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Abstract: This study evaluated the co-digestion of domestic wastewater solids (WWS) and food
waste (FW) at the bench-scale for Yosemite National Park, California, which operates a 1900 m3/d
wastewater treatment plant in El Portal, California. A 35-day biochemical methane potential test was
performed on varying amounts of FW as a percentage of total waste (WWS plus FW) on a volatile
solids basis (%FW). Specific methane yield and volumetric methane yield increased substantially
with increasing %FW. A higher %FW was also associated with slower degradation kinetics but higher
methane content in biogas. The 75 %FW treatment had relatively rapid kinetics, a high cumulative
specific methane yield (453 mL CH4/g VS), and an elevated methane content in biogas, and is
suggested as an upper limit %FW mixture for full-scale co-digestion. This, coincidently, is near the
estimated ratio of WWS and FW production at the Park (70 %FW). Co-digesting the Park’s feedstock
of FW with WWS in existing anaerobic digestion facilities could increase methane production five-
fold. Combusting this methane in a combined heat and power system would produce about twice
the energy needed to heat anaerobic digestors and power the treatment plant.

Keywords: biochemical methane potential test; combined heat and power; food waste; wastewater solids

1. Introduction

“Thou shall not waste potential energy” is the first commandment for developing a
sustainable society [1]. An important and unused potential energy source in many com-
munities is organic municipal solid waste, which is commonly dominated by food waste
(FW). Globally, organic waste accounts for a significant portion of municipal solid waste
(30–65%), and the production of municipal solid waste is growing, having nearly doubled
over the past decade to an estimated 2 billion tons per year [2]. The anaerobic co-digestion
of wastewater solids (WWS) with organic solid waste is a compelling approach to capture
the potential energy of organic solid waste while enhancing the sustainability of wastewater
and solid waste management [3–8]. WWS typically include settleable solids in inflowing
wastewater and microbial biomass produced during the biodegradation of organic mat-
ter. WWS are commonly treated using anaerobic digestion, which produces methane-rich
biogas that can be harvested as an energy source [9]. Wastewater treatment plants are
ideal locations for co-digestion since many plants have surplus digester capacity [10–12].
Additionally, much of the wastewater infrastructure in the US is outdated [13], offering a
unique opportunity to integrate organic solid waste treatment with upgraded anaerobic
co-digestion facilities.

The co-digestion of FW with WWS provides some advantages compared to digesting
these substrates separately or landfilling organic municipal waste. FW alone is a chal-
lenge to digest anaerobically because its breakdown produces elevated concentrations of
volatile fatty acids (VFAs) that lower pH and inhibit methanogenesis [8,11]. By mixing FW
with a co-substrate such as WWS, the combined substrates are easier to digest, produce
more biogas relative to digesting FW alone, and tend to promote a more robust microbial
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community [3,4,8,14]. Another benefit is that methane produced from FW in an anaerobic
digester is easier to harvest and is generally of better quality (e.g., higher energy content,
lower sulfide) than that produced by FW disposed in a landfill [15,16]. Energy production
from WWS biogas alone can typically supply ~50% of a wastewater treatment plant’s
energy needs, compared to 100% or more when co-digested with FW [5,7]. For example,
East Bay Municipal Utility District in Oakland, California, USA co-digests 120,000 kg/d of
organic municipal waste and produces enough energy to power its entire wastewater treat-
ment process, which serves around 685,000 people [10]. The implementation of 20 %FW
co-digestion in existing anaerobic digesters at a wastewater treatment plant in Grüneck,
Germany serving around 73,000 people yielded a 16% increase in energy self-sufficiency
and had a pay-back period of 10 months [12]. The wastewater treatment plant in Manteca,
California, USA serving around 81,000 people is co-digesting commercially generated FW
in expanded anaerobic digester facilities and producing 500 diesel gallon equivalents per
day of automobile fuel as renewable compressed natural gas [17].

This study examined the feasibility of the anaerobic co-digestion of WWS and FW
to enhance waste management in Yosemite National Park (Park), CA, USA. The Park, a
leader in sustainability and resource management, intends to fully divert solid waste away
from landfills over the coming decade [18]. The Park is also redeveloping its wastewater
treatment plant in El Portal, California. This provides a unique opportunity to use anaerobic
co-digestion to enhance waste management at the Park. The study is unique in that, in
addition to conducting a site-specific assessment of co-digestion methane production
potential, a waste inventory at the Park was used to estimate the potential for biogas
produced via co-digestion to meet the energy needs of the Park’s wastewater treatment
plant.

