Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Research Procedures
2.3. Plant Origin
2.4. Data Analysis
3. Results
3.1. Land Productivity
3.2. Productivity of Cocoyam Farming
3.3. Farmer Characteristics, Knowledge, and Perceptions
3.4. Policy Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Normality Test
Appendix B. Collinearity
Coefficients a | ||||||||
---|---|---|---|---|---|---|---|---|
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
B | Std. Error | Beta | Tolerance | VIF | ||||
1 | (Constant) | 33.249 | 10.123 | 3.285 | 0.004 | |||
Age | 0.170 | 0.207 | 0.442 | 0.824 | 0.420 | 0.115 | 8.719 | |
Gender | −2.165 | 1.867 | −0.261 | −1.159 | 0.260 | 0.649 | 1.541 | |
Length_of_stay | −0.065 | 0.097 | −0.207 | −0.674 | 0.508 | 0.348 | 2.870 | |
Education | 0.433 | 0.533 | 0.180 | 0.814 | 0.425 | 0.675 | 1.481 | |
Main-job | −0.280 | 3.337 | −0.019 | −0.084 | 0.934 | 0.652 | 1.533 | |
Side_job | 0.122 | 1.386 | 0.019 | 0.088 | 0.931 | 0.721 | 1.387 | |
Farming_experience | 0.032 | 0.134 | 0.109 | 0.236 | 0.816 | 0.155 | 6.446 | |
Number_of_family_member | −0.205 | 0.350 | −0.126 | −0.587 | 0.564 | 0.718 | 1.392 | |
Land-ownership | −0.464 | 1.409 | −0.074 | −0.329 | 0.745 | 0.646 | 1.549 |
Appendix C. Heteroskedasticity
Appendix D. Kolmogorov–Smirnov Test
One-Sample Kolmogorov–Smirnov Test | |||
---|---|---|---|
Unstandardized Residual | |||
N | 30 | ||
Normal Parameters a,b | Mean | 0.0000000 | |
Std. Deviation | 3.69465055 | ||
Most Extreme Differences | Absolute | 0.099 | |
Positive | 0.070 | ||
Negative | −0.099 | ||
Test Statistic | 0.099 | ||
Asymp. Sig. (2-tailed) c | 0.200 d | ||
Monte Carlo Sig. (2-tailed) e | Sig. | 0.616 | |
99% Confidence Interval | Lower Bound | 0.603 | |
Upper Bound | 0.628 |
References
- García-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Solutions for the Sustainability of the Food Production and Consumption System. Crit Rev. Food Sci. Nutr. 2022, 62, 1765–1781. [Google Scholar] [CrossRef] [PubMed]
- Abdurachman, A.; Dariah, A.; Mulyani, A. Strategi Dan Teknologi Pengelolaan Lahan Kering Mendukung Pengadaan Pangan Nasional. J. Litbang Pertan. 2008, 27, 43–49. [Google Scholar]
- Tilman, D.; Fargione, J.; Wollff, B.; Antonio, C.D.; Dobson, A.; Howarth, R.; Schindler, D.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, H.L.; Cheung, Y.M. A Renewable Energy Cooperation Scheme for OFDM Systems Using Evolutionary Many-Objective Optimization Algorithm. In Proceedings of the 12th International Conference on Computational Intelligence and Security, CIS 2016, Wuxi, China, 16–19 December 2016; Volume 327, pp. 194–197. [Google Scholar] [CrossRef]
- Waldron, A.; Miller, D.C.; Redding, D.; Mooers, A.; Kuhn, T.S.; Nibbelink, N.; Roberts, J.T.; Tobias, J.A.; Gittleman, J.L. Reductions in Global Biodiversity Loss Predicted from Conservation Spending. Nature 2017, 551, 364–367. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Trop. Conserv. Sci. 2017, 10, 1940082917720667. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- FAO. State of Food Security and Nutrition in the Word; FAO: Rome, Italy, 2018. [Google Scholar]
- Riofrío, J.; Herrero, C.; Grijalva, J.; Bravo, F. Aboveground Tree Additive Biomass Models in Ecuadorian Highland Agroforestry Systems. Biomass Bioenergy 2015, 80, 252–259. [Google Scholar] [CrossRef]
- Smith, A.; Snapp, S.; Chikowo, R.; Thorne, P.; Bekunda, M.; Glover, J. Measuring Sustainable Intensification in Smallholder Agroecosystems: A Review. Glob. Food Sec. 2017, 12, 127–138. [Google Scholar] [CrossRef]
- Prabhu, R.; Barrios, E.; Bayala, J.; Diby, L.; Donovan, J.; Gyau, A.; Graudal, L.; Jamnadass, R.; Kehlenbeck, K. Agroforestry. In Proceedings of the Agroecology for Food Security and Nutrition, Rome, Italy, 18–19 November 2015; p. 201. [Google Scholar]
- van Khuc, Q.; Pham, L.; Tran, M.; Nguyen, T.; Tran, B.Q.; Hoang, T.; Ngo, T.; Tran, T.D. Understanding Vietnamese Farmers’ Perception toward Forest Importance and Perceived Willingness-to-Participate in Redd+ Program: A Case Study in Nghe an Province. Forests 2021, 12, 521. [Google Scholar] [CrossRef]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A Robust Approach to Sustainable Food Security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Charles, R.; Munishi, P.; Nzunda, E. Agroforestry as Adaptation Strategy under Climate Change in Mwanga District, Kilimanjaro, Tanzania. Int. J. Environ. Prot. 2013, 3, 29–38. [Google Scholar]
- Budiastuti, M.S. Sistem Agroforestri Sebagai Alternatif Hadapi Pergeseran Musim Guna Pencapaian Keamanan Pangan. Ekosains 2013, 5, 1–5. [Google Scholar]
- Kohli, R.K.; Singh, H.P. Ecological Interactions in Agroforestry: An Overview. Ecol. Basis Agrofor. 2007, pp. 2–14. Available online: https://www.researchgate.net/publication/328938938_Ecological_interactions_in_agroforestry_An_overview (accessed on 14 July 2022).
