Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. MNA Production and Characterization
2.2. MNA Testing
- Cu2+ (copper (II) sulphate, CuSO4∙5H2O, 99% Sigma Aldrich, St. Louis, MO, USA)
- Ni2+ (nickel (II) chloride, NiCl2∙6H2O, 99% Sigma Aldrich)
- Cr3+ (chromium (III) chloride, CrCl3∙6H2O, 99% Sigma Aldrich)
Adsorption Isotherms
3. Results and Discussion
3.1. MNA Characterization
3.2. MNA Isotherm Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO/UNICEF Progress on Sanitation and Drinking-Water—Update 2013. Available online: https://apps.who.int/iris/handle/10665/81245 (accessed on 28 August 2022).
- IPCC AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 28 August 2022).
- Jaspal, D.; Malviya, A. Composites for Wastewater Purification: A Review. Chemosphere 2020, 246, 125788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Serventi, L. Sustainability of Dairy and Soy Processing: A Review on Wastewater Recycling. J. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Chandanshive, V.; Kadam, S.; Rane, N.; Jeon, B.-H.; Jadhav, J.; Govindwar, S. In Situ Textile Wastewater Treatment in High Rate Transpiration System Furrows Planted with Aquatic Macrophytes and Floating Phytobeds. Chemosphere 2020, 252, 126513. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene Based Adsorbents for Remediation of Noxious Pollutants from Wastewater. Environ. Int. 2019, 127, 160–180. [Google Scholar] [CrossRef]
- European Environment Agency EEA Report No 23/2018 Industrial Waste Water Treatment Pressures on Environment. Available online: https://www.eea.europa.eu/publications/industrial-waste-water-treatment-pressures (accessed on 28 August 2022).
- Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Development, Characterization and the Application of Hybrid Materials in Coagulation/Flocculation of Wastewater: A Review. Chem. Eng. J. 2012, 203, 370–386. [Google Scholar] [CrossRef]
- Copelli, S.; Raboni, M.; Urbini, G. Water pollution: Biological oxidation and natural control techniques. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Waltham, MA, USA, 2015; pp. 1–28. ISBN 978-0-12-409547-2. [Google Scholar]
- Mohammadi, S.Z.; Safari, Z.; Madady, N. A Novel Co3O4@SiO2 Magnetic Nanoparticle-Nylon 6 for High Efficient Elimination of Pb(II) Ions from Wastewater. Appl. Surf. Sci. 2020, 514, 145873. [Google Scholar] [CrossRef]
- ISO/TR 18401:2017; Nanotechnologies—Plain Language Explanation of Selected Terms from the ISO/IEC 80004 Series 2017. ISO: Geneva, Switzerland, 2017.
- Ma, M.; Hou, P.; Zhang, P.; Cao, J.; Liu, H.; Yue, H.; Tian, G.; Feng, S. Magnetic Fe3O4 Nanoparticles as Easily Separable Catalysts for Efficient Catalytic Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol. Appl. Catal. A Gen. 2020, 602, 117709. [Google Scholar] [CrossRef]
- Svoboda, J.; Fujita, T. Recent Developments in Magnetic Methods of Material Separation. Miner. Eng. 2003, 16, 785–792. [Google Scholar] [CrossRef]
- Tang, S.C.N.; Lo, I.M.C. Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications. Water Res. 2013, 47, 2613–2632. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Y.; Ren, X.; Yang, M.; Liu, X. Application of Magnetic Extractant for the Removal of Hexavalent Chromium from Aqueous Solution in High Gradient Magnetic Separator. Chem. Eng. J. 2012, 183, 339–348. [Google Scholar] [CrossRef]
- Torretta, V.; Urbini, G.; Raboni, M.; Copelli, S.; Viotti, P.; Luciano, A.; Mancini, G. Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study. Sustainability 2013, 5, 1501–1509. [Google Scholar] [CrossRef]
