure of Haitansi Station: (a) Before failure and (b) After failure.

Table 5. The network performance of different recovery edges under the failure of Haitansi Station.

Edge Q(t) Edge Q(t) Edge Q(t) Edge Q(t) Edge Q(t) Edge Q(t)

e1 0.1248 e1 0.1248 e1 0.1248 e1 0.1248 e1 0.1248 e1 0.1248
e2 0.1274 e2 0.1274 e3 0.1270 e3 0.1270 e4 0.1280 e4 0.1280
e3 0.1291 e4 0.1288 e2 0.1291 e4 0.1311 e2 0.1288 e3 0.1311
e4 0.1320 e3 0.1320 e4 0.1320 e2 0.1320 e3 0.1320 e2 0.1320
e2 0.1254 e2 0.1254 e2 0.1254 e2 0.1254 e2 0.1254 e2 0.1254
e1 0.1274 e1 0.1274 e3 0.1262 e3 0.1262 e4 0.1260 e4 0.1260
e3 0.1291 e4 0.1288 e1 0.1291 e4 0.1285 e1 0.1288 e3 0.1285
e4 0.1320 e3 0.1320 e4 0.1320 e1 0.1320 e3 0.1320 e1 0.1320
e3 0.1251 e3 0.1251 e3 0.1251 e3 0.1251 e3 0.1251 e3 0.1251
e1 0.1270 e1 0.1270 e2 0.1262 e2 0.1262 e4 0.1280 e4 0.1280
e2 0.1291 e4 0.1311 e1 0.1291 e4 0.1285 e1 0.1311 e2 0.1285
e4 0.1320 e2 0.1320 e4 0.1320 e1 0.1320 e2 0.1320 e1 0.1320
e4 0.1256 e4 0.1256 e4 0.1256 e4 0.1256 e4 0.1256 e4 0.1256
e1 0.1280 e1 0.1280 e2 0.1260 e2 0.1260 e3 0.1280 e3 0.1280
e2 0.1288 e3 0.1311 e1 0.1288 e3 0.1285 e1 0.1311 e2 0.1285
e3 0.1320 e2 0.1320 e3 0.1320 e1 0.1320 e2 0.1320 e1 0.1320
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One of the sequences e1-e2-e3-e4 is given as an example. The network performance
after recovering e1 was Q2 = 0.1248, and it changed to Q3 = 0.1274 after recovering
e2 and then Q4 = 0.1291 after recovering e3. Finally, the complete network emerged
after restoring e4 (i.e., Q5 = Q0 = 0.1320). Based on the network performance acquired
in each step, the trend of Q(t) in this sequence can be clearly known. Thus, we could
calculate the network resilience Re1|i=56 and resilience loss Reloss1|i=56 under this recovery
strategy. Similarly, we could obtain the resilience results under 24 recovery sequences,
as shown in Table 6. Comparatively speaking, when the recovery sequence was e4-e1-
e3-e2, the resilience reached its maximum of Remax|i=56 = 0.9710, while it would be at
its minimum Remin|i=56 = 0.9619 when the recovery sequence was e3-e2-e4-e1, as shown
in Figure 12. Hence, for Haitansi Station, the optimal recovery strategy was (56,95)→
(55,56)→ (93,56)→ (56,57) after its interruption, and the resilience loss attained its lowest
value Relossmin|i=56 = 0.0153:

Re1|i=56 =
Q1 + 2(Q2 + Q3 + Q4) + Q5

2× 4Q0
= 0.9644 (13)

Reloss1|i=94 =
8Q0 − [Q1 + 2(Q2 + Q3 + Q4) + Q5]

2
= 0.0188 (14)

Table 6. The network resilience of different recovery sequences under the failure of Haitansi Station.

Sequence Re Sequence Re Sequence Re

e1-e2-e3-e4 0.9644 e2-e3-e1-e4 0.9633 e3-e4-e1-e2 0.9700
e1-e2-e4-e3 0.9639 e2-e3-e4-e1 0.9623 e3-e4-e2-e1 0.9652
e1-e3-e2-e4 0.9637 e2-e4-e1-e3 0.9625 e4-e1-e2-e3 0.9667
e1-e3-e4-e2 0.9676 e2-e4-e3-e1 0.9620 e4-e1-e3-e2 0.9710
e1-e4-e2-e3 0.9651 e3-e1-e2-e4 0.9644 e4-e2-e1-e3 0.9629
e1-e4-e3-e2 0.9695 e3-e1-e4-e2 0.9683 e4-e2-e3-e1 0.9625
e2-e1-e3-e4 0.9655 e3-e2-e1-e4 0.9628 e4-e3-e1-e2 0.9710
e2-e1-e4-e3 0.9650 e3-e2-e4-e1 0.9619 e4-e3-e2-e1 0.9661

Figure 12. The optimal and worst recovery strategies under the failure of Haitansi Station.