The study’s aims were three-fold. First, the mass and quality of FW and WWS
produced in the Park were assessed to inform future co-digestion scenarios. Second,
a biochemical methane potential (BMP) assay was used to assess methane production
as a function of the percentage of total waste as FW on a volatile solid basis (%FW).
Performing this assay on the specific waste at hand is important because the co-digestion
process depends on the unique quality of local waste feeds [19]. In addition, it can be a
challenge to use the literature BMP values to predict biogas production, since methods vary
considerably [20–22]. Third, BMP results were used to assess the potential for full-scale
co-digestion at the Park’s wastewater treatment plant to meet the energy needs of the
plant using a combined heat and power system. The preliminary results indicate that the
co-digestion of FW at the Park’s existing anaerobic digesters could result in a substantial
increase in methane production, and the energy harvested from the gas would exceed the
energy demand to heat the digester and power the plant.

2. Materials and Methods
2.1. Study Site

Yosemite National Park is located in the western Sierra Nevada mountains of cen-
tral California, USA (37.8651◦ N, 119.5383◦ W) and is one of the most popular outdoor
travel destinations in the world. However, its expansive wilderness (3000 km2), com-
plex topography (ranging from 600–4000 m), and large visiting population (4–5 million
visitors per year) make waste management a challenge. The Park landfills an estimated
2 million kg/year of municipal solid waste and diverts another 4.2 million kg/year of
recyclable solid waste material [23]. Of this waste, an estimated 1 million kg/year of FW
is available for co-digestion. Most wastewater produced at the Park undergoes treatment
at a wastewater treatment plant in El Portal, California near the western entrance of the
Park. The treatment plant was originally constructed in the 1970s. Its treatment capacity is
3800 m3/d, and its annual average inflow is 1900 m3/d. The treatment plant anaerobically
digests an estimated 5.1 million kg of primary wastewater solids per year (Table S2) in
two single-stage mesophilic digesters; produced biogas is currently flared to the atmo-
sphere. After anaerobic digestion, an estimated 375,000 kg/year of dried biosolids are
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transported for land application on non-consumable crops. The treatment plant is slated for
a multimillion-dollar upgrade, presenting waste managers with an opportunity to design a
new system to treat both FW and WWS via co-digestion. This new system could potentially
produce enough biogas to power the wastewater treatment plant while diverting solid
waste from landfills.

2.2. Collection and Characterization of Waste

Inoculum and WWS were collected from the El Portal wastewater treatment plant’s
anaerobic digester and primary clarifier, respectively. Both were stored in covered 7 L
plastic buckets for transport. FW from the Park was collected in a covered 22 L plastic bin
on the same day that the Park waste was delivered to the Mariposa County landfill. In
the laboratory, FW was blended in a food processor, and the slurry was stored in covered
7 L plastic buckets. Inorganic contaminants found in the FW, including paper cups, glass,
plastic items, and metal bottle caps, were discarded prior to blending. All substrates were
refrigerated until further use. Prior to BMP measurements, substrates were analyzed for
total solids (TS) and volatile solids (VS) using standard methods [24]. The displacement
method was used to measure FW density, and mass and volume measurements were used
to calculate WWS density. In this study, the annual production of WWS at the Park was
calculated based on 2017 data from the El Portal wastewater treatment plant (Harders, G.,
personal correspondence); annual FW production was based on a recent characterization
study of solid waste produced at the Park [23].