- Lundgren, B.; Nair, P.K.R. Agroforestry for Soil Conservation. Soil Eros. Conserv. 1985, 703–717. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable Intensification in Agricultural Systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Zaremba, L.S.; Smoleński, W.H. Optimal Portfolio Choice under a Liability Constraint. Ann. Oper. Res. 2000, 97, 131–141. [Google Scholar] [CrossRef]
- Maharani, D.; Sudomo, A.; Swestiani, D.; Murniati; Sabastian, G.E.; Roshetko, J.M.; Fambayun, R.A. Intercropping Tuber Crops with Teak in Gunungkidul Regency, Yogyakarta, Indonesia. Agronomy 2022, 12, 449. [Google Scholar] [CrossRef]
- Maryanto, I. Bioresources Untuk Pembangunan Ekonomi Hijau; Susiloningsih, D., Ed.; Lembaga Ilmu Pengetahuan Indonesia (LIPI): Bogor, Indonesia, 2013. [Google Scholar]
- Sibuea, S.M.; Kardhinata, E.H.; Ilyas, S.; Serdang, S. Identifikasi Dan Inventarisasi Jenis Tanaman Umbi-Umbian Yang Berpotensi Sebagai Sumber Karbohidrat Alternatif Di Kabupaten Serdang Bedagai. J. Online Agroekoteknologi 2014, 2, 1408–1418. [Google Scholar]
- Suhardi. Mandiri Pangan Sejahterakan Rakyat; Kagama: Yogyakarta, Indonesia, 2011. [Google Scholar]
- Wahyono, A.; Arifianto, A.; Wahyono, N.D.; Riskiawan, H.Y. Prospek Ekonomi Kebijakan Pemanfaatan Produktivitas Lahan Tidur Untuk Pengembangan Porang Dan Jamur Tiram Di Jawa Timur. Cakrawala 2017, 11, 171–180. [Google Scholar] [CrossRef]
- Atiah, S.; Kaswinarni, F.; Dewi, L.R. Keanekaragaman Jenis Umbi-Umbian Yang Berpotensi Sebagai Bahan Pangan Di Desa Ngesrepbalong Kabupaten Kendal. EDUSAINTEK 2019, 3, 390–396. [Google Scholar]
- FAO. World Food and Agriculture; FAO Statis: Rome, Italy, 2012. [Google Scholar]
- Boakye, A.A.; Wireko-Manu, F.D.; Oduro, I.; Ellis, W.O.; Gudjónsdóttir, M.; Chronakis, I.S. Utilizing Cocoyam (Xanthosoma sagittifolium) for Food and Nutrition Security: A Review. Food Sci. Nutr. 2018, 6, 703–713. [Google Scholar] [CrossRef]
- Boakye-Achampong, S.; Ohene-Yankyera, K.; Aidoo, R.; Sørensen, O.J. Is There Any Economics in Smallholder Cocoyam Production? Evidence from the Forest Agro-Ecological Zone of Ghana. Agric. Food Secur 2017, 6, 44. [Google Scholar] [CrossRef]
- Oshunsanya, S.O. Quantification of Soil Loss Due to White Cocoyam (Colocasia esculentus) and Red Cocoyam (Xanthosoma sagittifolium) Harvesting in Traditional Farming System. Catena (Amst) 2016, 137, 134–143. [Google Scholar] [CrossRef]
- Boakye, A.A.; Gudjónsdóttir, M.; Skytte, J.L.; Chronakis, I.S.; Wireko-Manu, F.D.; Oduro, I. Characteristics of Xanthosoma sagittifolium Roots during Cooking, Using Physicochemical Analysis, Uniaxial Compression, Multispectral Imaging and Low Field NMR Spectroscopy. J. Food Sci. Technol. 2017, 54, 2670–2683. [Google Scholar] [CrossRef]
- Onyeka, J. Status of Cocoyam (Colocasia esculenta and Xanthosoma spp.) in West and Central Africa: Production, Household Importance and the Threat from Leaf Blight. In CGIAR Research Program on Roots, Tubers and Bananas (RTB); CGIAR: Lima, Peru, 2014. [Google Scholar]
- Knipscheer, H.C.; Wilson, J.E. Cocoyam Farming Systems in Nigeria. In Proceedings of the Tropical root crops: Research strategies for the 1980s. In Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops-Africa Branch, Ibadan, Nigeria, 8–12 September 1980. [Google Scholar]
- Adjei, P.O.-W.; Buor, D.; Addrah, P. Ecological Health Effects of Rural Livelihood and Poverty Reduction Strategies in the Lake Bosomtwe Basin of Ghana. GeoJournal 2017, 82, 609–625. [Google Scholar] [CrossRef]
- Sardos, J.; Muller, S.; Duval, M.F.; Noyer, J.-L.; Lebot, V. Root Crops Diversity and Agricultural Resilience: A Case Study of Traditional Agrosystems in Vanuatu (Oceania). Agric. Hum. Values 2016, 33, 721–736. [Google Scholar] [CrossRef]
- Opara, L.U. Edible Aroids: Post Harvest Operations; Food and Agriculture Organization of the United Nations: Rome, Italy,, 2003. [Google Scholar]
- Labouisse, J.P. Ethnobotany of Breadfruit in Vanuatu: Review and Prospects. Ethnobiol. Lett. 2016, 7, 14–23. [Google Scholar] [CrossRef]
- Serna-Loaiza, S.; Carmona-Garcia, E.; Cardona, C.A. Potential Raw Materials for Biorefineries to Ensure Food Security: The Cocoyam Case. Ind. Crops Prod. 2018, 126, 92–102. [Google Scholar] [CrossRef]
- De Souza Araújo, S.; de Souza Araújo, P.; Giunco, A.J.; Silva, S.M.; Argandoña, E.J. Bromatology, Food Chemistry and Antioxidant Activity of Xanthosoma sagittifolium (L.) Schott. Emir J. Food Agric. 2019, 31, 188–195. [Google Scholar] [CrossRef]
