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Abstract: The LLC topology is widely used to link renewable energy and inverters to provide
constant voltage in the smart grid. Due to its characteristics, the voltage regulation range under light
load conditions is limited, so that the output voltage cannot be maintained constant. The adaptive
switching control strategy is proposed in this paper to keep the output constant. Under heavy load
conditions, the voltage is kept constant by adjusting the frequency to ensure the accuracy of the
control. The phase shift is adjusted to achieve constant voltage, considering the influence of parasitic
capacitance on the modeling process for the changing trend of output voltage in light load conditions.
The switching point is calculated from the characteristic curve to ensure that the output voltage is
stable during mode switching. In addition, there is a new hysteresis control which is robust near the
switching point to cope with the instability of the new energy itself and frequent disturbance under
light load. Finally, a 400V–36V–1KW prototype is used to verify this control strategy.

Keywords: DC–DC converter; parasitic capacitance; adaptive control; digital control

1. Introduction

With the development of the smart grid, renewable energy is used in forms inte-
grated by the power electronic converters into the power system. The smart grid faces
enormous opportunities and challenges, requiring a higher distribution network and con-
verter requirements [1,2]. Inverters and DC–DC converters are used to connect renewable
energy [3,4], such as photovoltaic, wind, and energy storage devices, to the grid [5–7].

Various electrical converters in the grid have been required to achieve high reliability,
high frequency, high efficiency, high watt density, and low cost. The DC converters are
divided into two types based on the transformer: isolated converters and nonisolated DC–
DC converters. There are many DC–DC converters applying renewable energy. A method is
proposed to reduce voltage ripple mixed with a neural network to provide a stable voltage
for the latter inverter in constant power load conditions [8]. Compared with nonisolated
converters, isolated conversion is suitable for a condition where the input and output differ
significantly. Conventional isolated converters such as phase-shifted full-bridges have
many shortcomings. The current ripple is diminished by changing the topology [9,10]. Dual
active bridge (DAB) as a resonant converter is used when energy flows in both directions,
in which two symmetrical H-bridges are on either side of the transformer. Ref. [11] adds
switches to achieve soft-switch in the full range to reduce loss. The low efficiency is caused
by the backflow power, and Extended Phase Shift (EPS) control is presented to reduce the
backflow power [12]. Although there are various control methods, these are determined
by their own topology and can only reduce the impact. Compared to DAB and other
converters, LLC has lots of advantages, such as lower loss, lower current stress, and so on.
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LLC can achieve soft-switching in the full range caused by the excitation in which the
current flows through the switch before the voltage. The diodes are replaced with switches
due to diodes resulting in a much needless loss in conventional LLC topology. There are
many papers to research synchronous rectifiers (SR) [13,14], in which additional devices
are needed to detect the current to add unnecessary loss. The pulse width locked loop is
used to achieve SR [15]. The angle between the input voltage and the output current is
used to control the conduction time of the MOSFET [16,17]. In addition, the switches are
controlled by following the trajectory in which the current and voltage plots flow through
the resonator [18]. These synchronous rectification methods are all digital control and only
for the secondary side, which is complex in the program. A two-phase dual LLC resonant
converter is adopted to widen the output voltage [19]. This topology changes rental with
the different loads [20], which changes between the full bridge and half bridge. In [21],
based on the new non-linear LLC model, a new observer is established but ignores the
effects of parasitic parameters. Considering bidirectional energy flow, LLC has the DC
bias in the reversed mode so that the output is less than the reference. Digital control for
synchronous rectification is used in the reverse mode [22], which adopts different control
methods, adding control variables instead of radically solving this problem. There are
many control methods by digital [23]. The CLLC symmetry topology and a control method
are valid for bidirectional flow in [24]. Meanwhile, ref. [25] adds an excitation inductor to
solve the DC bias called L-LLC, and a new modulation method based on this new topology
is presented [26]. Renewable energy is frequently disturbed under light load conditions.
The converter needs strong robustness to maintain constant output voltage. In light load,
the duty of the switches has been changed to keep the output constant in [27], and the
effect of the excitation current is ignored, which causes some errors. The switch-controlled
capacitor (SCC) is added to the topology to solve the load-sharing problem [28], adding
additional switching losses. Refs. [29,30] avoid noise interference on the output in light
load conditions, improving the efficiency in a wide range.

