A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems
Abstract
:1. Introduction
2. Topology and Operating Principle
2.1. Topology
2.2. Operating Principle
- (1)
- All the switches, capacitors, diodes, and inductors used in the circuit are assumed to be ideal components;
- (2)
- All the capacitors are large enough to maintain output voltage constant;
- (3)
- Vin is an ideal dc voltage source, and the load is modeled by a pure resistor RL.
3. Steady-State Analysis
3.1. Voltage Gain
3.2. Ripple-Free Condition
3.3. Voltage Stress Analysis
3.4. Real-Gain Analysis
3.5. Losses Analysis
4. Performance Comparisons
5. Design Guideline
5.1. Design of the Coupled Inductor
5.2. Design of Capacitors
5.3. Selection of Switch and Diodes
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fjellstedt, C.; Ullah, M.I.; Forslund, J.; Jonasson, E.; Temiz, I.; Thomas, K. A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources. Energies 2022, 15, 5816. [Google Scholar] [CrossRef]
- Lam, J.; Jain, P.K. A High Efficient Medium Voltage Step-up DC/DC Converter with Zero Voltage Switching (ZVS) and Low Voltage Stress for Offshore Wind Energy Systems. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–10. [Google Scholar]
- Lee, Y.; Vakil, G.; Feldman, R.; Watson, A.J.; Wheeler, P.W. A High-Power DC-DC Converter Based Dual Active Bridge for MVDC Grids on Offshore Wind Farms. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–10. [Google Scholar]
- Abeynayake, G.; Van Acker, T.; Hertem, D.V.; Liang, J. Analytical Model for Availability Assessment of Large-Scale Offshore Wind Farms Including Their Collector System. IEEE Trans. Sustain. Energy 2021, 12, 1974–1983. [Google Scholar] [CrossRef]
- Basbas, H.; Liu, Y.-C.; Laghrouche, S.; Hilairet, M.; Plestan, F. Review on Floating Offshore Wind Turbine Models for Nonlinear Control Design. Energies 2022, 15, 5477. [Google Scholar] [CrossRef]
- Wang, B.; Tian, M.; Lin, T.; Hu, Y. Distributed Complementary Control Research of Wind Turbines in Two Offshore Wind Farms. Sustainability 2018, 10, 553. [Google Scholar] [CrossRef]
- Vagiona, D.; Kamilakis, M. Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef]
- Torres, J.P.N.; De Jesus, A.S.; Marques Lameirinhas, R.A. How to Improve an Offshore Wind Station. Energies 2022, 15, 4873. [Google Scholar] [CrossRef]
- Bernal-Camacho, D.F.; Fontes, J.V.H.; Mendoza, E. A Technical Assessment of Offshore Wind Energy in Mexico: A Case Study in Tehuantepec Gulf. Energies 2022, 15, 4367. [Google Scholar] [CrossRef]
- Rong, F.; Wu, G.; Li, X.; Huang, S.; Zhou, B. ALL-DC Offshore Wind Farm with Series-Connected Wind Turbines to Overcome Unequal Wind Speeds. IEEE Trans. Power Electron. 2019, 34, 1370–1381. [Google Scholar] [CrossRef]
- Bahmani, M.A.; Thiringer, T.; Rabiei, A.; Abdulahovic, T. Comparative Study of a Multi-MW High-Power Density DC Transformer With an Optimized High-Frequency Magnetics in All-DC Offshore Wind Farm. IEEE Trans. Power Delivery 2016, 31, 857–866. [Google Scholar] [CrossRef]
- Hu, P.; Yin, R.; Wei, B.; Luo, Y.; Blaabjerg, F. Modular Isolated LLC DC/DC Conversion System for Offshore Wind Farm Collection and Integration. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6713–6725. [Google Scholar] [CrossRef]