- Sefa-Dedeh, S.; Agyic Sackey, E.K. Chemical Composition and the Effect of Processing on Oxalate Content of Cocoyam Xanthosoma Sagithifolium and Colocasia esculenta Cormels 85. Food Chem. 2004, 85, 479–487. [Google Scholar] [CrossRef]
- Ofori, H.; Tortoe, C.; Akonor, P.T.; Ampah, J. Trace Metal and Aflatoxin Concentrations in Some Processed Cereal and Root and Tuber Flour. Int. J. Food Contam. 2016, 3, 15. [Google Scholar] [CrossRef]
- Graf, B.L.; Zhang, L.; Corradini, M.G.; Kuhn, P.; Newman, S.S.; Salbaum, J.M.; Raskin, I. Physicochemical Differences between Malanga (Xanthosoma sagittifolium) and Potato (Solanum tuberosum) Tubers Are Associated with Differential Effects on the Gut Microbiome. J. Funct. Foods 2018, 45, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Tresina, P.S.; Doss, A.; Mohan, V.R. Fatty Acid Composition of Underutilized Corms, Rhizomes and Tubers. Food Res. 2020, 4, 1569–1572. [Google Scholar] [CrossRef]
- Silva, L.F.L.E.; de Souza, D.C.; Resende, L.V.; Nassur, R.D.C.M.; Samartini, C.Q.; Gonçalves, W.M. Nutritional Evaluation of Non-Conventional Vegetables in Brazil. An. Acad. Bras. Cienc. 2018, 90, 1775–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surono, I.S.; Verhoeven, J.; Venema, K. Low Glycemic Load after Digestion of Native Starch from the Indigenous Tuber Belitung Taro (Xanthosoma sagittifolium) in a Dynamic in Vitro Model of the Upper GI Tract (TIM-1). Food Nutr. Res. 2020, 64, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Latifah, E.; Prahardini, P. Identifikasi Dan Deskripsi Tanaman Umbi-Umbian Pengganti Karbohidrat Di Kabupaten Trenggalek. Agrosains J. Penelit. Agron. 2020, 22, 94–104. [Google Scholar] [CrossRef]
- Calle, J.; Benavent-Gil, Y.; Garzón, R.; Rosell, C.M. Exploring the Functionality of Starches from Corms and Cormels of Xanthosoma sagittifolium. Int. J. Food Sci. Technol 2019, 54, 2494–2501. [Google Scholar] [CrossRef]
- Coronell-Tovar, D.C.; Chávez-Jáuregui, R.N.; Bosques-Vega, Á.; López-Moreno, M.L. Characterization of Cocoyam (Xanthosoma spp.) Corm Flour from the Nazareno Cultivar. Food Sci. Technol. 2019, 39, 349–357. [Google Scholar] [CrossRef]
- Adewumi, F.D.; Lajide, L.; Adetuyi, A.O.; Ayodele, O. Functional Properties of Three Native Starches and Their Modified Derivatives. Potravin. Slovak J. Food Sci. 2020, 14, 682–691. [Google Scholar] [CrossRef]
- Sobowale, S.S.; Animashaun, O.H.; Mulaba-Bafubiandi, A.F.; Abidoye, T.S.; Kewuyemi, Y.O.; Adebo, O.A. Process Optimization of Extrusion Variables and Its Effect on Properties of Extruded Cocoyam (Xanthosoma sagittifolium) Noodles. Food Sci. Nutr. 2018, 6, 2210–2226. [Google Scholar] [CrossRef]
- Calle, J.; Benavent-Gil, Y.; Rosell, C.M. Use of Flour from Cormels of Xanthosoma sagittifolium (L.) Schott and Colocasia esculenta (L.) Schott to Develop Pastes Foods: Physico-Chemical, Functional and Nutritional Characterization. Food Chem. 2020, 344, 128666. [Google Scholar] [CrossRef]
- Rosida, D.F.; Sarofa, U.; Aliffauziah, D. Characteristics of Non-Gluten Noodles from Modified Cocoyam (Xanthosoma sagittifolium) and Porang (Amorphophallus oncophyllus). Ital. J. Food Sci. 2022, 34, 13–23. [Google Scholar] [CrossRef]
- Mauliddyah, R.S.; Damat, D.; Wahyudi, V.A. Kajian Aktivitas Antioksidan Mi Basah Substitusi Tepung Umbi Kimpul Dengan Penambahan Ekstrak Klorofil Batang Bayam Dan KAngkung. Food Technol. Halal Sci. J. 2022, 5, 78–92. [Google Scholar] [CrossRef]
- Briliannita, A. Supu La Chemical Properties and Acceptance in the Biscuit Formula of Belitung Taro Xanthosoma sagittifolium with Addition of Ant Nest Tubers (Hydnophytum Formicarum) Plant. Slova J. Food Sci. 2020, 14, 1176–1182. [Google Scholar]
- Puspitasari, D.; Rejeki, F.S.; Wedowati, E.R.; Koesruwulandari; Kadir, A. Kualitas Biskuit MP-ASI Dari Tepung Komposit Kimpul-Kacang Tunggak Dan Tepung Sagu Selama Penyimpanan. J. Res. Technol. 2020, 6, 70–80. [Google Scholar]
- Rosida, D.F.; Putri, N.A.; Oktafiani, M. Characteristics of Modified Flour Cookies (Xanthosoma sagittifolium) with the Addition of Tapioca. Agrointek 2020, 14, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Lindriati, T.; Herlina, H.; Arbiantara, H.; Asrofi, M. Optimization of Meat Analog Production from Concentrated Soy Protein and Yam (Xanthosoma sagittifolium) Powder Using Pasta Machine. Food Res. 2020, 4, 887–895. [Google Scholar] [CrossRef]
- Lindriati, T.; Masahid, A.D.; Daroini, I.K. Aplikasi Daging Analog Berbahan Dasar Umbi Kimpul (Xanthosoma sagittifolium) Dan Isolat Protein Kedelai Pada Pembuatan Sosis. J. Teknol. Pertan. Andalas 2020, 24, 7. [Google Scholar] [CrossRef]
