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Abstract: Scrap tyres are used to produce tyre-derived aggregates (TDA), which can be used as fill
material, backfill material, drainage layers, and vibration-damping material, among other uses. This
study presents a comprehensive review of TDA applications in civil engineering with a specific focus
on railway projects. A review of the existing literature reveals the lack of sufficient knowledge on the
use of TDA in slab tracks. This article also analyses the adequacy of different constitutive models to
properly simulate the performance of TDA while highlighting the importance of adopting the most
suitable constitutive model. The variations in shear stresses and displacements with depth below
ballasted and slab tracks in the presence and absence of TDA are discussed. It is shown that TDA
effectively reduces the shear stresses for the subgrade layer of both track types. Moreover, the impact
of TDA on stress transfer in the vertical and lateral track directions is assessed. The findings from the
present analysis reveal that TDA helps in reducing the vertical and lateral stresses near its placement
position in ballasted and slab tracks.

Keywords: tyre-derived aggregates; finite element modelling; railway track; scrap tyre; shear stress

1. Introduction

Different waste materials have been researched for their applications as construction
materials in past decades. For example, demolition waste [1], steel furnace slag [2], recycled
glass [3], fly ash [4], and scrap tyres [5–7] have been assessed for their suitability as railway
track material. In particular, rubber has a profound influence on the environment and
comes in different forms and at the end of its life, it becomes waste. Rubber is used in our
daily routine, viz., protection gloves, tubes, mattresses, and tyres. All these are significant
sources of rubber waste. Rubber waste can be recycled, re-used or both. Gloves and
mattresses can only be recycled, while tyres and tubes can either be recycled or re-used [8].

Each year, approximately 70 million tons of scrap tyres is produced globally, of which
52% and 14% are disposed of through burning and landfilling, respectively [9]. The amounts
of 16% and 12% of the discarded tyres are utilised to produce bitumen/concrete and rubber,
respectively [9,10]. The amount of scrap tyres is increasing worldwide with an annual
production of 12.6, 6.4, and 8 kg/resident in the USA, Europe, and Japan, respectively [11].
In Australia alone, over 50 million tyres are discarded yearly [12].

In the USA, more than half of scrap tyres are converted into tyre-derived fuel, 24.4%
are used to produce ground rubber, 8.2% are disposed in landfills, and 4.3% are used for
civil engineering applications [13]. Landfilling waste tyres require a large amount of space
due to their incompressible nature. Shredding tyres is an alternative, but high operational
costs render this option rather unfeasible. In Japan, the vast majority of scrap tyres are
recycled as fuel, resulting in excessive carbon dioxide and incineration ash generation [14].
The burning of these scrap tyres also contributes to the temperature rise in that region, and
the resulting residue pollutes the soil. The annual disposal of scrap tires is estimated to
reach 400% by 2030 [13]. Recycling waste rubber helps reduce large amounts of energy,
eventually reducing greenhouse gas emissions. It has been estimated that recycling four

Sustainability 2022, 14, 11715. https://doi.org/10.3390/su141811715 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141811715
https://doi.org/10.3390/su141811715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6211-7392
https://orcid.org/0000-0002-1538-3396
https://doi.org/10.3390/su141811715
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141811715?type=check_update&version=2


Sustainability 2022, 14, 11715 2 of 24

tyres reduces CO2 emissions by approximately 146 kg, equivalent to 69 litres of gasoline.
In addition to environmental benefits, scrap rubber recycling plays a significant role in
powering up the economy and creating jobs. More than USD 1.6 billion in the United
States was generated as revenue in the rubber recycling industry [15]. Hence, it has
become prudent to investigate scrap tyres as a prospective geomaterial for various civil
engineering applications.

This paper has been divided into two parts. In the first part, an introduction to
scrap tyres is provided, including their civil engineering applications, shear strength, and
compressibility properties. Indeed, the use of scrap rubber in ballasted tracks has been a
topic of interest in recent times. On the contrary, very limited knowledge is available on its
use in slab tracks. The second part of this paper deals with the finite element simulation
of ballasted and slab tracks including and excluding TDA. Previous studies [16,17] have
modelled TDA as an elastic material and very limited studies [5,18] have considered
TDA as a hyperelastic material. The present study discusses the stress–strain response of
TDA considering different hyperelastic models and attempts to identify the most suitable
hyperelastic strain energy potential. As per the authors’ knowledge, for the first time, the
variations in the different components of shear stress and displacement with depth for
ballasted and slab tracks, without and with TDA, is presented. The study also shows the
effects of train speed and axle load on the vertical and lateral stress distribution of ballasted
and slab tracks while incorporating TDA.