2.3. Biochemical Methane Potential

BMP incubations were performed on FW and WWS mixtures based on the approaches
outlined in [19,25]. Triplicate treatments were performed for 0, 10, 25, 50, 75, 90 and
100 %FW and an inoculum control. For all treatments, the total volume was maintained
at 150 mL and the inoculum to substrate ratio was maintained at ~1:1 on a VS basis to
maintain relatively similar conditions in all treatments. Volumes of inoculum, WWS and
FW were adjusted accordingly (Table S1). Target amounts of FW, WWS, and inoculum were
added to 200 mL bottles, sealed, and placed on an orbital shaker set to 150 revolutions per
minute in a dark incubator stored at mesophilic conditions (35 ◦C). Over a 35-day duration,
every 1–5 days, biogas was sampled from incubations, depending on the production rate of
biogas. Gas samples were first collected for gas composition analysis with a 30 mL plastic
gas sampling syringe and stored in 15 mL exetainers (Labco Limited, Lampeter, Wales, UK).
The remainder of the gas volume was measured using a wet-tipped glass 50 mL syringe
until the bottles equilibrated to atmospheric pressure. Gas composition was measured
using gas chromatography (GC) (Trace 1300, S/N 119900-0115, Thermo Fisher Scientific).
The GC temperature was set to 250 ◦C for injection and 300 ◦C for the detector. The carrier
gasses used were compressed air (400 mL/min) and hydrogen (150 mL/min). To use the
GC autosampler, a subsample of biogas from the exetainers was diluted 40 times by volume
in crimped 20 mL glass vials. The pH of the incubation contents was measured at the start
and the end of the BMP using a calibrated pH meter.

2.4. Analysis of Data

Cumulative methane production was normalized in two ways. Specific methane yield
(mL CH4/g VS substrate added), a commonly accepted anaerobic digestion metric, was
estimated by normalizing to VS of feed. Volumetric methane yield (mL CH4/mL substrate
added), a metric useful for wastewater managers who use volumetric loading to operate
digesters [25], was also estimated by normalizing to volume of feed. Both metrics were
corrected for methane produced by inoculum, which was minimal. The results of BMP
incubations are reported as the averages of triplicate incubations. R software’s base stats
package (version 3.5.2) was used to assess specific methane yield, volumetric methane
yield, and biogas methane content as a function of %FW via linear regression. The standard
error of key biogas metrics associated with triplicate BMP incubations was also estimated.
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The relative standard error measured during the multiple sampling events of the 35-day
incubation typically ranged between 3 and 13% for specific methane yield and volumetric
methane yield and between 1 and 4% for methane content. Errors are reported in Table S3
and shown in Figure S1.

3. Results
3.1. Waste Characterization and Waste Production at Park

WWS, FW, and inoculum had similar densities (~1 g/mL), indicating that the sub-
strates had a high fraction of water (Table S2). On a mass basis, FW had approximately ten
times more VS than WWS (0.31 g/g versus 0.029 g/g), highlighting the relatively high VS
content of FW. FW had a density (1.10 g/mL) higher than the typical values in the literature
(0.4–0.8 g/mL) [26], but the percent VS in FW was typical of values from other studies
(92%) [27]. In terms of total mass, the Park produces an estimated 5.1 million kg/year of
WWS and 1.0 million kg/year of FW (Table S2). This is equivalent to 150,000 kg VS/year of
WWS and 320,000 kg VS/year of FW. Consequently, although there is more volume and
mass of WWS, there is actually more kg VS of FW.

The %FW (VS basis) of annual waste production from the Park is around 70%. While
the amount of waste produced at the Park is highly seasonal and peaks in the summer, the
amount-of-FW-to-WWS ratio by VS is anticipated to remain relatively constant since both
solid waste and wastewater are dependent on the number of visitors in the Park. Seasonal
trends in visitor attendance correspond with trends in WWS production, confirming the
link between visitation and waste production (Figure 1). These data also indicate an
annual monthly waste production peaking factor (peak month/annual average) of around
two. FW VS content tends to be constant on a weekly to monthly basis [27,28]. Thus, the
resulting %FW of 70% calculated here is a reasonable metric on the basis of which to make
a preliminary assessment of the potential for co-digestion at the Park’s El Portal wastewater
treatment plant. Total visitation to the park has remained relatively steady over the past
10 years, typically ranging from around 4–5 million per year, excluding the low visitation
during COVID years.
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Figure 1. 2017 Yosemite National Park visitor population and El Portal wastewater solids (WWS)
production. Visitation statistics from: https://www.nps.gov/yose/planyourvisit/visitation.htm
(accessed on 28 April 2020).