- Ngatini; Purwijantiningsih, E.; Pranata, F.S. Kualitas Yoghurt Sinbiotik Dengan Kombinasi Tepung Kimpul (Xanthosoma sagittifolium) Dan Sari Buah Mangga (Mangifera indica Var. Arumanis). Biota J. Ilm. Ilmu-Ilmu Hayati 2018, 3, 33–43. [Google Scholar] [CrossRef]
- Sari, D.; Purwadi, P.; Thohari, I. Upaya Peningkatan Kualitas Yoghurt Set Dengan Penambahan Pati Kimpul (Xanthosoma sagittifolium). J. Ilmu-Ilmu Peternak. 2019, 29, 131–142. [Google Scholar] [CrossRef]
- Iswadi, D.; Wibisana, A. Jufrinaldi Modifikasi Pati Talas Kimpul (Xanthosoma sagittifolium) Untuk Bahan Pengental Makanan. J. Ilm. Tek. Kim. 2019, 3, 105–112. [Google Scholar]
- Angelina, V.L.; Sijabat, E.E.; Widjaja, A.C.; Rahayu, L.H. Studi Awal Pembuatan Bioplastik Dari Pati Kimpul (Xanthosoma sagittifolium L. Schott) Dengan Penambahan Linseed Oil Dan Sorbitol. Pros. Semin. Nas. Sains dan Teknol. 2019, 1, 29–34. [Google Scholar]
- Sipayung, H.; Hartiati, A.; Gunam, I.B. Pengaruh Konsentrasi Bahan Penguat Terhadap Karakteristik Komposit Bioplastik Pati Talas (Xanthosoma sagittifolium) Dan Kitosan. J. Rekayasa dan Manaj. Agroindustri 2022, 10, 34–43. [Google Scholar] [CrossRef]
- Putri, M.K.; Karyantina, M.; Suhartatik, N. Aktivitas Antimikrobia Edible Film Pati Kimpul (Xanthosma Sagittifolium) Dengan Variasi Jenis Dan Konsentrasi Ekstrak Jahe (Zingiber officinale). J. Teknol. Ind. Pertan. 2021, 15, 15–24. [Google Scholar]
- Mendes, T.D.C.; de FM França, C.; Petrucci, K.P.O.S.; Souza, C.S.; Santos, J.S.; Finger, F.L. Postharvest Responses of Tannia (Xanthosoma sagittifolium) Leaves to Mechanical Wounding. Aust. J. Crop. Sci. 2017, 11, 419–423. [Google Scholar] [CrossRef]
- Ajala, T.O.; Silva, B.O. The Design of Ibuprofen-Loaded Microbeads Using Polymers Obtained from Xanthosoma sagittifolium and Dillenia Indica. Polim. Med. 2020, 50, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Caxito, M.L.C.; Correia, R.R.; Gomes, A.C.C.; Justo, G.; Coelho, M.G.P.; Sakuragui, C.M.; Kuster, R.M.; Sabino, K.C.C. In Vitro Antileukemic Activity of Xanthosoma sagittifolium (Taioba) Leaf Extract. Evid.-Based Complementary Altern. Med. 2015, 2015, 384267. [Google Scholar] [CrossRef]
- Longjan, G.G.; Dehouche, Z. Nutrient Characterisation and Bioenergy Potential of Common Nigerian Food Wastes. Waste Manag. Res. 2018, 36, 426–435. [Google Scholar] [CrossRef]
- Farias, F.D.A.C.; de Souza Moretti, M.M.; Costa, M.S.; BordignonJunior, S.E.; Cavalcante, K.B.; Boscolo, M.; Gomes, E.; Franco, C.M.L.; da Silva, R. Structural and Physicochemical Characteristics of Taioba Starch in Comparison with Cassava Starch and Its Potential for Ethanol Production. Ind. Crops Prod. 2020, 157, 112825. [Google Scholar] [CrossRef]
- de Chavez, H.D.; Villavicencio, E.B.; Villancio, V.T.; Garcia, J.N.M.; Bulatao, M.J.G.; Villavicencio, M.L.H.; Bondad, J.J.B. Propagation Techniques for Rapid Establishment and Production of Cocoyam (Xanthosoma sagittifolium (L.) Schott). J. Int. Soc. Southeast Asian Agric. Sci. 2019, 25, 83–94. [Google Scholar]
- Husnarti. Analisis Usahatani Talas Kimpul di Nagari Durian Gadang Kecamatan Akabuluru Kabupaten Lima Puluh Kota. J. Pertan. UMSB 2017, 1, 1–7. [Google Scholar]
- Hidayat, S. The Study of Suweg (Amorphophallus paeoniifolius) and Other Undergrowth Species in Teak Plantation Forest of Temengeng, Blora, Indonesia. Biodiversitas 2019, 20, 37–42. [Google Scholar] [CrossRef]
- Pachas, A.N.A.; Sakanphet, S.; Soukkhy, O.; Lao, M.; Savathvong, S.; Newby, J.C.; Souliyasack, B.; Keoboualapha, B.; Dieters, M.J. Initial Spacing of Teak (Tectona grandis L.f.) in Northern Lao PDR: Impacts on the Growth of Teak and Companion Crops. For. Ecol. Manag. 2019, 435, 77–88. [Google Scholar] [CrossRef]
- Karimuna, L.; Ansi, A.; Marfi, W.E.; Wijayanto, T.; Hasanuddin, L. Growth and Yields of Two Varieties of Maize (Zea mays L.) Intercropped with Peanut (Arachys hypogaea L.) Applied by Bokashi plus Fertilizer between the Rows of Teak Trees Based Agroforestry System. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Raipur, India, 25–26 February 2022; Volume 951, p. 012041. [Google Scholar]
- Purnomo, D.; Budiastuti, M.T.S.; Setyaningrum, D. The Role of Soybean Agroforestry in Mitigating Climate Change in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Raipur, India, 25–26 February 2022; Volume 1016, p. 012024. [Google Scholar]
- Neupane, R.P.; Thapa, G.B. Impact of Agroforestry Intervention on Soil Fertility and Farm Income under the Subsistence Farming System of the Middle Hills, Nepal. Agric. Ecosyst. Environ. 2001, 84, 157–167. [Google Scholar] [CrossRef]