Case 3: Tunnel failure
The resilience assessment could be completed based on the robustness and vulnera-

bility measurement related to the metro tunnel failure in Section 3.2. The scenario where
the traffic tunnel between Haitansi (ID = 56) and Shakoulu stations (ID = 94) was hit by
the extreme rainstorm disaster continued to be selected. The initial network performance
was Q0 = 0.1320, and it was Q1 = 0.1288 after the failure. The recovery was relatively
simple; that is, the network would become complete again by adding the connecting
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edges between (94,56). Therefore, Q2 = Q0 = 0.1320. Network resilience in this case
was Re|(94,56) = (Q1 + Q2)/(2Q0) = (0.1288 + 0.1320)/(2× 0.1320) = 0.9880, and the
resilience loss was Reloss|(94,56) = [2Q0 − (Q1 + Q2)]/2 = 0.0016.

In the three failure cases listed above, the network loss caused by the tunnel failure was
the least severe, followed by the general station disruption. Additionally, the disruption
at the interchange station had the greatest financial impact on the network. To prevent
the serious situation of interchange station failure, the metro management department
should strengthen the safety supervision and management of the interchange stations in
daily operation.

4. Conclusions and Future Works

Due to the system complexity and the threat of various emergencies, urban metro
networks are susceptible to becoming vulnerable and difficult to recover quickly in the
face of unexpected attacks. Therefore, it is essential to study the urban metro network
system’s resilience. Based on complex network modeling and topological characteristic
analysis of urban metro networks, the robustness and vulnerability measurement of a
metro network under different failure cases are given in this study. The resilience assess-
ment models of a metro network under different failure cases were constructed, and the
corresponding resilience recovery strategies were compared and discussed. In addition,
taking the Zhengzhou Metro when it was hit by an extreme rainstorm disaster on 20 July
2021 as an example, the application research was carried out. The following conclusions
can be drawn:

(1) The ZZMN is a scale-free complex network which is robust to random interruptions
but vulnerable to deliberate attacks. At present, the ZZMN is in the construction and
development process, the local efficiency between nodes is lower, and there is room
for improvement in the network information transmission efficiency. The ZZMN
characterizes a small-world network, and it is disassortative. Additionally, the roles
and effects that various nodes have in the network vary substantially, as does the
distribution of centrality among them. Among the five centralities (DC, EC, BC, CC,
and PR) distributions, BC and CC accounted for the largest proportions, while PR
had the lowest.

(2) The robustness and vulnerability measurement results show that network efficiency
declined from 0.1320 to 0.0269 when the ratio of deleted nodes was 55.73%, indicating
that the ZZMN had certain robustness to random node interruption. The intentional
attack’s simulation findings demonstrate that different node failures had various
impacts on the network. The larger the DC, BC, and PR of the node was, the lower
the network robustness was after its removal, and the stronger the vulnerability
was. The network vulnerability was the greatest and the robustness was the lowest
after the removal of Nanwulibao Station. Compared with the general stations, the
network vulnerability was higher after removal of the interchange stations. Therefore,
the metro management department should strengthen the safety supervision of
interchange stations.

(3) The metro network was restored in two steps for general station interruptions and in
A2n

2n steps for station interruptions at n-line interchanges. For Shakoulu Station, it was
optimal to restore Shakoulu–Haitansi first and Yuejigongyuan–Shakoulu later, and
the resilience was 0.9805 at this condition. For Haitansi Station, network resilience
could reach the maximum value of 0.9710 according to the optimal recovery strategy,
and the resilience loss was minimal at 0.0153. What is more, network resilience under
the traffic tunnel failure between the Haitansi and Shakoulu stations was 0.9880. The
network loss during tunnel failure was the least of the three failure cases, followed
by general station interruption. Interruptions at the interchange stations had the
greatest financial impact on the network.

