Effects of Grazing on Soil Organic Carbon in the Rhizosphere of Stipa Grandis in a Typical Steppe of Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition
2.2.1. Root Biomass
2.2.2. Soil Sampling and Measurements
2.3. Data Analysis
3. Results
3.1. Contents of the TOC and SOC Fractions
3.2. Composition and Structure of SOC
3.3. Soil Microbes
3.4. Root Biomass
3.5. Soil pH
4. Discussion
4.1. Effects of Grazing on TOC and the Fractions
4.2. The Role of Rhizosphere in SOC Transformation
4.3. The Effects of Grazing on Soil Microbes in Rhizosphere Soil
4.4. The Effects of pH on SOC in Rhizosphere Soil
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arun, J.N.; Rattan, L.; Gudeta, W.S.; Ashesh, K.D. Managing India’s small landholder farms for food security and achieving the “4 per Thousand” target. Sci. Total Environ. 2018, 634, 1024–1033. [Google Scholar]
- Rumpel, C.; Lehmann, J.; Chabbi, A. Boost soil carbon for food and climate. Nature 2018, 553, 27. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.B. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: Why and how. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Summary for policymakers. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Monkany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Jeddi, K.; Chaieb, M. Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora-Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 184–189. [Google Scholar] [CrossRef]
- Dlamini, P.; Chivenge, P.; Chaplot, V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agric. Ecosyst Environ. 2016, 221, 258–269. [Google Scholar] [CrossRef]
- Hartmann, A.; Lemanceau, P.; Prosser, J.I. Multitrophic interactions in the rhizosphere—Rhizosphere microbiology: At the interface of many disciplines and expertises. FEMS Microbiol. Ecol. 2008, 65, 179. [Google Scholar] [CrossRef]
- Yang, Z.N.; Zhu, Q.A.; Zhan, W.; Xu, Y.Y.; Zhu, E.X.; Gao, Y.H.; Li, S.Q.; Zheng, Q.Y.; Zhu, D.; He, Y.X.; et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecol. Eng. 2018, 110, 128–136. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. Rev. J. Plant Nutr. Soil. Sci. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Zhao, X.F.; Tian, P.; Sun, Z.L.; Liu, S.G.; Wang, Q.K.; Zeng, Z.Q. Rhizosphere effects on soil organic carbon processes in terrestrial ecosystems: A meta-analysis. Geoderma 2022, 412, 115739. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil. Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Li, W.J.; Li, Y.; Lv, J.; He, A.M.; Wang, J.L.; Teng, D.X.; Jiang, L.M.; Wang, H.F.; Lv, G.H. Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Appl. Soil. Ecol. 2022, 170, 104296. [Google Scholar] [CrossRef]
- Paterson, E.; Midwood, A.J.; Millard, P. Through the eye of the needle: A review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol. 2009, 184, 19–33. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil. Biol. Biochem. 2015, 83, 184–199. [Google Scholar]
- Noah, W.S.; Eric, S.; Gianna, L.M.; Alexa, N.; Steven, J.B.; Eoin, L.B.; Mary, K.F.; Megan, M.F.; Rachel, H.; Bruce, A.H.; et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar]
- Hu, J. The Effects of Grazing on Soil Nutrient and Soil Microbes in Rhizosphere of Stipa Grandis in the Typical Steppe. Ph.D. Thesis, Institute of Grassland Research of Chinese Academy of Agricultural Science, Hohhot, China, 2015. (In Chinese with English abstract). [Google Scholar]