2. Scrap Tyres

According to ASTM D 6270, “Standard practice for the use of scrap tyres in civil
engineering applications”, a scrap tyre is defined as a damaged tyre and which can be
processed again for its originally intended use or some other applications [19]. However,
scrap tyres are a significant source of pollution; these scrap tyres consist of natural and
synthetic rubber elastomers derived during the fractional distillation of crude oil. In
addition, various polymers, metals, and additives are added during the production of tyres
to improve their resistance to harsh environmental conditions. Hence, they can be regarded
as inert materials due to their prolonged decomposition time [20]. This characteristic of
scrap tyres justifies their widespread application in civil engineering projects. These scrap
tyres can be used to produce tyre-derived aggregates (TDA) for potential use in various
construction projects. The recycled materials obtained from waste tyres can be classified
into tyre shreds (50–305 mm), tyre chips (12–50 mm), granulated rubber (<12 mm), ground
rubber (<2 mm), and powdered rubber (<0.425 mm) [19,21]. TDA is a mixture of tyre shreds
(50–305 mm) and tyre chips (12–50 mm) [22,23].

2.1. Advantages of Using Scrap Tyres

Recycling scrap tyres can be challenging due to their large size, but it is worth the
additional effort. The primary benefits associated with rubber recycling include a lower
consumption of energy, less pressure on natural rubber, the conservation of landfill space,
a reduction in environmental pollution, and the creation of new products [24]. Figure 1
shows the life cycle of tyres and civil engineering applications of scrap tyres. Four key
advantages of recycling scrap tyres can be summarized as below:

• Conservation of landfill space: Tyres occupy ample space in landfills [25]. Landfill
space is limited and expensive; hence, using scrap types helps save this space for
things which are difficult to recycle [26].

• Creation of beneficial products: Recycled tyres can be converted into a plethora of
valuable products, viz., tyre-derived fuel [8], rubberised asphalt [27], flooring [28],
railway sleepers [29], and playground turf [26].

• Prevention of the spread of diseases: Discarded scrap tyres serve as a habitat for the
growth of disease-carrying rodents. Moreover, stagnant water gets collected inside
them, which serves as a breeding ground for flies [26,30].
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• Prevention of fires and pollution: One of the significant disadvantages associated with
stockpiling scrap tyres is fire hazard. For example, a fire broke out in Melbourne in
2016, and more than 150,000 tyres were burnt, which led to the release of harmful gases
into the environment [31]. Hence, re-using these scrap tyres is highly recommended
and stockpiling should be avoided.
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2.2. Civil Engineering Applications for Scrap Tyres

Scrap tyres are increasingly used for various civil engineering applications, as elabo-
rated upon below:

• Embankment and trench fill material: Tyre shreds are beneficial as lightweight fill
material when constructing embankments on soft soils. Low unit weight (approxi-
mately 40% compared to compacted soil) and low cost render them appropriate fill
material [32–34].

• Backfill material for retaining walls and bridge abutments: The low unit weight of
these materials aids in reducing the active lateral pressures acting on the backface
of retaining walls, which further helps to construct thinner wall sections. The rapid
drainage of these materials also helps to limit the build-up of excess hydrostatic
pressure behind the walls [34–37].

• Drainage layer in highway construction: They are also used as a drainage layer for the
construction of roads [38].

• Vibration damping material in railway tracks: Scrap tyres in the form of TDA have
been used as damping material for better attenuation of vibration associated with the
passage of a train [39,40].

• Leach drain for septic systems: Clean-cut and uniform-size scrap tyres have been used
to replace conventional stone backfill material in septic sewage disposal systems [41].

• Protection cushion and isolation layer against seismic forces: Tyre shreds have been
used in trench barriers as an isolation medium for vibration attenuation [23,42]. Tyre
chips placed as layers or mixed with sand help in seismic isolation [19].