- Duffy, C.; Toth, G.G.; Hagan, R.P.O.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.C.H.; Spillane, C. Agroforestry Contributions to Smallholder Farmer Food Security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Rachmadyanto, B. Analisis Usahatani Ganyong Dan Permasalahannya di Desa Jatisari Kecamatan Tajinan Kabupaten Malang; Universitas Muhammadiyah Malang: Malang, Indonesia, 2011. [Google Scholar]
- Baluk, M.S.N. Analisis Pendapatan Usahatani Garut Dan Nilai Tambah Pati Garut Di Desa Waringinanom, Kecamatan Poncokusumo; Kabupaten Malang: Malang, Indonesia, 2021. [Google Scholar]
- Tatay, P.; Widiastuti, M.M.D.; Untari, U. Analisis Pendapatan Budidaya Dan Pengolahan Hasil Gembili (Dioscorea esculenta) Sebagai Sumber Pangan Alternatif Bagi Keluarga di Kampung Yanggandur. Musamus J. Agribus. 2018, 1, 32–40. [Google Scholar] [CrossRef]
- Hudiyani, I.; Purnaningsih, N.; Asngari, P.S. Hardjanto Persepsi Petani Terhadap Hutan Rakyat Pola Agroforestri Di Kabupaten Wonogiri, Provinsi Jawa Tengah. J. Penyul. 2017, 13, 64–78. [Google Scholar] [CrossRef]
- Hidayat, M.R. Kajian Pola Pertanian Dan Upaya Konservasi Di Dataran Tinggi Dieng Kecamatan Kejajar Kabupaten Wonosobo; Universitas Negeri Semarang: Semarang, Indonesia, 2015. [Google Scholar]
- Purnomo, A.S.; Laili, S.; Zayadi, H. Persepsi Masyarakat Tentang Agroforestri Di Desa Sumberejo Poncokusumo Malang. Biosaintropis 2022, 7, 9–14. [Google Scholar] [CrossRef]
- Suparwata, D.O. Pandangan Masyarakat Pinggiran Hutan Terhadap Program Pengembangan Agroforestri. J. Penelit. Sos. dan Ekon. Kehutan. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Susanti, Y.; Wulandari, C.; Kaskoyo, H.; Safe’i, R.; Yuwono, S.B. Persepsi Masyarakat Terhadap Pengelolaan Agroforestri Di Tahura Wan Abdul Rachman, Bandarlampung. J. Hutan Trop. 2021, 9, 472–487. [Google Scholar] [CrossRef]
- Ruhimat, I.S. Tingkat Motivasi Petani Dalam Penerapan Sistem Agroforestry. J. Penelit. Sos. dan Ekon. Kehutan. 2015, 12, 131–147. [Google Scholar] [CrossRef]
- Achmad, B.; Simon, H.; Diniyati, D.; Widyaningsih, T.S.; Agroforestry, B.P.T.; Km, J.C.B. Persepsi Petani Terhadap Pengelolaan Dan Fungsi Hutan Rakyat Di Kabupaten Ciamis. J. Bumi Lestari 2012, 12, 123–136. [Google Scholar]
- Fujiwara, T.; Awang, S.A.; Widayanti, W.T.; Septiana, R.M.; Bariatul, H.; Rahmat, M.; Suyanto, A.; Sato, N. Overcoming Vulnerability of Privately Owned Small-Scale Forest through Collective Management Unit Establishment: A Case Study of Gunung Kidul District, Yogyakarta in Indonesia. Int. J. Soc. For. 2011, 4, 95–120. [Google Scholar]
- Octavia, D.; Suharti, S.; Dharmawan, I.; Nugroho, H.Y.S.H.; Supriyanto, B.; Rohadi, D.; Njurumana, G.N.; Yeny, I.; Hani, A.; Mindawati, N. Mainstreaming Smart Agroforestry for Social Forestry Implementation to Support Sustainable Development Goals in Indonesia: A Review. Sustainability 2022, 14, 9313. [Google Scholar] [CrossRef]
- Bishaw, B.; Soolanayakanahally, R.; Karki, U.; Hagan, E. Agroforestry for Sustainable Production and Resilient Landscapes. Agrofor. Syst. 2022, 96, 447–451. [Google Scholar] [CrossRef]
- Mandasari, P.A.; Adim, M.; Aisjah, S.; Supriyadi, S.; Murniyanto, E. The Capacity of Agroforestry and Food Crop System for C Stock and Sequestration (Case Study on Saobi Island Madura). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Raipur, India, 25–26 February 2022; Volume 1005, p. 012011. [Google Scholar]
- Imron, M.A.; Campera, M.; al Bihad, D.; Rachmawati, F.D.; Nugroho, F.E.; Budiadi, B.; Wianti, K.F.; Suprapto, E.; Nijman, V.; Nekaris, K.A.I. Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia. Biology 2022, 11, 310. [Google Scholar] [CrossRef]
- Stewart, H.T.L.; Race, D.H.; Rohadi, D.; Schmidt, D.M. Growth and Profitability of Smallholder Sengon and Teak Plantations in the Pati District, Indonesia. For. Policy Econ. 2021, 130, 102539. [Google Scholar] [CrossRef]
- Khasanah, N.; Perdana, A.; Rahmanullah, A.; Manurung, G.; Roshetko, J.M.; van Noordwijk, M. Intercropping Teak (Tectona grandis L.f.) and Maize (Zea mays): Bioeconomic Trade-off Analysis of Agroforestry Management Practices in Gunungkidul, West Java. Agrofor. Syst. 2015, 89, 1019–1033. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus Farm Mosaic Systems–Comparing Land-Use Efficiency, Economic Returns and Risks under Climate Change Effects. Sci. Total Environ. 2017, 587, 22–35. [Google Scholar] [CrossRef]