- Mcsherry, M.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Zhou, X.H.; He, Y.H.; Shao, J.J.; Hu, Z.H.; Liu, R.Q.; Zhou, H.M. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Chang. Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef]
- Sun, G.; Zhu-Barker, X.; Chen, D.M.; Liu, L.; Zhang, N.N.; Shi, C.G.; He, L.P.; Lei, Y.B. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: An implication for pasture management. Plant Soil. 2017, 416, 515–525. [Google Scholar] [CrossRef]
- Rajaniemi, T.K.; Goldberg, D.E.; Turkington, R.; Dyer, A.R. Local filters limit species diversity, but species pools determine composition. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 373–380. [Google Scholar] [CrossRef]
- Paterson, E.; Thornton, B.; Midwood, A.J.; Sim, A. Defoliation alters the relative contributions of recent and non-recent assimilate to root exudation from Festuca rubra. Plant Cell Environ. 2005, 28, 1525–1533. [Google Scholar] [CrossRef]
- Hamilton, E.W.; Frank, D.A.; Hinchey, P.M.; Murray, T.R. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil. Biol. Biochem. 2008, 40, 2865–2873. [Google Scholar] [CrossRef]
- Holland, J.N.; Cheng, W.X.; Crossley, D.A. Herbivore-induced changes in plant carbon allocation: Assessment of below-ground C fluxes using carbon-14. Oecologia 1996, 107, 87–94. [Google Scholar] [CrossRef]
- Augustine, D.J.; Dijkstra, F.A.; Hamilton, E.W.; Morgan, J.A. Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2. Oecologia 2011, 165, 755–770. [Google Scholar] [CrossRef]
- Zhang, W.W.; Yang, J.; Song, B.Y.; Qing, H. Impacts of moving on the rhizosphere soil properties of Krascheninnikovia ceratoides in the steppe desert. Acta Ecol. Sin. 2016, 36, 6842–6849, (In Chinese with English abstract). [Google Scholar]
- Wei, X.J. The Effect of Grazing Intensity to Nutrition of Stipa Grandis Rhizosphere which is the Mainly Built Plants of Typical Steppe. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2011. (In Chinese with English abstract). [Google Scholar]
- Herfurth, D.; Vassal, N.; Louault, F.; Alvarez, G.; Pottier, J.; Picon-Cochard, C.; Bosio, I.; Carrère, P. How does soil particulate organic carbon respond to grazing intensity in permanent grasslands? Plant Soil 2015, 394, 239–255. [Google Scholar]
- Zhang, M.; Li, X.B.; Wang, H.; Huang, Q. Comprehensive analysis of grazing intensity impacts soil organic carbon: A case study in typical steppe of Inner Mongolia, China. Appl. Soil Ecol. 2018, 129, 1–12. [Google Scholar] [CrossRef]
- Qiu, Q.Y.; Wu, L.F.; Ouyang, Z.; Li, B.B.; Xu, Y.Y.; Wu, S.S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Jiang, G.; Han, X.; Wu, J. Restoration and management of the Inner Mongolia grassland require a sustainable strategy. Ambio 2009, 35, 269–270. [Google Scholar]
- Pan, W.J.; Song, Z.L.; Liu, H.Y.; Müellerd, K.; Yang, X.M.; Zhang, X.D.; Lie, Z.M.; Liu, X.; Qiu, S.; Hao, Q.; et al. Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolian steppe of China. Geoderma 2017, 308, 86–92. [Google Scholar] [CrossRef]
- Li, S.Y.; Liu, Z.L.; Chang, Y.; Ren, L.J.; Wang, R.; Wu, X.X.; Fan, Q. The stability and compensation of the primary productivity of the typical steppe in Inner Mongolia. J. Arid Land Res. Environ. 2014, 28, 1–8, (In Chinese with English abstract). [Google Scholar]