• Asphalt rubber: Scrap tyres are commonly used to produce asphalt rubber. Ground
rubber (<2 mm) is blended with asphalt to reduce skid distance and noise and improve
durability while having favourable implications for cost reduction. Some studies
report their use as aggregates [43] and in asphalt mixes [44].
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• Building aggregates/fillers: Waste rubber materials have been used as building aggre-
gates or fillers and have been shown to lower the thermal conductivity of cementitious
materials by up to 50% [45].

• Subgrade insulation in roads: The thawing of subgrade soil releases excess water in
cold regions. To avoid this problem, tyre shreds in layers (150–300 mm) are placed
below the road surface, shielding the subgrade from the cold temperatures. Scrap
tyres help to protect against frost-susceptible soils [46,47].

2.3. Shear Strength and Compressibility Characteristics of Tyre Shreds

Tyre shreds are similar to coarse gravel and crushed rock in terms of gradation char-
acteristics; however, they differ in terms of shear strength and compressibility. The shear
strength and compressibility behaviour of soil-scrap rubber mixtures are elaborated below.

• Shear strength: The shear strength behaviour of sand-scrap rubber mixtures depends
on the type of scrap rubber. The addition of tyre shreds or tyre chips increases the shear
strength of sand [48], while the inclusion of tyre crumbs reduces the shear strength of
sand [49,50].

• Compressibility: The compressibility of rubber mixtures is inversely proportional to
the soil proportion [51]. The increase in the proportion of tyre crumbs increases the
compressibility of the soil-rubber mixtures [50]. The size of scrap rubber (small tyre
chips and larger shreds) does not influence rubber response [32].

2.4. Application of Scrap Rubber in Railway Engineering

Based on the discussion in the preceding paragraphs, the advantages of using scrap
rubber in railway tracks compared to other applications include:

• The use of scrap rubber tyres as fuel releases a significant amount of CO2 into the
atmosphere and also generates a huge amount of incineration ash [14]. However,
using scrap tyres on railway tracks would minimise the excessive release of CO2
and reduce the amount of incineration ash. It would also help to reduce the global
warming associated with burning these scrap tyres that contributes to the temperature
rise in the region.

• Scrap tyres occupy a huge amount of landfill space [25]. Hence, using scrap tyres on
railway tracks would help preserve the landfill space.

• Compared to other civil engineering applications such as embankment and backfill,
scrap tyres replace expensive resilient materials, such as geosynthetics and rubber mats,
used in railway tracks to attenuate noise, vibration [52], and track deformation [53,54].
Hence, it would help in reducing the construction costs of railway tracks.

Recently, scrap rubber has been used in railway engineering to attenuate environmen-
tal vibrations due to moving trains [5,55]. Esmaeili et al. [55] performed field trials using
TDA as a layer below ballast. They observed that the vibration reduction efficiency of TDA
was comparable to the ballast mat [55]. A finite element study by Farooq et al. [5] showed
that scrap rubber (in the form of TDA) helps reduce the stress levels near the zone of TDA
placement in both ballasted and slab tracks. In addition, TDA incorporation lowers the
vibration levels of ballasted and slab tracks by 42% and 50%, respectively [5].

Fathali et al. [56] recommended a 10% optimum dosage for TDA, which helped reduce
particle breakage and settlement by 47% and 6%, respectively [56]. Esmaeili et al. [57]
evaluated the performance of TDA (0, 5, 10, and 15%) in fouled ballasted tracks using cyclic
uniaxial tests and recommended a 5% dosage as optimum considering breakage and stiff-
ness [57]. In addition, the damping ratio increased with increasing TDA proportions [57]. In
another study, Song et al. [58] observed that the damping ratio increased while the resilient
interface shear stiffness reduced due to the addition of TDA to the ballast. In addition, peak
shear stress, dilation effect, cohesion, and friction angle of ballast were reduced due to TDA
incorporation. An optimum TDA dosage of 5% was recommended [58].