So, this paper proposes a new switching control method for LLC to keep the voltage
constant in all regimes, especially under light load. The main innovations of this paper are
as follows.

(1) An adaptive switching control strategy is provided for the LLC, which can adjust the
hysteresis loop boundary range according to the load. It solves the problem of higher
output voltage than the reference and ensures the control continuity.

(2) A bidirectional model considering parasitic capacitance is established, which compen-
sates for accuracy in the light-load condition. It accurately describes the voltage gain
curve under light load, which is more realistic than the previous model.

(3) The mentioned switching points are determined according to the rate of change of
the output voltage and frequency, which ensures smooth switching. In addition, the
energy hysteresis strategy is adopted near the switching point, in which the length
of the hysteresis adapts to load changes. It plays an important role in improving the
stability near the switching point under slight disturbance.

The paper is organized as follows. Section 2 describes the conventional topology and
its characters. The model with parasitic capacitance and the control method are discussed
in Section 3, which improves the antijamming capability in the light-load situation and
ensures that the output voltage is kept constant. In Section 4, a converter prototype and
experiment are given.

2. Conventional Topology and Control Method

This topology in Figure 1, which can solve the problem of voltage bias in the reverse
mode presented in 2015, has three inductances: two excitation inductors, LM1 and LM2,
and one resonant inductor, Lr. LM2 in the forward mode plays no role; instead, LM2 in the
reversed mode act as the excitation. The whole circuit is symmetric if LM2 has the same
value as LM1, which can eliminate the DC bias. The gain curve of the LLC is shown in
Figure 2, which is similar to the conventional LLC circuit. When the switching frequency is
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below the resonant frequency, the gain of the curve is equal to (1), while the circuit voltage
gain is equal to (2) when the switching frequency is beyond the resonant frequency. The
output is influenced by Q, which means the quality factor deciding by the parameters of
this circuit and load. Req is equal to the resistance of the rectifier circuit. In those equals, fs
and fr are, respectively, the switching frequency and the resonance frequency.

G =
1√√√√[1 + 1

k

(
1− 1

x2

)]2
− 2Q tan
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](
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where Q =

√
Lr
Cr

Req
, x = fs

fr
, k = LM1

Lr
. This circuit adopts PFM as the modulation method,

which acts according to the gain curve. The switching frequency is modulated by the PI
controller, as shown in Figure 3. After VO is sampled, the output voltage is subtracted
from the reference value, and the error is controlled by PI. Compared with other controls,
PI control does not introduce high-frequency oscillations and spikes. Other controls,
while stable, can cause large current and voltage stresses that cause device damage. By
calculating the value of switching frequency, the driving signal is issued to control [31,32].
S1 is complementary to S2, and S3 is complementary to S4. The duty is 50%. There is no
phase shift between S1 and S4. For the synchronous rectifier, the switching frequency is the
same as on the primary side, and more details are mentioned in [33].
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Theoretically, the output voltage should decrease with increasing frequency. Many
experiments have shown that the output voltage under light load is higher than the
reference voltage, contrary to the gain curve. Until the frequency is high enough, the output
voltage decreases again. Therefore, the model cannot accurately describe the relationship
between the output voltage and frequency, especially under light load. The voltage cannot
be kept constant with a control strategy based on the conventional model. Above this
problem, a new model for LLC considering parasitic capacitance is proposed. On the basis
of this model, an adaptive switching control strategy is raised, ensuring voltage stability
under light load and is robust to frequent disturbances.