- Hermudananto, H.; Permadi, D.B.; Septiana, R.M.; Riyanto, S.; Pratama, A.A. Adoption of Agroforestry-Porang Model for Land Utilization under Teak Stands. J. Pengabdi. Kpd. Masy. (Indones. J. Community Engagem.) 2019, 5, 416–436. [Google Scholar] [CrossRef]
- Prehaten, D.; Hardiwinoto, S.; Naâ, M.; Supriyo, H.; Widiyatno, W.; Rodiana, D. Productivity of Arrowroots and Taro Grown under Superior Teak Clones with Several Levels of Stand Density. Biosaintifika J. Biol. Biol. Educ. 2021, 13, 51–57. [Google Scholar] [CrossRef]
- Rohmayanto, Y.; Nurfatriani, F.; Kurniawan, A.S. Skala Usaha Ekonomis Perhutanan Sosial: Studi Komparasi Pada Agroforestry Dan Ekowisata Di Yogyakarta Dan Nusa Tenggara Barat. J. Penelit. Sos. dan Ekon. Kehutan. 2019, 16, 55–80. [Google Scholar]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding Alternatives to Swidden Agriculture: Does Agroforestry Improve Livelihood Options and Reduce Pressure on Existing Forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef]
- Saefudin; Widiyono, W.; Hidayati, N.; Syarif, F.; Wawo, A.H.; Setyowati, N.; Juhaeti, T.; Rini, D.S. Zingiberaceae Utilization from East Banyumas Production Forest as Natural Edible Additives. In Proceedings of the SATREPS Conference, Bangkok, Thailand, 9 December 2021; Volume 3, pp. 19–29. [Google Scholar]
- Oktalina, S.N.; Awang, S.A.; Hartono, S. Strategi Petani Hutan Rakyat Dan Kontribusinya Terhadap Penghidupan Di Kabupaten Gunung Kidul. J. Kawistara 2015, 5, 221–328. [Google Scholar]
- Kurniasih, H.; Ford, R.M.; Keenan, R.J.; King, B. The Evolution of Community Forestry through the Growth of Interlinked Community Institutions in Java, Indonesia. World Dev. 2021, 139, 105319. [Google Scholar] [CrossRef]
- Purnomo, P.; Daryono, B.S.; Rugayah, R.; Sumardi, I. Studi Etnobotani dioscorea spp. (Dioscoreaceae) Dan Kearifan Budaya Lokal Masyarakat Di Sekitar Hutan Wonosadi Gunung Kidul Yogyakarta. J. Nat. Indones. 2013, 14, 191. [Google Scholar] [CrossRef]
- Balai KPH Yogyakarta. Rencana Pembangunan Jangka Panjang (RPJP) Balai Kesatuan Pengelolaan Hutan Yogyakarta Tahun 2014–2019; Dinas Kehutanan Provinsi Daerah Istimewa Yogyakarta: Yogyakarta, Indonesia, 2013. [Google Scholar]
- Roshetko, J.M.; Rohadi, D.; Perdana, A.; Sabastian, G.; Nuryartono, N.; Pramono, A.A.; Widyani, N.; Manalu, P.; Fauzi, M.A.; Purnomo, S. Teak Systems’ Contribution to Rural Development in Indonesia. In Proceedings of the World Teak Conference 2013, Bangkok, Thailand, 24–27 March 2013. [Google Scholar]
- Murniyanto, E.; Sugito, Y.; Guritno, B.; Handayanto, E. Sagittifolium Di Bawah Tegakan Hutan Produksi Jati: Penunjang Ketahanan Pangan. In Proceedings of the Reformasi Pertanian Terintegrasi Menuju Kedaulatan Pangan, Jawa Timur, Indonesia, 10 October 2011; pp. 1–8. [Google Scholar]
- Salako, F.K.; Lal, R.; Swift, M.J. Intercropping Oil Palm (Elaeis guineensis) with Cocoyam (Xanthosoma sagittifolium) on Windrows and Non-Windrows in Southern Nigeria. J. Sustain. Agric. 1995, 6, 47–60. [Google Scholar] [CrossRef]
- Valenzuela, H.R. Shade Tolerance and Photosynthesis of Cocoyam (Xanthosoma sagittifolium (L.) Schott). Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1990; p. 91. [Google Scholar]
- Valenzuela, H.R.; Schaffer, B.; Stephen, K.O. Shade and Nitrogen Influence Gas Exchange and Growth of Cocoyam (Xanthosoma sagittifolium). J. Am. Soc. Hortic. Sci. 1990, 115, 1014–1018. [Google Scholar] [CrossRef]
- Asante, M.O.O.; Ahiakpa, J.K.; Amoatey, C.; Adjei-Nsiah, S. Effect of Shade and Level of Fertilizer Application on Nutrient Uptake and Dry Matter Partitioning in Cocoyam (Xanthosoma sagittifolium L.). J. Plant Nutr. 2017, 40, 2312–2325. [Google Scholar] [CrossRef]
- Schaffer, B.; O’hair, S.K. Regular Paper Net CO2 Assimilation of Taro and Cocoyam as Affected by Shading and Leaf Age. Photosynth. Res. 1987, 11, 245–251. [Google Scholar] [CrossRef]
- Sugiyarto, S.; Permatasari, A.; Anggarwulan, E. Distribusi, Populasi Dan Karakter Morfologi Tanaman Kimpul (Xanthosoma sagittifolium (L.) Schott) Umbi Kuning Di Lereng Gunung Merapi Kabupaten Klaten. In Proceedings of the Prosiding Seminar Biologi, Jawa Tengah, Indonesia, 30 October 2012; Volume 9. [Google Scholar]
- Neupane, R.P.; Sharma, K.R.; Thapa, G.B. Adoption of Agroforestry in the Hills of Nepal: A Logistic Regression Analysis. Agric. Syst. 2002, 72, 177–196. [Google Scholar] [CrossRef]
- Wijaya, L.A.; Setiyanto, N.A. Perhitungan Perkiraan Jumlah Hasil Kayu Jati Balok Dengan Menggunakan Algoritma Genetika Di UD. Wahyu Jaya. Udinus Repos. 2013, pp. 1–9. Available online: http://eprints.dinus.ac.id/12630/1/jurnal_12777.pdf (accessed on 23 July 2022).