Gong et al. [17] performed large-scale direct shear testing (DST) and discrete element
modelling (DEM) of the ballast-TDA mixture and revealed that TDA notably reduced the



Sustainability 2022, 14, 11715 5 of 24

shear stress and dilation effect of the ballast-TDA mixture. DST showed that the ballast
breakage index decreased by 53% with a 10% TDA addition, and DEM showed that TDA
reduced the magnitude of contact forces, implying less breakage of ballast aggregates [17].
Ho et al. [59] developed a new material, resilient bound ballast (RBB), comprising ballast
mixed with TDA bonded using a resilient epoxy binder. RBB showed improved strength
over traditional ballast and could be used below concrete ties, leading to reduced abrasion
and ballast fouling [59]. A mixture of waste rubber and polyurethane has been used as a
waterproofing layer on high-speed railway tracks. It has shown excellent results compared
to the traditional asphalt concrete layer [60]. One study suggested that using TDA below
sleepers would help improve the lateral resistance of railway tracks [61]. Hence, it is seen
that the application of scrap rubber has been investigated for ballasted tracks by many
studies. In contrast, its application for slab tracks has been assessed by limited studies [5,60],
as summarized in Tables 1 and 2. Hence, further research is recommended in this area.

Table 1. Summary of research findings related to TDA application in railway tracks.

Methodology Track Type Major Findings Reference

Finite element
modelling Ballasted and slab tracks

The TDA reduced peak acceleration for both track
types. Vertical stress reduction occurred near the

zone of TDA placement in both track types.
[5]

Finite element
modelling and

field testing

Ballasted track

The presence of TDA reduced bridge deck
acceleration and deflection. [55]

The addition of TDA (10% by volume) reduced the
stiffness of the ballast while improving the stiffness

of the fouled ballast.
[61]

Discrete element
modelling and

laboratory testing

TDA incorporation reduced peak shear stress,
dilation, and ballast breakage. [17]

Field testing
The vibration reduction effectiveness of the TDA

was comparable to or higher than that of
ballast mats.

[62]

Laboratory
testing

Reduction in ballast breakage and vibrations. [56]

Both TDA and sand increased the settlement of
railway tracks. TDA was more effective in reducing

ballast breakage for fully fouled conditions.
[57]

The addition of TDA enhanced the damping ratio
while causing a loss in mechanical properties. [58]

The addition of TDA and epoxy enhanced cohesive
strength and reduced ballast breakage. [59]

The application of TDA in a specified volume
(1500–2000 cm3) under the sleeper improved the

lateral resistance of the track.
[63]

Adding up to 10% TDA to slag ballast material
helped to reduce grain crushing and increase the
damping ratio of the mix. Although settlement

increased, it was under permissible limit.

[64]
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Table 2. Summary of research findings related to scrap rubber (in form of tyre, powder, granulates,
shreds, and crumb) in railway tracks.

Methodology Track Type Scrap Rubber Type Major Findings Reference

Finite element
modelling Ballasted track Rubber tyre

The tyre reinforcement provided additional
confinement, which helped to reduce the

vertical and lateral track deflections,
especially for soft foundations.

[65]

Finite element
modelling and

laboratory testing
Slab track

Waste rubber
powder

The proposed layer (waste rubber and
thermoplastic polyurethane) showed better

performance as a waterproof seal layer
compared to the asphalt concrete layer.

[60]

Granulated rubber

The newly developed material (rubber
granules bonded with polyurethane) showed

good performance under compression and
shear loading, which makes it an excellent
choice for use as an anti-vibration mat on

railway tracks.

[66]

Discrete element
modelling and
finite difference

modelling

Ballasted track

Crumb rubber

Although the accelerations of the train, rail,
and sleeper increased due to the use of crumb

rubber in the ballast layer, a reduction in
ballast degradation, subgrade surface

acceleration, and subgrade surface stress
was observed.

[67]

Discrete element
modelling and

laboratory testing

The rubber-protected ballast provided more
homogenous contact forces and better force

distribution compared to ballast.
[68]

Field testing Tyre shreds

The use of tyre shreds under ballast and
sleeper is both a practical and viable solution

for ground-borne vibration reduction at a
significantly lower cost.

[40]

Laboratory
testing

Rubber shreds

The addition of rubber shreds (up to 10%)
with granular soil increased the damping

ratio by up to 95%, suggesting the potential
ability of the mix to attenuate vibrations.

[39]

Granulated rubber

The shear strength and liquefaction resistance
of the new subgrade filler were better than

pure sand.
[69]

The incorporation of granulated rubber
reduced the fluctuations in the sleeper–rail

oscillation after the routine track
maintenance process.