3.2. Biochemical Methane Potential

The patterns of methane production in BMP incubations showed clear trends related
to incubation duration and %FW (Figure 2, Table S3). The specific methane yield showed
the classic “S” curve, with peak methane production (curve inflection point) occurring
around day 8 for 0–25 %FW and day 14 for 75–100 %FW. Longer times to peak production
were also associated with the later plateauing of specific methane yield values, which was

https://www.nps.gov/yose/planyourvisit/visitation.htm
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especially apparent in the 90 and 100 %FW treatments. The values of cumulative specific
methane yield at 35 days ranged from 267 mL CH4/g VS at 0 %FW to 478 mL CH4/g
VS at 100 %FW. There was a significant linear relationship between cumulative specific
methane yield and %FW (r2 = 0.97, p < 0.01; Figure S1). The values of cumulative volumetric
methane yield at 35 days ranged from 7.9 mL CH4/mL at 0 %FW to 135 mL CH4/mL at
100 %FW, highlighting the potent methane production potential of FW on a volume basis.
There was also a significant log-linear relationship between the cumulative volumetric
methane yield and %FW (r2 = 0.95, p < 0.01; Figure S1). The methane content of biogas in
all treatments was 60–70% after 10 days, with the 90 and 100 %FW treatments showing a
slight temporal lag compared to other treatments. A significant linear relationship between
methane content averaged over the last 15 days of the incubation and %FW was also
observed (r2 = 0.93, p < 0.01).
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4. Discussion
4.1. Biochemical Methane Potential

The substitution of WWS with FW (i.e., increasing %FW) led to a significant increase
in methane production on a VS mass basis and a waste volume basis. The results highlight
the relatively high concentration and digestible nature of the VS found in FW relative to
WWS. In the context of this study, an increase from 0 to 75 %FW, the approximate %FW
ratio of waste produced at the Park, enhanced specific methane yield by a factor of 1.7,
from 267 to 453 mL CH4/g VS, and volumetric methane yield by a factor of 5, from 7.9 to
39.5 mL CH4/mL.

Comparing across BMP studies is challenging due to a lack of standardized meth-
ods [21,22], but this study’s values were typical of BMP results for the co-digestion of
organic substrates [4,8,10,20,21,29] (Table 1). Ref. [25] reported BMP specific methane yields
of 125–452 mL CH4/g VS for a range of FW-manure treatments. Ref. [30] assessed biogas
production in bioreactors fed with dewatered WWS (0.11 g/g VS) and FW (0.19 g/g VS).
They observed a linear increase in specific methane yield with increasing %FW, which
ranged from 237 mL CH4/g VS for 0 %FW to 465 mL CH4/g VS for 100 %FW over a 30 d
duration. [31] also observed a linear increase in specific methane yield ranging from 285 mL
CH4/g VS to 520 mL CH4/g VS using synthetic FW mixed with sewage sludge, with assays
ranging from 0 to 100 %FW. While the numerical values of specific methane yield vary
across studies, there is a general trend of around a doubling of specific methane yield when
co-digesting wastewater feed stocks with a high fraction of FW. Clearly, the co-digestion of
WWS with FW can substantially enhance methane production and the related potential for
energy generation.

Table 1. Specific methane yield from comparable co-digestion studies.

Co-Digestion Feed
Stock

Select
Treatments

(% VS)

Specific
Methane

Yield
(mL CH4/g VS)

Citation

Wastewater Solids and
Food Waste

0% food waste
50% food waste

100% food waste

267
379
478

This Study

Manure and
Food Waste

100% manure
19% manure, 81% cranberry
16% manure, 84% chicken

92
200
381

[25]

Wastewater Solids and
Food Waste

0% food waste
50% food waste
80% food waste

116
215
257

[29]

Wastewater Solids and
Food Waste

0% food waste
53% food waste

100% food waste

237
350
465

[30]

Wastewater Solids and
Food Waste

0% food waste
50% food waste

100% food waste

285
410
520

[31]

Note: Reported results are for ~30–35-day BMP incubations under mesophilic conditions (~35 ◦C).