3. The Proposed Model and Conventional Method
3.1. The LLC Model Considering Parasitic Capacitance

As Figure 4a shows, the transformer has two windings and stray capacitances. The
resistance of the primary and secondary sides can be ignored due to less impact. C10
and C20 are the self-capacitance of the primary and secondary sides, respectively. C120
is the mutual capacitance of primary and secondary sides. The equivalent circuit of the
transformer is shown in Figure 4b, in which the secondary parameters are represented by
the primary. The specific relationship is shown in (3)–(5) [33].

C1 = C10 + (1− n)C120 (3)

C2 = n2C20 + n(n− 1)C120 (4)

C12 = nC120 (5)

Since the leakage inductors are less than the magnetic inductor, the voltage drops
across should be small. Therefore, C12 can be ignored, and the capacitance can be expressed
by the Cstr. The final model is shown in Figure 4d. When the junction capacitance caused
by the SR is considered, the parasitic capacitance equals the sum of the CSR and Cstr.

Cstr ≈ C1 + C2
CP ≈ Cstr + CSR

(6)

Before analyzing, some conditions need to be known. First, the switching frequency is
greater than the resonant frequency under the light-load condition. Then, the switches are
an ideal model that has no loss. Finally, the parasitic capacitance is juxtaposed with LM2.

At different times, the voltage and current have other states. Due to the newly added
excitation inductor in the forward mode not playing one role in the resonant and the model
being symmetrical, the forwarding mode should be analyzed. Meanwhile, the reversed
mode is the same as the forward.
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Mode1[t0-t1]: An equivalent circuit is shown in Figure 5a. S1 and S4 are on, and
S2 and S3 are off. Before t0, the current flow of M1 and M4 is so that S1 and S4 are ZVS
soft-switching. Due to the resonant inductor being smaller than excitation inductors and
the parasitic capacitance Cp being smaller than the resonant capacitance, CP and Lr are in
resonance. Meanwhile, the Vr is to zero, and iLm1 is similar to iLm2, as shown in Figure 6.
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Mode2[t1-t2]: S1 and S4 are off, and S2 and S3 are on. The ir value is larger than iLm2,
which flows the anti-diode of S2 and S4 for soft-switching in the following mode. ir covers
the DC component, flowing LM1 at t1 time, and for the AC component, the resonant current
generated by Cp and Lr. Uab is the reverse. Um also includes the DC, Vab, and AC parts as
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well as the resonance voltage generated by Cp and Lr. The voltage between Cr and Lr is
approximately zero. The equivalent circuit is shown in Figure 5b.
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Mode3[t2-t3]: The secondary side has limited the Cp voltage, which stops resonance
with Lr. There is only one resonance where Cr and Lr occur in Figure 5c. This mode
continues until the current that flows the resonance is equal to the excitation current iLM2.
After this mode, the second half of the cycle begins when the current and voltage are
symmetrical with the above modes.

The circuit is analyzed by the Fundamental Harmonic Approximation (FHA). When
the load is minimal, the current and voltage are approximately in phase and can be regarded
as a purely resistive load. The rectifier circuit can be equivalent to Req, as shown in (7).

Req =
8n2

π2 RL (7)

where RL means the actual access load, and n means the ratio of the transformer. The input
voltage V1 is approximately Vab, which is the value expressed by (8) adopting FHA. Vcd is
the same thing.

Vab =
4V1

π
sin ωt (8)

Vcd =
4nV2

π
sin ωt (9)

The relationship between the amplitude of Vab and the amplitude of Vcd can be
obtained in Figure 7 by the principle of partial pressure.

G =
Vout

Vin
=

∣∣∣∣Vcd
Vab

∣∣∣∣ =
∣∣∣∣∣ ZL

ZL + jωLr +
1

jωCr

∣∣∣∣∣ (10)

ZL =
jωLM2Req

jωLM2 + (jω)2CpLM2Req
(11)
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After completion, the gain can be expressed as (12).