[70]

Crumb
rubber

Fibres enhanced the flexural and shear
performance; crumb rubber improved the

flexibility of the mix.
[71]

The proposed rubber-coated ballast showed
better performance in terms of abrasion,

breakage, and long-term settlement.
[72]

The smaller-crumb rubber particles showed
higher energy dissipation. The stiffness

reduction in ballast on rubber addition was
higher for rigid subgrade.

[73]
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3. Adequacy of Constitutive Model for TDA

This section covers a numerical assessment of the effectiveness of a range of con-
stitutive models to reproduce the laboratory-measured performance of TDA in terms of
vertical strain. In this regard, a uniaxial compression test was simulated in finite ele-
ment software ABAQUS [74] and calibrated against the previous experimental work of
Meles et al. [75]. In the literature, the unit weight of TDA was reported to be within the
range of 3.4–9.1 kN/m3 depending on the compaction energy, viz., no compaction, light
compaction, laboratory compaction, or field compacted [22]. The compaction energy influ-
enced the unit weight of TDA up to 60% of standard proctor compaction energy; after that,
the effect was the least [76]. In the present study, the unit weight of the tested TDA was
6.5 kN/m3, which represents the level of compaction adopted for TDAs in practice and was
adopted by Meles et al. [75]. Subsequently, the relative density of the tested specimen was
76%, based on maximum and minimum unit weights of 9.1 and 3.4 kN/m3, respectively.

A concentrated load of 510 kN was applied at the top centre of the compression
cell, shown in Figure 2a. The base of the compression cell was fixed, and the sides were
restricted from movement in the x and y directions. The mesh size of each element was
0.025 m. The total amounts of elements and nodes were 26055 and 28336, respectively. The
elements were modelled as eight-noded hexahedral linear brick elements with reduced
integration (C3D8R).
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It is shown in Figure 2 that the adoption of an elastic constitutive model for TDA leads
to the underestimation of vertical strain for a particular value of vertical stress. For example,
in Figure 2b, with a vertical stress of 100 kPa, the vertical strain when considering TDA
as elastic material is 7%, significantly less than the actual vertical strain of 18% measured
experimentally by Meles et al. [75]. Hence, it becomes essential to use a suitable consti-
tutive model for TDA that can correctly predict vertical strain. Hyperelastic is one such
type of material model used for rubberlike materials. A hyperelastic model is a nonlinear
material model in which large strains can be applied. The material state in a hyperelastic
model considers the current loading and is not influenced by history or deformation rate.
Various types of hyperelastic models (or forms of the strain energy potential) are available
in ABAQUS, viz., polynomial (N = 1 (Mooney–Rivlin) and N = 2)), Ogden (N = 1 to 6),
reduced polynomial (N = 1 to 6, (N = 1 and 3 are called Neo Hooke and Yeoh, respectively)),
Arruda–Boyce, Van Der Waals, and Marlow. All these forms constitute incompressible
or almost incompressible models. Stability analysis was performed using different hy-
perelastic constitutive models available in ABAQUS, and the results are plotted for all
the stable models in Figure 2b. Generally, it can be seen that the vertical strain pre-
dicted by various hyperelastic models compares well with the experimental work of
Meles et al. [75]. Arruda–Boyce underestimates the vertical strain, while Ogden overesti-
mates the vertical strain. The reduced polynomial strain energy potential functions with
N = 1 show similar stress–strain behaviour to Arruda-Boyce. Reduced polynomial strain
energy potential functions with N ≥ 2 depict an excellent match with the experimental
work of Meles et al. [75]. The higher the degree of the reduced polynomial, the better the
match with experimental work. A reduced polynomial strain energy potential with N = 3
(Yeoh model) was chosen for the present study to strike a balance between accuracy and
analysis time.