- Krithikadatta, J. Normal Distribution. J. Conserv. Dent. 2014, 17, 96–97. [Google Scholar] [CrossRef]
- Fusch, P.I.; Ness, L.R. Are We There Yet? Data Saturation in Qualitative Research. Walden Fac. Staff Publ. 2015, 20, 1408–1416. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Ong, C.K.; Kho, R.M. A Framework for Quantifying the Various Effects of Tree–Crop Interactions. In Tree-Crop Interactions, 2nd ed.; CAB International: Wallingford, UK, 2015. [Google Scholar]
- Ejara, E.; Bakala, N.; Taye, T.; Shimalis, Y. Regular Article Determination of Appropriate Maize Haricot Bean Arrangement in Moisture Stress Areas of Borana, Southern Ethiopia. J. Ecobiotechnology 2017, 9, 18–23. [Google Scholar]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Soekartawi. Agribisnis: Teori Dan Aplikasinya; PT.; Rajagrapindo Persada: Jakarta, Indonesia, 2013. [Google Scholar]
- Rahim, A.; Supardi, S.; Hastuti, D.R.D. Model Analisis Ekonomi Pertanian; Universitas Negeri Makasar Press: Makasar, Indonesia, 2012. [Google Scholar]
- Anggarwulan, E.; Solichatun; Mudyantini, W. Karakter Fisiologi Kimpul (Xanthosoma sagittifolium m (L.) Schott) Pada Variasi Naungan Dan Ketersediaan Air. Biodiversitas 2008, 9, 264–268. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Drought Effects on Root and Tuber Production: A Meta-Analysis. Agric. Water Manag. 2016, 176, 122–131. [Google Scholar] [CrossRef]
- Bragato, G.; Fornasier, F.; Bagi, I.; Egli, S.; Marjanović, Ž. Soil Parameters Explain Short-Distance Variation in Production of Tuber Aestivum Vittad. in an Oak Plantation in the Central-Northern Part of the Great Hungarian Plain (Jászság Region, Hungary). For. Ecol. Manag. 2021, 479, 118578. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Nie, B.; Song, B.; Du, P.; Liu, S.; Li, L.; Zhao, Z. Nitrogen Management Can Inhibit or Induce the Sprouting of Potato Tubers: Consequences of Regulation Tuberization. Postharvest Biol. Technol. 2021, 183, 111722. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Ojeniyii, S.O. The Effect of Three Years of Tillage and Poultry Manure Application on Soil and Plant Nutrient Composition, Growth and Yield of Cocoyam. Exp. Agric. 2015, 52, 466–476. [Google Scholar] [CrossRef]
- Bayala, J.; Sanou, J.; Teklehaimanot, Z.; Ouedraogo, S.J.; Kalinganire, A.; Coe, R.; Noordwijk, M. van Advances in Knowledge of Processes in Soil–Tree–Crop Interactions in Parkland Systems in the West African Sahel: A Review. Agric. Ecosyst. Environ. 2015, 205, 25–35. [Google Scholar] [CrossRef]
- Hakim, A.R.; Soelaksini, L.D.; Asyim RA, M. Suplai Dosis P Dan K Terhadap Laju Pertumbuhan Dan Produksi Tanaman Ubi Jalar (Ipomea batatas L.) Varietas Antin 3. Agriprima J. Appl. Agric. Sci. 2018, 2, 44–54. [Google Scholar] [CrossRef]
- Kwadzo, M.; Quayson, E. Factors Influencing Adoption of Integrated Soil Fertility Management Technologies by Smallholder Farmers in Ghana. Heliyon 2021, 7, e07589. [Google Scholar] [CrossRef]
- Kaba, J.S.; Yamoah, F.A.; Acquaye, A. Towards Sustainable Agroforestry Management: Harnessing the Nutritional Soil Value through Cocoa Mix Waste. Waste Manag. 2021, 124, 264–272. [Google Scholar] [CrossRef]
- Pachas, A.N.A.; Sakanphet, S.; Midgley, S.; Dieters, M. Teak (Tectona grandis. L.f.) Silviculture and Research: Applications for Smallholders in Lao PDR. Aust. For. 2019, 82, 94–105. [Google Scholar] [CrossRef]
- Kiswanto; Indradewa, D.; Putra, E.T.S. Pertumbuhan Dan Hasil Jagung (Zea mays L.), Kacang Tanah (Arachis hypogaea L.), Dan Jahe (Zingiber officinale Var. Officinale) Pada Sistem Agroforestri Jati di Zona Ledok Wonosari, Gunung Kidul. Vegetalika 2012, 1, 78–94. [Google Scholar]
- Adepoju, A.A.; Awodunmuyila, D.J. Economics of Cocoyam Production and Marketing in Ekiti East Local Government Area, Ekiti State, Nigeria.Pdf. Res. J. Appl. Sci. 2008, 3, 95–98. [Google Scholar]
- Azeez, A.A.; Madukwe, O.M. Cocoyam Production and Economic Status of Farming Households in Abia State, South-East, Nigeria. J. Agric. Soc. Sci. 2010, 6, 83–86. [Google Scholar]
- Sagoe, R.; Haleegoah, J.; Marfo, K.A. Economic Evaluation of Cocoyam (Xanthosoma sp.) and Maize (Zea mays) in a Mixed Cropping System. Ghana J. Agric. Sci. 2006, 39, 171–179. [Google Scholar] [CrossRef]
- Soekartawi. Analisis Usahatani; UI Press: Jakarta, Indonesia, 2002. [Google Scholar]
- Khasanah, N. Analisis Usahatani Ubi Kayu Monokultur Dan Tumpangsari Di Kecamatan Karanglewas Kabupaten Banyumas (Tesis); Sebelas Maret Surakarta; UNS (Sebelas Maret University): Kota Surakarta, Jawa Tengah, Indonesia, 2015. [Google Scholar]
- Ramadhani, S. Analisis Komparasi Kelayakan Usahatani Ubi Kayu (Manihot Esculenta Crantz) Dan Jagung (Zea mays L.) (Studi Kasus: Desa Kota Tengah, Kecamatan Dolok Masihul, Kabupaten Serdang Bedagai). Bachelor’s Thesis, Universitas Sumatra Utara, Sumatra Utara, Indonesia, 2018. [Google Scholar]
- Thamrin, M.; Mardhiyah, A.; Marpaung, S.E. Analisis Usahatani Ubi Kayu (Manihot Utilissima). Agrium Jurnal Ilmu Pertanian 2015, 18, 57–64. [Google Scholar]
- Prasetiaswati, N.; Radjit, B.S. Kelayakan Usahatani Ubi Jalar Dengan Penerapan Teknologi Pengguludan di Lahan Kering Masam Di Lampung. J. Penelit. Tanam. Pangan 2015, 31, 188–194. [Google Scholar]
- Faidah, U.; Subekti, E.; Awami, S.N. Faktor-Faktor Yang Mempengaruhi Pendapatan Usahatani Ubi Jalar (Ipomoea batatas L.) (Studi Kasus Pada Gapoktan “Nusa Bhakti” Desa Adinuso Kecamatan Reban Kabupaten Batang). MEDIAGRO 2015, 11, 60–68. [Google Scholar]