- Shan, D.; Zhao, M.L.; Han, B.; Han, G.D. Genetic diversity of Stipa grandis under different grazing pressures. Acta Ecol. Sin. 2006, 10, 3175–3181, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, 2nd ed.; World Soil Resources Reports; FAO: Rome, Italy, 2006. [Google Scholar]
- Hoffmann, C.; Funk, R.; Wieland, R.; Li, Y.; Sommer, M. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J. Arid Environ. 2008, 72, 792–807. [Google Scholar] [CrossRef]
- Steffens, M.; Koelbl, A.; Totsch, E.K.U.; Kögel-Knabner, I. Grazing effects on soilchemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 2008, 143, 63–72. [Google Scholar] [CrossRef]
- Shrestha, G.; Stahl, P.D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agric. Ecosyst. Environ. 2008, 125, 173–181. [Google Scholar] [CrossRef]
- Yang, Y.H.; Fang, J.Y.; Ma, W.H.; Smith, P.; Mohammat, A.; Wang, S.P.; Wang, W. Soil carbon stock and its changes in northern China’s grassland from 1980s to 2000s. Glob. Chang. Biol. 2010, 16, 3036–3047. [Google Scholar] [CrossRef]
- Xiong, D.P.; Shia, P.L.; Zhang, X.Z.; Zou, C.B. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-a meta-analysis. Ecol. Eng. 2016, 94, 647–655. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil. Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Xu, M.G.; Lou, Y.L.; Sun, X.L.; Wan, W.; Baniyamuddin, M.; Zhao, K. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol. Fert. Soils 2011, 47, 745–752. [Google Scholar] [CrossRef]
- Aldezabal, A.; Moragues, L.; Odriozola, I.; Mijangos, I. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Appl. Soil Ecol. 2015, 96, 251–260. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Li, Y.L.; Cui, J.Y. Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China. Arid Land Res. Manag. 2010, 18, 251–263. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.K.; Blank, F.B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Li, X.D.; Zhang, C.P.; Fu, H.; Guo, D.; Song, X.R.; Wan, C.G.; Ren, J.Z. Grazing exclusion alters soil microbial respiration, root respirationand the soil carbon balance in grasslands of the Loess Plateau, northern China. Soil Sci. Plant Nutr. 2013, 59, 877–887. [Google Scholar] [CrossRef]
- Chen, J.B.; Hou, F.J.; Chen, X.J.; Wan, X.L.; Millner, J. Stocking rate and grazing season modify soil respiration on the Loess Plateau, China. Rangel. Ecol. Manag. 2015, 68, 48–53. [Google Scholar] [CrossRef]
- Holt, J.A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Appl. Soil Ecol. 1997, 5, 143–149. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Munro, S.; Barthold, F.; Steffens, M.; Schad, P.; Kogel-knabner, I. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob. Chang. Biol. 2015, 21, 3836–3845. [Google Scholar] [CrossRef]
- Wander, M.M.; Traina, S.J.; Stinner, B.R.; Peters, S.E. Organic and conventional management effects on biologically active soil organic matter pools. Soil. Sci. Soc. Am. J. 1994, 58, 1130–1139. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.J.; Glover, J.D.; Grandy, A.S.; et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 2012, 76, 494–504. [Google Scholar] [CrossRef]
- Ma, X.Z. Effects of cultivation and grazing on soil carbon pool and greenhouse gases fluxes in the Inner Mongolia Steppes. Ph.D. Thesis, Institute of Botany, The Chinese Academy of Science, Beijing, China, 2006. (In Chinese with English abstract). [Google Scholar]