- Tuutijärvi, T.; Lu, J.; Sillanpää, M.; Chen, G. As(V) Adsorption on Maghemite Nanoparticles. J. Hazard. Mater. 2009, 166, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Raganati, F.; Alfe, M.; Gargiulo, V.; Chirone, R.; Ammendola, P. Kinetic Study and Breakthrough Analysis of the Hybrid Physical/Chemical CO2 Adsorption/Desorption Behavior of a Magnetite-Based Sorbent. Chem. Eng. J. 2019, 372, 526–535. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhu, L.; Lu, H.J. Surface Chemical Properties and Adsorption of Cu (II) on Nanoscale Magnetite in Aqueous Solutions. Desalination 2011, 276, 154–160. [Google Scholar] [CrossRef]
- Sobhanardakani, S.; Zandipak, R. Synthesis and Application of TiO2/SiO2/Fe3O4 Nanoparticles as Novel Adsorbent for Removal of Cd(II), Hg(II) and Ni(II) Ions from Water Samples. Clean Technol. Environ. Policy 2017, 19, 1913–1925. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M.C. Removal and Recovery of Cr(VI) from Wastewater by Maghemite Nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Mahdavian, A.R.; Mirrahimi, M.A.-S. Efficient Separation of Heavy Metal Cations by Anchoring Polyacrylic Acid on Superparamagnetic Magnetite Nanoparticles through Surface Modification. Chem. Eng. J. 2010, 159, 264–271. [Google Scholar] [CrossRef]
- Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu(II) from Aqueous Solution by Using Modified Fe3O4 Magnetic Nanoparticles. Desalination 2010, 254, 162–169. [Google Scholar] [CrossRef]
- Hu, X.; Lei, H.; Zhang, X.; Zhang, Y. Strong Hydrophobic Interaction between Graphene Oxide and Supported Lipid Bilayers Revealed by AFM: Hydrophobic Interaction between GO and SLBS. Microsc. Res. Tech. 2016, 79, 721–726. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of Organic Pollutants by Nanomaterial-Based Adsorbents: An Overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene Oxide-Based Materials for Efficient Removal of Heavy Metal Ions from Aqueous Solution: A Review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef] [PubMed]
- McCoy, T.M.; Brown, P.; Eastoe, J.; Tabor, R.F. Noncovalent Magnetic Control and Reversible Recovery of Graphene Oxide Using Iron Oxide and Magnetic Surfactants. ACS Appl. Mater. Interfaces 2015, 7, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Adebowale, K.O. Synthesis of Covalently Bonded Graphene Oxide–Iron Magnetic Nanoparticles and the Kinetics of Mercury Removal. RSC Adv. 2015, 5, 2536–2542. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, Z.; Ma, W.; Sun, Q.; Wang, B.; Wang, X. Preparation of Magnetic Fe3O4 Particles Modified Sawdust as the Adsorbent to Remove Strontium Ions. Chem. Eng. J. 2012, 209, 451–457. [Google Scholar] [CrossRef]
- Mahesh, N.; Balakumar, S.; Shyamalagowri, S.; Manjunathan, J.; Pavithra, M.K.S.; Babu, P.S.; Kamaraj, M.; Govarthanan, M. Carbon-Based Adsorbents as Proficient Tools for the Removal of Heavy Metals from Aqueous Solution: A State of Art-Review Emphasizing Recent Progress and Prospects. Environ. Res. 2022, 213, 113723. [Google Scholar] [CrossRef]
- Barozzi, M.; Scotton, M.; Sieni, E.; Sgarbossa, P.; Sandon, A.; Copelli, S. Magnetically Separable Nanoparticles for Wastewater Treatment. Chem. Eng. Trans. 2021, 86, 1033–1038. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Ghasemi, E.; Mirhabibi, A.; Edrissi, M. Synthesis and Rheological Properties of an Iron Oxide Ferrofluid. J. Magn. Magn. Mater. 2008, 320, 2635–2639. [Google Scholar] [CrossRef]
- Pendolino, F.; Armata, N.; Masullo, T.; Cuttitta, A. Temperature Influence on the Synthesis of Pristine Graphene Oxide and Graphite Oxide. Mater. Chem. Phys. 2015, 164, 71–77. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Jiang, S.; Huang, J.; Lv, Y.; Liu, Y.; Liu, M. Rapid Removal of Cr(III) from High-Salinity Wastewater by Cellulose-g-Poly-(Acrylamide-Co-Sulfonic Acid) Polymeric Bio-Adsorbent. Carbohydr. Polym. 2021, 270, 118356. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Removal of Chromium(III) and Cadmium(II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules 2021, 26, 3718. [Google Scholar] [CrossRef]