A pattern of note in our study was the slower degradation kinetics in the 90 and
100 %FW treatments. The peak rate of methane production was around a week later for
these treatments compared to the lower %FW treatments (Figure 2A). In addition, the
treatments had lower methane contents in biogas in the early days of the BMP incubation
(Figure 2C). For example, the methane content at day five was around 35% for 0–50 %FW
treatments, but it was only 20% for 90–100 %FW treatments. The slower kinetics and
lower methane content associated with higher %FW treatments may have been related
to the inhibitory effects of elevated VFA concentrations associated with high FW concen-
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trations [11,32]. In this study, there was a moderate pH increase (0.2–0.3 pH units) with
increasing %FW (Table S3). Slower kinetics at higher %FW also could be related to the
larger size and semi-solid nature of the FW in this study. Hydrolysis during anaerobic
digestion is acknowledged as a rate-limiting step [4,8,33], and the large particle size of FW
has been associated with lower rates of hydrolysis in some studies [34].

The 75 %FW treatment had relatively rapid kinetics, a high cumulative specific
methane yield, and an elevated methane content in biogas, and it is suggested as an
upper limit %FW mixture for full-scale co-digestion. This, coincidently, is near the esti-
mated ratio of WWS and FW production at the Park (70 %FW). Another observation of
interest was the slightly higher methane content in biogas for the higher %FW treatments
(Figure 2C). This contrasts with the results from [30,35], which tended to show an opposite
trend. However, [25] reported a higher methane content in biogas with increasing %FW in
FW-manure treatments.

4.2. Co-Digestion Energy Balance at the El Portal Wastewater Treatment Plant

Keeping in mind that small-scale lab BMP assays tend to overestimate methane produc-
tion [20,36], the BMP results were used to perform a preliminary evaluation of FW co-digestion
and biogas energy production at the El Portal wastewater treatment plant (Figure 3). Accord-
ing to billing statements from 2018 to 2019, the plant uses ~500,000 kwh/year for digester
heating and an additional ~200,000 kWh/year for various plant operations.
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Based on the 0 %FW (WWS only) cumulative specific methane yield results (267 mL
CH4/g VS) and the annual production of VS (150,000 kg), the plant currently flares
~40,100 m3/year of methane. Putting this methane production in terms of per capita
gas production for the El Portal wastewater treatment plant suggests that the BMP re-
sults are reasonable. Assuming a per capita wastewater production rate of 200 L/d, the
equivalent treatment population for the plant is 9500. Further assuming a 60% methane
content yields a per capita gas production of ~19 m3/d·1000 people, a typical value for the
digestion of primary solids [9]. Using a heating value of 35.8 MJ/m3 [9], the lost energy
content of flared methane is ~397,600 kWh/year (Figure 3A).

The Park produces combined organic waste with a %FW of ~70% (320,000 kg VS/year
of FW and 150,000 kg VS/year of WWS). The BMP results indicate that 70 %FW has a
specific methane yield of 438 mL CH4/g VS. Thus, co-digestion is estimated to produce
~205,800 m3/year of methane, with an energy content of ~2,040,800 kWh/year. This is
a five-fold increase in biogas production over current operations. Combined heat and
power (CHP) is a reliable technology recommended for biogas combustion at small-scale
wastewater treatment plants [5,9]. CHP uses gas turbines, steam turbines, or reciprocating
engines to co-generate heat and electricity, thereby promoting energy capture efficiency [37].
Assuming a power-to-heat ratio of 0.8 and a 70% overall CHP efficiency [37,38], combusting
biogas via CHP would produce considerably more electricity (634,700 kWh/year) than
that currently used at the plant and more than enough heat (793,900 kWh/year) to meet
the digester heating needs (Figure 3C). The existing anaerobic digestor volume at the El
Portal treatment plant is 1260 m3. For a 70 %FW scenario, the organic loading rate would
be ~2 kg VS/m3·d under summertime peak flow conditions, which is within acceptable
limits [9,39]. The seasonal patterns of energy production would need to be considered,
since organic waste availability is lowest in the winter when digester heating needs are the
greatest.