The selection of a suitable constitutive model for TDA is essential to precisely analyse
the behaviour of the railway track containing TDA. Figure 3 shows the comparison of
vertical elastic displacement (δev) and vertical plastic displacement (δpv) when considering
TDA as an elastic and hyperelastic material. The δev and δpv values are reported at the
end of the tenth load cycle for comparison purposes. It can be seen that δev and δpv
values are underestimated by 43.5% and 30.4%, respectively, when simulating TDA as an
elastic material for a ballasted track. Likewise, for a slab track, the δev and δpv values are
underestimated by 59.2% and 42.4%, respectively.
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4. Stress Transfer in Ballasted and Slab Tracks, with and without TDA
4.1. Methodology

The finite element models of the ballasted and slab tracks adopted in the present
study are shown in Figure 4. The steel (rail) and concrete (sleepers, slab, groutmass or
cement asphalt mortar layer, and base layer) are modelled as elastic materials as reported
by previous studies [60,77]. In the present study, the elastic modulus (E) of concrete used
in the hydraulically bonded layer (HBL) was 7.5 GPa, while E for the concrete slab was
20 GPa. Concrete used in the concrete slab and base layer (hydraulically bonded layer) was
made of C45/55 and C10/12 mix, respectively (according to BS EN 206:2013 [78], C45/55
means minimum characteristic cylinder strength is 45 MPa and minimum characteristic
cube strength is 55 MPa) [79]. The ballast and subballast in a ballasted track and subbase
layer in a slab track were modelled as elastoplastic materials with the Drucker–Prager
yielding criterion. The subgrade in both track types was modelled as linear elastic/perfectly
plastic material adhering to the Mohr–Coulomb failure criterion. The parts were modelled
using eight-noded hexahedral linear brick elements with reduced integration (C3D8R). The
total elements in the ballasted and slab tracks were 15262 and 15116, respectively. Both
track models were restricted from displacements in the x, y, and z directions and a pinned
support boundary was applied to the base of the models. The finer mesh was used for top
layers, and mesh fineness was reduced from top to bottom to reduce the analysis time and
focus more computational efforts on the top layers. Surface-to-surface contact with normal
contact as “hard” and tangential behaviour as “penalty (friction coefficient = 0.5)” were
used to model the interaction between various layers. The rail and sleeper were connected
to a rail pad, which was modelled as a spring (stiffness = 22.5 kN/mm). The elastic material
properties of ballasted and slab tracks adopted in the present study are shown in Table 3.
The strength properties of both track types are shown in Table 4. The damping ratio was
input in ABAQUS using Rayleigh coefficients (α and β), which were determined using
Equations (1) and (2), respectively [80]:

α =
2ζω1ω2

ω1 + ω2
(1)

β =
2ζ

ω1 + ω2
(2)

where ζ is the damping ratio and ω1 and ω2 are the angular frequencies for a frequency
interval with viscous damping equal to or less than ζ.

Table 3. Elastic material properties used in a numerical model of ballasted and slab tracks (data
sourced from [79]).

Material
Constitutive Model Density,

ρ (kg/m3) Elastic Modulus, E (MPa) Poisson’s Ratio, v

Ballasted
Track Slab Track Ballasted

Track Slab Track Ballasted
Track Slab Track Ballasted

Track Slab Track

Rail LE 1 LE 1 7830 7830 210,000 210,000 0.3 0.3
Sleeper LE 1 2400 30,000 0.15

Concrete
slab LE 1 2700 20,000 0.167

Groutmass LE 1 2250 27,000 0.167
Ballast DP 2 1600 110 0.3

Base (HBL 4) LE 1 2700 7500 0.167
Subballast/subbase DP 2 DP 2 2220 2220 400 400 0.25 0.25

Subgrade MC 3 MC 3 2220 2220 400 400 0.25 0.25

1 Linear elastic; 2 Drucker–Prager; 3 Mohr–Coulomb; 4 hydraulically bonded layer.
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Previous studies by Fox et al. [23] and McCartney et al. [81] recommend a damping
ratio of 18–21% and 16–26.8%, respectively, for TDA. Hence, 20% was adopted as the
damping ratio in the present study for the TDA layer. The corresponding α and β for TDA
were 7.76 and 0.00299, respectively.

Table 4. Strength properties and damping ratio used in a numerical model of ballasted and slab
tracks (data sourced from [79,82]).