- Kayalvizhi, K.; Alhaji, N.M.I.; Saravanakkumar, D.; Mohamed, S.B.; Kaviyarasu, K.; Ayeshamariam, A.; Al-Mohaimeed, A.M.; AbdelGawwad, M.R.; Elshikh, M.S. Adsorption of Copper and Nickel by Using Sawdust Chitosan Nanocomposite Beads—A Kinetic and Thermodynamic Study. Environ. Res. 2022, 203, 111814. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Sieni, E.; Di Barba, P.; Forzan, M. Migration NSGA: Method to Improve a Non-Elitist Searching of Pareto Front, with Application in Magnetics. Inverse Probl. Sci. Eng. 2016, 24, 543–566. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
Cr3+ | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|
C0, μg/L | 440 ± 1 | 580 ± 1 | 1060 ± 10 | 1810 ± 10 | 4990 ± 10 |
Cend, μg/L | 10 ± 1 | 10 ± 1 | 17 ± 1 | 370 ± 1 | 2760 ± 10 |
ηend, mg/g | 0.43 | 0.57 | 1.04 | 1.44 | 2.23 |
Χ, - | 0.977 | 0.983 | 0.984 | 0.796 | 0.447 |
Cu2+ | #1 | #2 | #3 | #4 | #5 | #6 |
---|---|---|---|---|---|---|
C0, μg/L | 296 ± 1 | 501 ± 1 | 690 ± 1 | 1020 ± 10 | 2000 ± 10 | 6430 ± 10 |
Cend, μg/L | 26 ± 1 | 45 ± 1 | 49 ± 1 | 54 ± 1 | 185 ± 1 | 1865 ± 10 |
ηend, mg/g | 0.27 | 0.46 | 0.64 | 0.97 | 1.81 | 4.56 |
Χ | 0.912 | 0.910 | 0.930 | 0.947 | 0.907 | 0.710 |
Ni2+ | #1 | #2 | #3 | #4 |
---|---|---|---|---|
C0, μg/L | 935 ± 1 | 1900 ± 10 | 3980 ± 10 | 5120 ± 10 |
Cend, μg/L | 80.4 | 298 | 1700 | 2220 |
ηend, mg/g | 0.85 | 1.60 | 2.28 | 2.90 |
Χ | 0.914 | 0.843 | 0.573 | 0.566 |
Cr3+ | Cu2+ | Ni2+ | |
---|---|---|---|
Qmax [mg/g(MNA)] | 3.42 | 31.3 | 5.45 |
b [L/mg] | 0.38 | 2.75∙10−2 | 0.20 |
f1 | 3.92∙10−6 | 1.74∙10−5 | 1.39∙10−5 |
f2 | 1.21∙10−3 | 2.86∙10−3 | 2.44∙10−3 |
R2 | 0.9978 | 0.9987 | 0.9900 |
# | |||||||||
---|---|---|---|---|---|---|---|---|---|
- | [µgCr/L] | [µgCu/L] | [µgNi/L] | - | - | - | [µgCr/mg] | [µgCu/mg] | [µgNi/mg] |
(a) | 430 ± 1 | 293 ± 1 | 937 ± 1 | 0.977 | 0.927 | 0.859 | 0.42 | 0.63 | 0.81 |
(b) | 1830 ± 10 | 316 ± 1 | 1030 ± 10 | 0.888 | 0.809 | 0.645 | 1.625 | 0.140 | 0.665 |
(c) | 1860 ± 10 | 500 ± 1 | 1850 ± 10 | 0.812 | 0.827 | 0.539 | 1.51 | 0.222 | 0.997 |
(d) | 4540 ± 10 | 1050 ± 10 | 5090 ± 10 | 0.454 | 0.680 | 0.167 | 2.06 | 0.157 | 0.85 |
(e) | 4690 ± 10 | 317 ± 1 | 1060 ± 10 | 0.480 | 0.769 | 0.334 | 2.25 | 0.052 | 0.354 |
(f) | 1830 ± 10 | 987 ± 1 | 5100 ± 10 | 0.849 | 0.854 | 0.284 | 1.55 | 0. 461 | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barozzi, M.; Copelli, S.; Russo, E.; Sgarbossa, P.; Lavagnolo, M.C.; Sandon, A.; Morosini, C.; Sieni, E. Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater. Sustainability 2022, 14, 11785. https://doi.org/10.3390/su141811785
Barozzi M, Copelli S, Russo E, Sgarbossa P, Lavagnolo MC, Sandon A, Morosini C, Sieni E. Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater. Sustainability. 2022; 14(18):11785. https://doi.org/10.3390/su141811785
Chicago/Turabian StyleBarozzi, Marco, Sabrina Copelli, Eleonora Russo, Paolo Sgarbossa, Maria Cristina Lavagnolo, Annalisa Sandon, Cristiana Morosini, and Elisabetta Sieni. 2022. "Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater" Sustainability 14, no. 18: 11785. https://doi.org/10.3390/su141811785
APA StyleBarozzi, M., Copelli, S., Russo, E., Sgarbossa, P., Lavagnolo, M. C., Sandon, A., Morosini, C., & Sieni, E. (2022). Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater. Sustainability, 14(18), 11785. https://doi.org/10.3390/su141811785