- Li, S.Q.; Wang, X.Z.; Guo, Z.G.; Zhou, J.; Xue, R.; Shen, Y.Y. Effects of short-term grazing on C and N content in soil and microbe in Alpine Meadow in the north-eastern edge of the Qinghai-Tibetan Platesu. Chin. J. Grassl. 2013, 31, 367–374, (In Chinese with English abstract). [Google Scholar]
- Zhao, N.; Zhuang, Y.; Zhao, J. Effects of grassland managements on soil organic carbon and microbial biomass carbon. Pratacultural Sci. 2014, 31, 367–374, (In Chinese with English abstract). [Google Scholar]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Leifeld, J.; Fuhrer, J. Long-term management effects on soil organic matter in two cold, high-elevation grasslands: Clues from fractionation and radiocarbon dating. Eur. J. Soil Sci. 2009, 60, 230–239. [Google Scholar] [CrossRef]
- Martinsen, V.; Mulder, J.; Austrheim, G.; Mysterud, A. Carbon storage in low-alpine grassland soils: Effects of different grazing intensities of sheep. Eur. J. Soil Sci. 2011, 62, 822–833. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Baumert, V.L.; Vasilyeva, N.A.; Valadimirov, A.A.; Meier, I.C.; Mueller, C.W. Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Front. Environ. Sci. 2018, 6, 140. [Google Scholar] [CrossRef]
- Poonam, P.; Catherine, P.; Josep, P.; Jlitender, G. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar]
- Fu, G.; Zhang, X.Z.; Yu, C.Q.; Shi, P.L.; Zhou, Y.T.; Li, Y.L.; Yang, P.W.; Shen, Z.X. Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet. Sci. World J. 2014, 2014, 265142. [Google Scholar] [CrossRef]
- Chang, X.F.; Bao, X.Y.; Wang, S.P.; Wilkes, A.; Erdenetsetseg, B.; Baival, B.; Avaadorj, D.; Maisaikhan, T.; Damdinsuren, B. Simulating effects of grazing on soil organic carbon stocks in Mongolian grasslands. Agric. Ecosyst. Environ. 2015, 212, 278–284. [Google Scholar] [CrossRef]
- Zhang, F.S.; Shen, J.B.; Zhang, J.L.; Zuo, Y.M.; Li, L.; Chen, X.P. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: Implications for China. Adv. Agron. 2010, 107, 1–32. [Google Scholar]
- Dijkstra, F.A.; Cheng, W.X.; Johnson, D.W. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol. Biochem. 2006, 38, 2519–2526. [Google Scholar] [CrossRef]
- Deng, Q.; Cheng, X.L.; Bowatte, S.; Newton, P.C.D.; Zhang, Q.F. Rhizospheric carbon-nitrogen interactions in a mixed-species pasture after 13 years of elevated CO2. Agric. Ecosyst. Environ. 2016, 235, 134–141. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, L.; Li, X.B.; Li, Y.F.; Yang, X.G. Soil nutrients and carbon management indexes in the rhizosphere versus non rhizosphere area of different plant species in desert grassland. Acta Prataculturae Sci. 2017, 26, 24–34, (In Chinese with English abstract). [Google Scholar]
- Jiang, L.L.; Wang, S.P.; Pang, Z.; Wang, C.S.; Kardol, P.; Zhou, X.Q.C.; Wang, Y.F.; Xu, X.L. Grazing modifies inorganic and organic nitrogen uptake by coexisting plant species in alpine grassland. Biol. Fertil. Soils 2016, 52, 211–221. [Google Scholar] [CrossRef]
- Wilson, C.H.; Strickland, M.S.; Hutchings, J.A.; Bianchi, T.S.; Flory, S.L. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob. Chang. Biol. 2018, 24, 2997–3009. [Google Scholar] [CrossRef]
- Gregory, P.J. Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur. J. Soil Sci. 2006, 57, 2–12. [Google Scholar] [CrossRef]
- Khalid, M.; Soleman, N.; Jones, D.L. Grassland plants affects dissolved organic carbon and nitrogen dynamic in soil. Soil Biol. Biochem. 2007, 39, 378–381. [Google Scholar] [CrossRef]
- Passioura, J.B. Water transport in and to roots. Annu. Rev. Plant Physiol. Mol. Biol. 1988, 39, 245–265. [Google Scholar] [CrossRef]