G =
1√(

1 + 1
k − λx2 − 1

kx + λ
)2

+
(

x− 1
x

)2
Q2

(12)

λ =
Cp

Cr
(13)

where λ represents the Cp and Cr ratio; Figure 8 shows the gain curve according to (8). After
the first wave, the switches achieve soft switching, reducing the loss; in other words, the
whole circuit is in the inductive region. As the load decreases, the value of Q increases, and
the voltage gain shows two spikes and a trough in Figure 8a. When Q is fixed, different λ
values have different curves, as shown in Figure 8b. Drawing on the curves, as the parasitic
capacitance increases, the second peak of the gain curve becomes larger. Therefore, the
parasitic capacitance value is the most influential factor in the light-load stage, and the
change of other parameters, such as the K value, is small. The gain curves need another Q,
according to Figure 8b, in which Q is related to the λ.
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3.2. An Adopting Switching Control Method

The proposed control method applies to this model, solving the problem put forward
in Section 2. In this section, one method is given: two degrees of freedom energy hysteresis
control. This method which applies to the full load, particularly in light load, includes
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two parameters: frequency and phase-shift angle. In the reversed mode, the fundamental
principles are similar to those of the forward mode. Therefore, only forward modes are
analyzed here. The new control method based on this model improves output range,
ensures output voltage stability, and enhances robustness, especially in light load.

The boundary between light load and heavy load is up to the circuit parameters. Light
and heavy loads can be divided according to the gain curve. Taking the derivative of the
gain, the following result can be obtained.

F(x) = 2λ2x8 −
[

2λ

(
1 +

1
k
+ λ

)
−Q2

]
x6 +

[
2
k

(
1 +

1
k
+ λ

)
−Q2

]
x2 − 2k2 (14)

In the paper, the curves with two sharp peaks are defined as a light load and the
others are defined as a heavy load. Equation (14) has many positive solutions in the light
load conditions, and the parameters are substituted into (14). After the actual load value
is calculated from the output voltage and current obtained by sampling, the load value
is substituted into (15) for comparison. When the load confirms to (15), the load can be
defined as the light load.

Req
2 >

1
2

LrCr

C2
P + Cr

(
1 + LM1

Lr

)
CP

(15)

The switching point varies in real time because of the value of the inductor and ca-
pacitance change with the frequency. The controller has entered the heavy-load mode
when Req is too small to conform to (15). The circuit has adopted the conventional con-
troller PFM control in the heavy load. The details about PFM are described in Section 2.
In contrast, the gain has two peaks and one trough in the light-load situation. The circuit
adopts the two-degree-of-freedom energy hysteresis control. This control method includes
two modulation strategies, phase shift and frequency. Before the frequency reaches the
switch, the circuit enters PFM mode in light load, as in heavy load. The frequency gradually
decreases with the load increase.

In the PSM mode, the switching frequency is beyond resonance frequency in the light
load conditions, and Figure 9 is only a schematic diagram of the waveform in PFM mode
without specific values. The amplitude of the curve is determined by the input, load,
device parameters, control method, etc. S1, S2, S3 and S4 are complementary in one period.
As Figure 9 shows, when Vab is beyond zero, ir grows up. When Vab approaches zero
in one period, Cp and Lr are resonant. In the second half of the period, the process is
similar. There exists a phase shift between S1 and S4, which can effectively reduce the
voltage at a higher voltage side. As the phase shift angle increases gradually, the voltage
in the positive mode also decreases progressively until the phase shift angle reaches the
maximum and the voltage reaches the minimum. The angle limit range is [0, 0.5]. It is
shown that the relationship between voltage and phase-shift in Figure 10 is identical to
the linear. The frequency after arriving at the switching point is fixed, which is the same
as the switching point. The PS mode adopts the PI controller to change the phase angle,
which magnifies gradually with the load. The switch point is the critical matter which
relates to mode switching. The boundary selection should consider the performance of the
two modes and characteristics.