Based on the complex topological characteristics of metro networks, this study evalu-
ated the robustness, vulnerability, and resilience under different failure cases and gave the
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optimal recovery strategy under the corresponding cases. This study helps to improve the
metro network’s resilience and reduce its vulnerability to emergencies. However, there are
still some spaces to be further studied. For example, this study does not take into account
elements such as traffic flow, environmental considerations, or passenger movement. In
future works, we will establish a weighted metro network based on the above factors to
study the dynamic resilience of urban metro networks. At the same time, more variables
and scenarios will be considered further to optimize the proposed resilience assessment
model of the metro network. Additionally, the resilience effects of partial node failure on
the network structure and traffic flow provide another fascinating topic for research.
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The following abbreviations are used in this manuscript:

N The number of nodes
E The number of edges
k The average value of the node degree
C The clustering coefficient of the network
D The diameter of the network
δ The degree_assortativity_coefficient of the network
DC The degree centrality
EC The eigenvector centrality
BC The betweenness centrality
CC The closeness centrality
PR The PageRank centrality
DC The average value of DC
EC The average value of EC
BC The average value of BC
CC The average value of CC
PR The average value of PR
Eff The network efficiency
Eff ′ The new network efficiency
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41. Bešinović, N. Resilience in Railway Transport Systems: A Literature Review and Research Agenda. Transp. Rev. 2020, 40, 457–478.
[CrossRef]

42. Serdar, M.Z.; Koç, M.; Al-Ghamdi, S.G. Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment
Methods. Sustain. Cities Soc. 2022, 76, 103452. [CrossRef]

43. Yin, J.; Ren, X.; Liu, R.; Tang, T.; Su, S. Quantitative Analysis for Resilience-Based Urban Rail Systems: A Hybrid Knowledge-Based
and Data-Driven Approach. Reliab. Eng. Syst. Saf. 2022, 219, 108183. [CrossRef]

44. Wan, C.; Yang, Z.; Zhang, D.; Yan, X.; Fan, S. Resilience in Transportation Systems: A Systematic Review and Future Directions.
Transp. Rev. 2018, 38, 479–498. [CrossRef]

45. Gonçalves, L.; Ribeiro, P. Resilience of Urban Transportation Systems. Concept, Characteristics, and Methods. J. Transp. Geogr.
2020, 85, 102727. [CrossRef]

46. Zhang, D.M.; Du, F.; Huang, H.; Zhang, F.; Ayyub, B.M.; Beer, M. Resiliency Assessment of Urban Rail Transit Networks:
Shanghai Metro as an Example. Saf. Sci. 2018, 106, 230–243. [CrossRef]

47. Li, M.; Wang, H.; Wang, H. Resilience Assessment and Optimization for Urban Rail Transit Networks: A Case Study of Beijing
Subway Network. IEEE Access 2019, 7, 71221–71234. [CrossRef]

48. Xu, Z.; Chopra, S.S. Network-Based Assessment of Metro Infrastructure with a Spatial–Temporal Resilience Cycle Framework.
Reliab. Eng. Syst. Saf. 2022, 223, 108434. [CrossRef]

49. Xu, Z.; Chopra, S.S.; Lee, H. Resilient Urban Public Transportation Infrastructure: A Comparison of Five Flow-Weighted Metro
Networks in Terms of the Resilience Cycle Framework. IEEE Trans. Intell. Transp. Syst. 2021, 23, 12688–12699. [CrossRef]

50. Chan, H.Y.; Chen, A.; Li, G.; Xu, X.; Lam, W. Evaluating the Value of New Metro Lines Using Route Diversity Measures: The
Case of Hong Kong’s Mass Transit Railway System. J. Transp. Geogr. 2021, 91, 102945. [CrossRef]

51. Tang, J.; Xu, L.; Luo, C.; Ng, T.S.A. Multi-Disruption Resilience Assessment of Rail Transit Systems with Optimized Commuter
Flows. Reliab. Eng. Syst. Saf. 2021, 214, 107715. [CrossRef]

52. Ju, Y.; Yuan, H.; Li, Z.; Gan, M.; Chen, Y. Multilayer Structures and Resilience Evaluation for Multimode Regional Rail Transit
System. IET Intell. Transp. Syst. 2022, 16, 843–859. [CrossRef]

53. Liao, T.Y.; Hu, T.Y.; Ko, Y.N. A Resilience Optimization Model for Transportation Networks under Disasters. Nat. Hazards 2018,
93, 469–489. [CrossRef]

54. Taylor, M. Public Transport Networks. In Vulnerability Analysis for Transportation Networks; Elsevier: Amsterdam, The Netherlands,
2017; pp. 175–204.