- Herrera, D.; Tricarico, T.; Oliveira, D.; Aredes, M.; Galván-Díez, E.; Carrasco, J.M. Advanced Local Grid Control System for Offshore Wind Turbines with the Diode-Based Rectifier HVDC Link Implemented in a True Scalable Test Bench. Energies 2022, 15, 5826. [Google Scholar] [CrossRef]
- Xie, L.; Cheng, F.; Wu, J. Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier. Sustainability 2022, 14, 7860. [Google Scholar] [CrossRef]
- Liu, H.; Dahidah, M.; Naayagi, R.T.; Armstrong, M.; Yu, J. Unidirectional DC/DC Modular Multilevel Converter for Offshore Windfarm with the Control Strategy Based on Stationary Frame. J. Eng. 2019, 2019, 4309–4314. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Li, L.; Liu, X.; Wu, J.; Xu, D.; Wei, T.; Li, W. A High Step-up Ratio DC-DC Converter with Fault Blocking Capability for Offshore Wind Farms. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia), Singapore, 24 May 2021; IEEE: Singapore, 2021; pp. 702–707. [Google Scholar]
- Dincan, C.; Kjaer, P.; Chen, Y.; Munk-Nielsen, S.; Bak, C.L. Analysis of a High-Power, Resonant DC–DC Converter for DC Wind Turbines. IEEE Trans. Power Electron. 2018, 33, 7438–7454. [Google Scholar] [CrossRef]
- Zhao, X.; Li, B.; Zhang, B.; Xu, D. A High-Power Step-Up DC/DC Converter Dedicated to DC Offshore Wind Farms. IEEE Trans. Power Electron. 2022, 37, 65–69. [Google Scholar] [CrossRef]
- Deng, F.; Chen, Z. Control of Improved Full-Bridge Three-Level DC/DC Converter for Wind Turbines in a DC Grid. IEEE Trans. Power Electron. 2013, 28, 314–324. [Google Scholar] [CrossRef]
- Chen, W.; Huang, A.; Lukic, S.; Svensson, J.; Li, J.; Wang, Z. A Comparison of Medium Voltage High Power DC/DC Converters with High Step-up Conversion Ratio for Offshore Wind Energy Systems. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 584–589. [Google Scholar]
- Liu, H.; Dahidah, M.S.A.; Yu, J.; Naayagi, R.T.; Armstrong, M. Design and Control of Unidirectional DC–DC Modular Multilevel Converter for Offshore DC Collection Point: Theoretical Analysis and Experimental Validation. IEEE Trans. Power Electron. 2019, 34, 5191–5208. [Google Scholar] [CrossRef]
- Denniston, N.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N. Multiple-Module High-Gain High-Voltage DC–DC Transformers for Offshore Wind Energy Systems. IEEE Trans. Ind. Electron. 2011, 58, 1877–1886. [Google Scholar] [CrossRef]
- Parastar, A.; Seok, J.-K. High-Gain Resonant Switched-Capacitor Cell-Based DC/DC Converter for Offshore Wind Energy Systems. IEEE Trans. Power Electron. 2015, 30, 644–656. [Google Scholar] [CrossRef]
- Banaei, M.R.; Sani, S.G. Analysis and Implementation of a New SEPIC-Based Single-Switch Buck–Boost DC–DC Converter With Continuous Input Current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Saravanan, S.; Babu, N.R. Design and Development of Single Switch High Step-Up DC–DC Converter. IEEE J. Emerg. Sel. Topics Power Electron. 2018, 6, 855–863. [Google Scholar] [CrossRef]
- Gandomkar, A.; Parastar, A.; Seok, J.-K. High-Power Multilevel Step-Up DC/DC Converter for Offshore Wind Energy Systems. IEEE Trans. Ind. Electron. 2016, 63, 7574–7585. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, R.; Cao, W.; Zhang, J.; Finney, S.J. Design of a Modular, High Step-Up Ratio DC–DC Converter for HVDC Applications Integrating Offshore Wind Power. IEEE Trans. Ind. Electron. 2016, 63, 2190–2202. [Google Scholar] [CrossRef]