When switching, the output voltage must be highly smooth and reduce the voltage
spike. The rate of voltage change needs to be small. Therefore, the output voltage and
frequency rate of change are set as reference values. When the rate equals zero, the output
curve at the switch point is the most smooth. As Figure 11 shows, tanθ is up to the ratio of
∆VO and ∆fs, which is so tiny. The red line represents the relationship between output and
frequency, and the blue line represents the approximation relationship between the two.
The value of tanθ approximates the derivative as (16).

tan θ =
4Uout

4 fs
≈ dUout

d fs
(16)
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4UOUT = U2 −U1 (17)

4 f = f1 − f2 (18)
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Since the input voltage is constant, the output voltage and frequency relationship
approximately equal the gain curve and frequency. The output is replaced with the gain
for calculating. Consequently, the point is chosen when tanθ is approximately minimum,
where the output is kept smooth. As the input is kept constant, (16) is approximately the
derivative of (12).
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According to (14), there are four solutions, three of which are greater than zero in the
light load situation. There are three possible values for XB. Since the switching point is
related to the circuit parameters, in practice, XB is less than or equal to 1 when the circuit
parameters are extreme. So, it makes no sense to discuss XB in the above situations. The
switching point gradually moves to the left when the Q increases until it switches to the
heavy load mode. When the frequency reaches XB, the phase shift has maintained the
initial value in the first period, and the phase shift is variable in the next period.

Due to there being more interference from new energy sources, when it is near the
switching point, the modes are switched several times, resulting in system instability. In
order to avoid the above situation, hysteresis control is introduced. Hysteresis control can
reduce the number of switching and maintain the robustness of control under frequent
disturbance. When the system is perturbed in the hysteresis range, the system retains its
previous mode. Energy hysteresis control is a range for shock within a limit. Its control
includes two directions, heavy-load to light-load and light-load to heavy-load, as shown
in Figure 12. After frequency reaching the switching point for the first time in the first
direction, the energy hysteresis is trigged, and the converter enters the phase shift mode.
The calculated frequency experiences shocks between XB1 and XB2 but does not switch
mode. In other words, the frequency is fixed at this shocking stage. When the calculated
frequency is left of the XB1, the mode has been changed, switching to PFM mode. The phase
shift gradually decreases from light to heavy load. After the calculated frequency reaches
the switching point, the mode has been switched to PFM mode, and energy hysteresis
control plays a role. The phase angle is changed only when the calculated frequency
reaches XB2.
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The actual tolerance range for the output voltage has influenced the hysteresis range.
The hysteresis range depends on the demand for voltage variation under different load
conditions. The output voltage is proportional to load and inversely proportional to parasite
capacitance and sampling accuracy. When the load is light, the voltage varies greatly with
frequency. According to the gain curve, XB1 and XB2 are large at this time. When the load is
slightly heavy, the hysteresis range is small. When the circuit requires high precision of the
output voltage, the hysteresis range is small, and the voltage transition is relatively unstable.
When the accuracy is low, the hysteresis range is large. Overall, the length increases with
the value of Q in Figure 12. As shown in Figure 13, the LLC control method has many steps
that ensure robustness and output constant.
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4. Experimental Results

The prototype is designed to connect the input to the inverter and the output to the
energy storage device. The prototype works in Vin = 400 V in the forward mode, while the
reference is kept constant at 36 V. The maximum output current is 27 A in forwarding mode
and 2.5 A in reverse mode. The theoretical value of the resonant frequency is the same as
the switching frequency, but some parasitic parameters cause the resonant frequency to be
slightly below 100 K. NTHL160N120SC1 and IXFH160N15T2 are chosen as the primary
and secondary MOSFETs, respectively. Detailed parameters are shown in the table. Those
devices are larger than the values calculated to leave a margin. So, the capacitance is chosen
to be 24.6 uh, and the transformer is made to have a turn ratio of 12. LM1 and LM2 hold to
make the prototype symmetry, and the detailed parameters in the prototype is shown in
Table 1. The prototype is shown in Figure 14. It should be mentioned that this prototype is
only for verification of principle and does not pursue power density.