Material
Cohesion, c (kPa) Friction Angle, ∅ (◦) Dilation Angle, ψ (◦) Damping Ratio, ζ

Ballasted
Track

Slab
Track

Ballasted
Track

Slab
Track

Ballasted
Track

Slab
Track

Ballasted
Track

Slab
Track

Ballast 40 5 0.04 5

Subballast/subbase 5 5 35 4 35 4 2 2 0.04 5 0.04 5

Subgrade 5 5 35 4 35 4 2 2 0.04 5 0.04 5

4 Cebasek et al. [79]; 5 Hall [82].

The stress transfer in ballasted and slab tracks with depth was analysed for different
train speeds and axle loads. To study the effect of train speed and axle load, only one
parameter, viz., train speed or axle load, was varied, whereas the other was constant. A
TDA thickness of 25 mm was used for the simulations, and TDA was placed below the
subballast and base layers of ballasted and slab tracks, respectively (Figure 5).
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The finite element models of ballasted and slab tracks are shown in Figure 6, depicting
the vertical displacements upon cyclic load application. The figures on the left side indicate
the vertical displacements before the gravity stage application. The figures on the right
side represent vertical displacements due to gravity and cyclic load. It can be seen that the
maximum vertical rail displacement in a ballasted track is 5 mm, much higher compared to
the maximum vertical displacement of 0.07 mm in a slab track.
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4.2. Validation

The three-dimensional models of the ballasted and slab tracks were validated against
the previous experimental work of Cebasek et al. [79]. The predictions of the numerical
model were compared against the past experimental work of Cebasek et al. [79] and showed
a good match, as shown in Table 5.
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Table 5. Comparison of elastic and plastic displacements for ballasted and slab tracks against
experimental work.

Displacement Cebasek et al. [79] Present Study
Ballasted Track Slab Track Ballasted Track Slab Track

Elastic displacement (mm) 0.75 0.053 0.9 0.051
Plastic displacement 1 (mm) 7.42 0.32 7.86 0.295

1 Plastic displacement (cumulative settlement) obtained at end of 1.2 × 106 loading cycles.

4.3. Variation in Shear Stress and Displacement with Depth for Ballasted and Slab Tracks

The variation in shear stress values Sxy, Sxz, and Syz with depth for ballasted and
slab tracks (with and without TDA) is illustrated using radar graphs in Figures 7 and 8,
respectively. It can be seen that the addition of TDA leads to increases in shear stress (Sxy,
Sxz and Syz) on the sleeper top (z = 0) for the ballasted track, while there is a reduction
in shear stress on the slab track due to TDA incorporation. The Sxy at lower layers of the
ballasted track, that is, subgrade top (z = 1 m) and bottom (z = 1.8 m), reduces by 96.5%
and 87.5%, respectively, on TDA incorporation. However, not much change is observed
in Sxz and Syz after TDA addition. The maximum reduction in shear stress (Syz) for the
lower layers of a slab track is around 67% and 46% at subgrade top (z = 0.94 m) and bottom
(z =1.74 m), respectively, after TDA incorporation.
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Figure 8. Variation in shear stress (a) Sxy, (b) Sxz, and (c) Syz with depth (z) below the concrete slab
of a slab track.

Figure 9 illustrates the variation in vertical displacement (Uy) with time for ballasted
and slab tracks at train speeds of 360 km/h. The train speeds were simulated using different
cyclic loading frequencies. It is seen from Figure 9 that the vertical elastic displacements
(Ue,y) for ballasted and slab tracks are 0.9 and 0.05 mm, respectively. The variation in
elastic displacements Ue,x, Ue,y, and Ue,z with depth for ballasted and slab tracks (with
and without TDA) is illustrated using radar graphs in Figures 10 and 11, respectively.
Ue,x, Ue,y, and Ue,z represent the elastic displacements in the x, y, and z directions. The
maximum elastic displacement occurs in the y (vertical) direction for both track types. The
displacements Ue,x, Ue,y, and Ue,z at different depths of ballasted and slab tracks increase
with TDA incorporation except at subgrade bottom for a ballasted track and subgrade
top and subgrade bottom for a slab track. Although displacements increase due to TDA
incorporation, they are within the displacement limit of 9 mm [83], and this higher elastic
displacement will lead to higher damping and lower track vibrations. The reduction in
Ue,y for the slab track after TDA addition is 18% and 25% at subgrade top (z = −0.94 m)
and bottom (z = −1.74 m), respectively.
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4.4. Effect of Train Speed