- Abbasi, M.; Lam, J. A Step-Up Transformerless, ZV–ZCS High-Gain DC/DC Converter With Output Voltage Regulation Using Modular Step-Up Resonant Cells for DC Grid in Wind Systems. IEEE J. Emerg. Sel. Topics Power Electron. 2017, 5, 1102–1121. [Google Scholar] [CrossRef]
- Parastar, A.; Kang, Y.C.; Seok, J.-K. Multilevel Modular DC/DC Power Converter for High-Voltage DC-Connected Offshore Wind Energy Applications. IEEE Trans. Ind. Electron. 2015, 62, 2879–2890. [Google Scholar] [CrossRef]
- Yin, R.; Shi, M.; Hu, W.; Guo, J.; Hu, P.; Wang, Y. An Accelerated Model of Modular Isolated DC/DC Converter Used in Offshore DC Wind Farm. IEEE Trans. Power Electron. 2019, 34, 3150–3163. [Google Scholar] [CrossRef]
- Zhang, J.; Sha, D.; Ma, P. A Dual Active Bridge DC–DC-Based Single Stage AC–DC Converter With Seamless Mode Transition and High Power Factor. IEEE Trans. Ind. Electron. 2022, 69, 1411–1421. [Google Scholar] [CrossRef]
- García-Vite, P.M.; Rosas-Caro, J.C.; Martínez-Salazar, A.L.; Chavez, J.d.J.; Valderrábano-González, A.; Sánchez-Huerta, V.M. Quadratic Buck–Boost Converter with Reduced Input Current Ripple and Wide Conversion Range. IET Power Electron. 2019, 12, 3977–3986. [Google Scholar] [CrossRef]
- Do, H.-L. Improved ZVS DC-DC Converter With a High Voltage Gain and a Ripple-Free Input Current. IEEE Trans. Circuits Syst. I 2012, 59, 846–853. [Google Scholar] [CrossRef]
- Yang, N.; Zeng, J.; Hu, R.; Liu, J. Analysis and Design of an Isolated High Step-Up Converter Without Voltage-Drop. IEEE Trans. Power Electron. 2022, 37, 6939–6950. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Wu, J.; Zeng, J. A Novel Nine-Level Quadruple Boost Inverter With Inductive-Load Ability. IEEE Trans. Power Electron. 2019, 34, 4014–4018. [Google Scholar] [CrossRef]
Parameters | [24] | [25] | [26] | [32] | Proposed |
---|---|---|---|---|---|
Number of switches | 1 | 1 | 3 | 2 | 1 |
Voltage gain | |||||
Voltage stress of switches | |||||
Voltage stress of diodes | |||||
TSV | 2 | ||||
Input current ripple | Low | High | High | Low | Zero |
Parameters | Value/Model |
---|---|
Input voltage Vin/V | 40 |
Output voltage VO/V | 308 |
Switching frequency fS/kHz | 35 |
Magnetic inductor Lm/uH | 250 |
Leakage inductance Lk/uH | 62.5 |
Turn ratio n | 1:2 |
Capacitor C0/uF | 330 |
Diodes D1–D7 | MBR10200CT |
Switch | IRFP260NPBF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.; Yue, J.; Huang, Z.; An, R.; Li, Z.; Liu, J. A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems. Sustainability 2022, 14, 11574. https://doi.org/10.3390/su141811574
Tao R, Yue J, Huang Z, An R, Li Z, Liu J. A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems. Sustainability. 2022; 14(18):11574. https://doi.org/10.3390/su141811574
Chicago/Turabian StyleTao, Ran, Jingpeng Yue, Zhenlin Huang, Ranran An, Zou Li, and Junfeng Liu. 2022. "A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems" Sustainability 14, no. 18: 11574. https://doi.org/10.3390/su141811574
APA StyleTao, R., Yue, J., Huang, Z., An, R., Li, Z., & Liu, J. (2022). A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems. Sustainability, 14(18), 11574. https://doi.org/10.3390/su141811574