Table 1. Detailed parameters in the prototype.

Parameters Value

Resonance inductor Lr = 101 µH

Resonance capacitance Cr = 24.6 µH

Magnetic inductance LM1 = LM2 = 606 µH

Ratio of transformer n = 12
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DSP, TMS320F28335, which is published by Texas Instruments, is used as the digital
processing unit, which +5 V supplies. The DSP is connected to the upper computer as
a key to the grid. The DSP consists of the PWM generator, an analogue-to-digital converter
(ADC), a sampling module, and a delay-time module. The output voltage and current
collected by the Hall element are transformed into digital quantities by the ADC module
for control. According to the proposed method, the frequency and phase shift are adjusted
by the PI controller. We use the look-up table in DSP to obtain the switching point, which is
limited by data processing capability, and the lengths are calculated in real time.

Waveforms are shown in Figure 15, including the output voltage, midpoint voltage of
the H-bridge, and the current flowing through the resonance cavity at a steady state. They
are laid out in proper order at 1% load, 5% load,10% load, and 30% load. VAB has some
jigglings due to the parasite capacitance. The switches can achieve the soft-switching of
ZVS and ZCS in this condition where Vin = 400 V, VO = 36 V in the forward mode. The
control mode in Figure 5a,b is the PSM mode, and there is the phase shift between M1 and
M4, in which the phase shift at 1% load is greater. The frequency increases as the load
becomes heavier when in PFM mode.
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Figure 15. Under different loads: (a) 1% load, (b) 5% load, (c) 10% load, (d) 30% load.

In Figure 16, the load varies from 8% to 25%. The resonance current increases from
0.1 to 0.8 A, while the output voltage decreases by 0.2 V. At the moment when the load
varies, there is no burr on the output voltage and resonance current. Figure 16a shows the
whole process of variable load, and Figure 16b–d correspond to A, B, and C in Figure 16a,
respectively. The load at point B increases. Due to the dead-time being set too long and
DSP needing some computation time, the variation on the Vab when the load varies is not
outstanding. The driving waveforms of point A and point C are shown. At point A, the
driving waveform of M1 overlaps that of M4, and the overlap is the phase shift angle. The
frequency is adjusted by the digital controller at point C, where the frequency is minor
until the output equals the reference.
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5. Conclusions 
An adaptive switching control method is proposed to keep the output voltage con-

stant based on the LLC model considering parasitic capacitance. In this control method, 
the frequency is adjusted according to the gain curve to ensure the continuity of control, 
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Figure 16. The load from 8% to 25%: (a) overview, (b) light load, (c) switching point, (d) heavy load.

Figure 17 shows the energy hysteresis control. Point A means jumping out of energy
hysteresis control after changing the load. The proposed method decreases the burr
when varying the load and has strong robustness. From Figure 18, it is easy to see that
the efficiency of the proposed control method is higher than that of conventional PFM,
especially in light load conditions. The THDv for this control method is 0.45% in the steady
state, whose output voltage is calculated by Fourier.
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5. Conclusions

An adaptive switching control method is proposed to keep the output voltage constant
based on the LLC model considering parasitic capacitance. In this control method, the
frequency is adjusted according to the gain curve to ensure the continuity of control, and
in light load conditions, the phase shift is regulated to maintain constant. Meanwhile, the
switching point is calculated according to the characteristics to switch smoothly. An adap-
tive control method around the switching point has been proposed, strengthening the
robustness disturbance, especially in light load conditions. Compared with other control
methods, the proposed control method can solve the voltage problem of reverse bias and
light load simultaneously. It is simple enough to be practical. In the face of slight distur-
bance near the switching point, it can also maintain stability and keep the system stable.
Experimental data using the 400V–36V–1kW prototype converter verify the validity of the
proposed model and control method for ensuring constant output voltage, especially under
frequent disturbances.
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