The present study considered the train speeds of 160, 260, 360, and 450 km/h, repre-
senting loading frequencies of 2.5, 4, 5.6, and 7 Hz, respectively. The frequency is calculated
as the ratio of train speed to the vehicle geometry (or wavelength). This wavelength can be
passenger car length (λpc), axle spacing (λa), or bogie spacing (λb), as shown in Figure 12.
In the present study, λb was used to calculate the train speed. Figures 13 and 14 show the
variation in vertical stress (σv) and lateral stress (σh) with the depth for ballasted and slab
tracks, respectively. It is evident from Figures 13 and 14 that overall both σv and σh reduce
with depth in both track types. In addition, train speed has a negligible influence on σv
at various depths in both track types. Referring to Figures 13a and 14a, the incorporation
of TDA seems to have marginally increased σv but substantially increased σh in the upper
layers of the ballasted track for different train speeds. The addition of TDA helps to reduce
σv by approximately 30 kPa in a ballasted track near the zone of TDA placement.
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Figure 13. Variation in vertical stress with depth for different train speeds below sleeper top and slab
top of (a) ballasted and (b) slab tracks, respectively.
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Referring to Figures 13b and 14b, σv is lower with TDA incorporation in the upper
layers of the slab track. In addition, there is a substantial reduction in the σv near the zone
of TDA placement. On the other side, σh shows a reverse trend for the upper layers of the
slab track with TDA addition, but near the zone of TDA placement, a reduction in σh (more
than 50 kPa) is observed.

4.5. Effect of Axle Load

The axle loads of 12, 17, 20, and 24 t were considered in the present study, representing
the axle load of passenger trains commonly used in practice. Figures 15 and 16 illustrate
the variation in σv and σh with depth for ballasted and slab tracks, respectively. Generally,
both σv and σh increase with increasing axle loads for both track types. In a ballasted track,
the incorporation of TDA slightly enhances σv in the top layers while a reduction in σv is
noticed in the subgrade near the zone of TDA placement, as shown in Figure 15a. The σh
in the upper layers of the ballasted track increases with TDA incorporation for lower axle
loads of 12 t, reduces at axle loads of 17 t, and remains almost the same for axle loads of 20
and 24 t, as shown in Figure 16a. In addition, a reduction in σh is observed near the zone of
TDA placement with a higher reduction for higher axle loads.

Referring to Figures 15b and 16b, the addition of TDA has the most negligible influence
on σv and σh in the upper layers of the slab track. However, there is a 60% reduction
in σv near the TDA placement zone, and this reduction increases for higher axle loads.
Similarly, more than a 60% reduction in σh is recorded for the slab track near the region of
TDA placement.
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5. Conclusions

The present study sheds light on the significant benefits associated with rubber recy-
cling, viz., the conservation of landfill space, reduction in environmental pollution, and
creation of new products. The applications of scrap rubber in civil engineering projects
have been elaborated upon. Generally, scrap tyres have shown excellent performance as
fill material, backfill material, and drainage layers. Most importantly, scrap tyres help to
reduce vibration levels on a railway track.

This study highlights the importance of adopting a hyperelastic constitutive model for
TDA. It is observed that vertical elastic and plastic displacements are underestimated by
59.2% and 42.4%, respectively, when simulating TDA as an elastic material for a slab track.
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Similarly, the vertical elastic and plastic displacements are underestimated by 43.5% and
30.4% for a ballasted track, respectively. The shear stress results show that the addition of
TDA helps to reduce the shear stress on the concrete slab of slab track, while shear stresses
are increased for a ballasted track after rubber incorporation. However, TDA effectively
reduces shear stresses for the lower layer of both track types. The elastic displacements (Ux,
Uy, and Uz) at different depths of ballasted and slab tracks increase with TDA incorporation
except on subgrade layers. Scrap rubber helps reduce the vertical and lateral stress near the
zone of its placement in ballasted and slab tracks for varying train speeds. Train speed has
a negligible influence on vertical stress at various depths in both track types. The lateral
stress in a ballasted track is influenced by train speed, while the impact is less pronounced
in a slab track. Scrap rubber is more effective in reducing vertical and lateral stress near the
region of its placement for higher axle loads.
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