55. Meng, Y.; Qi, Q.; Liu, J.; Zhou, W. Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro
Network from 2004 to 2021. Sustainability 2022, 14, 7234. [CrossRef]

56. Meng, Y.; Tian, X.; Li, Z.; Zhou, W.; Zhou, Z.; Zhong, M. Exploring Node Importance Evolution of Weighted Complex Networks
in Urban Rail Transit. Phys. A Stat. Mech. Its Appl. 2020, 558, 124925. [CrossRef]

57. Kopsidas, A.; Kepaptsoglou, K. Identification of Critical Stations in a Metro System: A Substitute Complex Network Analysis.
Phys. A Stat. Mech. Its Appl. 2022, 596, 127123. [CrossRef]

58. Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
59. Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35. [CrossRef]
60. Lin, P.; Weng, J.; Fu, Y.; Alivanistos, D.; Yin, B. Study on the Topology and Dynamics of the Rail Transit Network Based on

Automatic Fare Collection Data. Phys. A Stat. Mech. Its Appl. 2020, 545, 123538. [CrossRef]
61. Hong, J.; Tamakloe, R.; Lee, S.; Park, D. Exploring the Topological Characteristics of Complex Public Transportation Networks:

Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area. Sustainability 2019, 11, 5404. [CrossRef]
62. Ye, Q.; Kim, H. Partial Node Failure in Shortest Path Network Problems. Sustainability 2019, 11, 6275. [CrossRef]
63. Ye, Q.; Kim, H. Assessing Network Vulnerability of Heavy Rail Systems with the Impact of Partial Node Failures. Transportation

2019, 46, 1591–1614. [CrossRef]
64. Meng, Y.; Tian, X.; Li, Z.; Zhou, W.; Zhou, Z.; Zhong, M. Comparison Analysis on Complex Topological Network Models of

Urban Rail Transit: A Case Study of Shenzhen Metro in China. Phys. A Stat. Mech. Its Appl. 2020, 559, 125031. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2020.102033
http://dx.doi.org/10.1016/j.scs.2021.103329
http://dx.doi.org/10.1080/23249935.2019.1599080
http://dx.doi.org/10.1016/j.cstp.2021.11.014
http://dx.doi.org/10.1155/2021/6378526
http://dx.doi.org/10.1109/TITS.2018.2883766
http://dx.doi.org/10.1080/01441647.2020.1728419
http://dx.doi.org/10.1016/j.scs.2021.103452
http://dx.doi.org/10.1016/j.ress.2021.108183
http://dx.doi.org/10.1080/01441647.2017.1383532
http://dx.doi.org/10.1016/j.jtrangeo.2020.102727
http://dx.doi.org/10.1016/j.ssci.2018.03.023
http://dx.doi.org/10.1109/ACCESS.2019.2919105
http://dx.doi.org/10.1016/j.ress.2022.108434
http://dx.doi.org/10.1109/TITS.2021.3116667
http://dx.doi.org/10.1016/j.jtrangeo.2020.102945
http://dx.doi.org/10.1016/j.ress.2021.107715
http://dx.doi.org/10.1049/itr2.12179
http://dx.doi.org/10.1007/s11069-018-3310-3
http://dx.doi.org/10.3390/su14127234
http://dx.doi.org/10.1016/j.physa.2020.124925
http://dx.doi.org/10.1016/j.physa.2022.127123
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1016/j.physa.2019.123538
http://dx.doi.org/10.3390/su11195404
http://dx.doi.org/10.3390/su11226275
http://dx.doi.org/10.1007/s11116-018-9859-6
http://dx.doi.org/10.1016/j.physa.2020.125031

	Introduction
	Methodology
	Complex Network Modeling and Topological Index Measurement of a Metro System
	Robustness and Vulnerability Measurement of a Metro Network
	Resilience Assessment Modeling of a Metro Network

	Case Study: Zhengzhou Metro Network
	Complex Topological Characteristic Analysis
	Robustness and Vulnerability Assessment
	Resilience Assessment

	Conclusions and Future Works
	References