4.3. Additional Considerations for Co-Digestion

While FW and WWS co-digestion would yield impressive increases in biogas produc-
tion, increased energy recovery, and cost savings associated with lower rates of landfill
disposal of organic solid waste, the process is not without challenges. The pretreatment of
FW via biological, mechanical, chemical, or thermal means is commonly recommended
to homogenize waste and yield smaller particle sizes that enhance digestibility [4,8]. Ad-
ditionally, since the current site includes two digesters, managers should consider using
a two-stage anaerobic co-digestion process that can improve pH control and methane
yield [8,40,41]. Because of greater solids loading, there would be an increase in biosolids
production associated with a 70 %FW co-digestion scenario. Co-digestion can also affect
sludge dewaterability and digestate characteristics, although there are few studies on this
topic [11]. Some studies suggest enhanced solids dewaterability with co-digestion [42].
Thus, mangers should focus on sustainable approaches to biosolids reuse [11,43] and care-
fully assess the implications of returning co-digestate to the headworks, a typical digestate
disposal strategy in municipal wastewater treatment plants. Another key focus of waste
managers should be the diversion or removal of inert material from FW, which can impede
the co-digestion process and the subsequent reuse of biosolids [11]. The Park may need
to reevaluate the use of “biodegradable” polylactic acid plastic cups and utensils. An
initial study conducted on the Park’s polylactic acid plastic dining supplies showed a
negligible mass loss over a 35-day anaerobic digestion experiment (Beutel and Burmistrova,
unpublished), a finding similar to others [44,45]. An additional challenge related to CHP
energy recovery is the need for biogas pretreatment for the removal of siloxanes, sulfides,
and moisture prior to combustion [10].

The Park produces several additional organic waste products, including horse manure,
green waste, and kitchen grease, that could be integrated into future co-digestion and
biosolids management efforts at the El Portal wastewater treatment plant [18]. For example,
the co-digestion of 550,000 kg/year of horse manure produced at the Park, assuming a
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specific methane potential of 140 mL CH4/g VS and a VS content of 0.19 g/g [46], could
produce an estimated 15,000 m3/year of additional methane, which is equivalent to about
one-third of the current methane production at the wastewater treatment plant. The waste
biomass conversion of lignocellulosic-based green waste into biofuels has the advantage
of using a non-edible feed stock rather than more digestible food crops that support
human nutrition [47]. However, this organic feedstock requires significant pretreatment,
as cellulose and lignin are not biodegradable via typical anaerobic co-digestion processes.
Promising novel approaches for lignocellulosic pretreatment include chemical processing
with nanomaterials, such as recoverable magnetic nanoparticles coated with hydrolytic
enzymes (e.g., cellulases, hemicellulases, cellobiases) [47], and lignin bioconversion using
microbial methods including synthetic biology and metabolic engineering [48].

5. Conclusions

Yosemite National Park aims to fully divert solid waste away from landfills over the
coming decade. In addition, the Park plans to upgrade its wastewater treatment plant
in El Portal, California. To enhance waste management sustainability at the Park, this
preliminary study assessed the feasibility of using the anaerobic co-digestion of FW and
WWS at the Park’s existing treatment plant to divert organic waste from landfills while
enhancing energy production by promoting biogas production. A BMP assay using waste
from the Park was first used to assess the impact of increasing the amounts of FW relative to
WWS on methane production. A higher %FW corresponded with a higher specific methane
yield, an elevated biogas methane content, and slower degradation kinetics. The Park
produces an estimated 320,000 kg VS/year of FW and 150,000 kg VS/year of WWS (%FW
~70%) that, based on BMP results, could yield ~205,800 m3/year of methane, with an energy
content of ~2,040,800 kWh/year. This is a five-fold increase in biogas production over
current operations. Mass loading calculations suggest that this waste could be co-digested
in the Park’s current anaerobic digester facilities. Combusting methane-rich biogas via
CHP would produce considerably more electricity (634,700 kWh/year) than that currently
used at the plant and more than enough heat (793,900 kWh/year) to meet digester heating
needs. Several issues need to be considered when implementing co-digestion, including
the seasonality of feed stocks and energy demand; the pretreatment of FW; changes in
solids production, sludge dewaterability, and digestate characteristics; the diversion or
removal of inert material from FW; and biogas pretreatment prior to combustion. While
challenging, the co-digestion of FW and WSS appears very promising, should be studied
further, and should be integrated in the Park’s wastewater facility upgrades.
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Table S3. Summary of biochemical methane potential experimental results; Figure S1. Regression of
cumulative specific methane yield and cumulative volumetric methane yield with %FW.
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