- Patra, A.; Abbadie, L.; Clays-Josserand, A.; Degrange, V.; Grayston, S.J.; Loiseau, P.; Louault, F.; Mahmood, S.; Nazaret, S.; Philippot, L.; et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 2005, 74, 65–80. [Google Scholar] [CrossRef]
- Eldridge, D.; Delgado-Baquerizo, M.; Travers, S.K.; Val, J.; Oliver, I.; Hamonts, K.; Singh, B.K. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology 2017, 98, 1922–1931. [Google Scholar] [CrossRef]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.C.; An, S.H.; Liu, Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China. Sci. Total Environ. 2017, 609, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiian, V.; Kitto, S.L.; Caplan, J.L.; Hsueh, Y.H.; Kearns, D.B.; Wu, Y.S.; Bais, H.P. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol. 2012, 160, 1642–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.Q.; Yang, G.X.; Cui, Y.X.; Xin, X.P.; Liu, Z.L.; Dai, Y.T.; Zhao, J. Distribution characteristics of the number of soil microorganisms under different grazing intensity in Xilingol typical steppe. Chin. J. Grassl. 2011, 33, 63–68, (In Chinese with English abstract). [Google Scholar]
- Liu, T.; Diao, Z.M.; Qi, Y.Q. The primary advances rhizosphere microbiology. Qinghai Pr. 2008, 17, 41–47, (In Chinese with English abstract). [Google Scholar]
- Yang, Y.; Liu, B.R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe. Acta Ecol. Sin. 2015, 35, 7562–7570, (In Chinese with English Abstract). [Google Scholar]
Control | Light Grazing | Moderate Grazing | Heavy Grazing | |
---|---|---|---|---|
TOC | 1.19 ± 0.01 a | 1.19 ± 0.11 a | 1.36 ± 0.15 a | 1.35 ± 0.29 a |
MBC | 1.29 ± 0.47 a | 1.80 ± 0.03 ab | 1.54 ± 0.79 ab | 2.14 ± 0.37 b |
DOC | 1.55 ± 0.32 a | 1.49 ± 0.38 a | 1.62 ± 0.10 ab | 2.64 ± 2.19 b |
PMC | 1.24 ± 0.09 ab | 0.87 ± 0.16 a | 1.75 ± 0.60 b | 1.31 ± 0.26 ab |
POC | 1.28 ± 0.58 a | 1.89 ± 0.39 b | 1.24 ± 0.13 a | 2.01 ± 0.13 b |
Actinomycetes: Bacteria | Actinomycetes: Fungus | Bacteria: Fungus | ||||
---|---|---|---|---|---|---|
Rhizosphere Soil | Bulk Soil | Rhizosphere Soil | Bulk Soil | Rhizosphere Soil | Bulk Soil | |
Control | 1:3 | 5:39 | 2:3 | 5:3 | 2:1 | 66:5 |
Light grazing | 15:86 | 8:35 | 13:7 | 5:4 | 53:5 | 27:5 |
Moderate grazing | 4:17 | 17:80 | 5:2 | 7:2 | 95:9 | 33:2 |
Heavy grazing | 3:16 | 14:61 | 2:1 | 11:3 | 73:7 | 111:7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, X.; Li, M.; Yin, P. Effects of Grazing on Soil Organic Carbon in the Rhizosphere of Stipa Grandis in a Typical Steppe of Inner Mongolia, China. Sustainability 2022, 14, 11866. https://doi.org/10.3390/su141911866
Zhang M, Li X, Li M, Yin P. Effects of Grazing on Soil Organic Carbon in the Rhizosphere of Stipa Grandis in a Typical Steppe of Inner Mongolia, China. Sustainability. 2022; 14(19):11866. https://doi.org/10.3390/su141911866
Chicago/Turabian StyleZhang, Meng, Xiaobing Li, Mengyuan Li, and Peihong Yin. 2022. "Effects of Grazing on Soil Organic Carbon in the Rhizosphere of Stipa Grandis in a Typical Steppe of Inner Mongolia, China" Sustainability 14, no. 19: 11866. https://doi.org/10.3390/su141911866
APA StyleZhang, M., Li, X., Li, M., & Yin, P. (2022). Effects of Grazing on Soil Organic Carbon in the Rhizosphere of Stipa Grandis in a Typical Steppe of Inner Mongolia, China. Sustainability, 14(19), 11866. https://doi.org/10.3390/su141911866