- Nkeme, K.K.; Ekanem, J.T.; Nse, V.A. Capacity Building Needs of Small-Holder Cocoyam (Xanthosoma sagittifoliuu) Farmers in Selected Rural Communities of Akwa Ibom State, Nigeria. J. Agric. Ext. 2021, 25, 32–42. [Google Scholar] [CrossRef]
- Bammite, D.; Matthews, P.; Dagon, D.; Agbogan, A.; Odah, K.; Dansi, A.; Tozo, K. Constraints to Production and Preferred Traits for Taro (Colocasia esculenta) and New Cocoyam (Xanthosoma mafaffa) in Togo, West Africa. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13389–13407. [Google Scholar] [CrossRef]
- Suhartono; Fauziyah, E.; Widiyanto, A. The Efficiency of Dryland Farming in Panggang Forest KPH Yogyakarta. E3S Web Conf. 2021, 306, 02019. [Google Scholar] [CrossRef]
- Anikwe, M.C.N.; Ezeaku, P.I.; Onyia, M.A.N. Tillage and Plastic Mulch Effects on Soil Properties and Growth and Yield of Cocoyam (Colocasia esculenta) on an Ultisol in Southeastern Nigeria. Soil Tillage Res. 2007, 93, 2640272. [Google Scholar] [CrossRef]
- Heywood, V.P.; Hunter, D.; Jarvis, A.S. Underutilized Species and Climate Change: Current Status and Outlook. Crop. Adapt. Clim. Change 2011, 26, 507–521. [Google Scholar]
- Owusu-Darko, A.; Omenyo, E.L.; Paterson, P. Cocoyam (Corms and Cormels) An Underexploited Food and Feed Resource. J. Agric. Chem. Environ. 2014, 31, 22–29. [Google Scholar] [CrossRef]
- Amadi, C.O.; Onyeka, J.; Chukwu, G.O.; Okoye, B.C.; Ezeji, L.; Ezigbo, E.C. Evaluation of Exotic Genotypes of Taro (Colocasia esculenta) in Nigeria. Niger. Agric. J. 2015, 46, 36–42. [Google Scholar]
- Acheampong, E.; Insaidoo, T.F.G.; Ros-Tonen, M.A.F. Management of Ghana’s Modified Taungya System: Challenges and Strategies for Improvement. Agrofor. Syst. 2016, 90, 659–674. [Google Scholar] [CrossRef]
- Pierotti, R.S.; Friedson-Ridenour, S.; Olayiwola, O. Women Farm What They Can Manage: How Time Constraints Affect the Quantity and Quality of Labor for Married Women’s Agricultural Production in Southwestern Nigeria. World Dev. 2022, 152, 105800. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.T. Intercropping Taro and Bambara Groundnut. Sustain. Agric. Rev. 2014, 13, 275–290. [Google Scholar]
- Talwana, H.L.; Tumuhimbise, R.; Osiru, D.S.O. Comparative Performance of Wetland Taro Grown in Upland Production System as Influenced by Different Plant Densities and Seedbed Preparation in Uganda. J. Root Crops 2010, 36, 65–71. [Google Scholar]
- Weerarathne, L.V.Y.; Marambe, B.; Chauhan, B.S. Intercropping as an Effective Component of Integrated Weed Management in Tropical Root and Tuber Crops: A Review. Crop. Prot. 2017, 95, 89–100. [Google Scholar] [CrossRef]
- Oshunsanya, S.O. Alternative Method of Reducing Soil Loss Due to Harvesting of Sweet Potato: A Case Study of Low Input Agriculture in Nigeria. Soil Tillage Res. 2016, 158, 49–56. [Google Scholar] [CrossRef]
- Sinclair, F.L. A General Classification of Agroforestry Practice. Agrofor. Syst. 1999, 46, 161–180. [Google Scholar] [CrossRef]
Variable | Open Land | Teak Stand (12 Years Old) | Teak Stand (42 Years Old) |
---|---|---|---|
Microclimate Properties | |||
Relative Light Intensity (%) | 100.00 | 48.30 | 62.50 |
Daytime Temperature (°C) | 31.73 | 27.83 | 28.10 |
Daytime Relative Humidity (%) | 59.07 | 70.53 | 69.50 |
Soil Properties | |||
Sand (%) | 7.00 | 6.00 | 5.00 |
Silt (%) | 14.00 | 9.00 | 7.00 |
Clay (%) | 79.00 | 85.00 | 86.00 |
pH H2O | 7.40 (neutral) | 6.80 (neutral) | 6.80 (neutral) |
C-Organic Matter (%) | 2.24 (medium) | 2.31 (medium) | 2.05 (medium) |
Total N (%) | 0.23 (medium) | 0.23 (medium) | 0.21 (medium) |
C/N | 10 (low) | 10 (low) | 10 (low) |
P2O5 HCl 25% (mg/100 g) | 15.12 (low) | 13.65 (very low) | 10.09 (very low) |
P2O5 Olsen (ppm) | 6.6 (very low) | 3.8 (very low) | 4.3 (very low) |
K2O (mg/100 g) | 12.72 (low) | 12.68 (low) | 9.78 (very low) |
Ca (cmol (+)/kg) | 50.40 (very high) | 40.60 (very high) | 35.34 (very high) |
Mg (cmol (+)/kg) | 1.94 (medium) | 2.30 (high) | 2.16 (high) |
Na (cmol (+)/kg) | 0.12 (low) | 0.10 (low) | 0.13 (low) |
CEC (cmol (+)/kg) | 44.10 (very high) | 42.70 (very high) | 33.98 (very high) |
Number | Description | Cocoyam Monoculture | Intercropping with Teak Stand (12 Years Old) | Intercropping with Teak Stand (42 Years Old) |
---|---|---|---|---|
1 | Production Costs | |||
-Explicit Costs (IDR) | ||||
Herbicides | 400,000 | 200,000 | 200,000 | |
-Implicit Costs (IDR) | ||||
Rent for Land | 2,000,000 | 1,200,000 | 1,200,000 | |
Seeds | 4,000,000 | 4,000,000 | 4,000,000 | |
Family Labor | 9,500,000 | 5,000,000 | 5,000,000 | |
2 | Total Costs (IDR) | 15,900,000 | 10,400,000 | 10,400,000 |
3 | Production (kg) | 5670 | 2640 | 2760 |
4 | Price/kg (IDR) | 3000 | 3000 | 3000 |
5 | Revenue (IDR) | 17,010,000 | 7,920,000 | 8,280,000 |
6 | Income (IDR) | 16,610,000 | 7,720,000 | 8,080,000 |
7 | Profit (IDR) | 1,110,000 | −2,480,000 | −2,120,000 |
No. | Farming Feasibility Criteria | Cocoyam Monoculture | Intercropping with Teak Stand (12 Years Old) | Intercropping with Teak Stand (42 Years Old) |
---|---|---|---|---|
1 | R/C | 1.07 | 0.76 | 0.80 |
2 | Labor Productivity (IDR/working day) | 55,842 | 13,263 | 15,158 |
Number | Characteristics of Respondents | Correlation with Farmers’ Perceptions | ||
---|---|---|---|---|
Correlation Coefficient | Sig. (2-Tailed) | Alpha | ||
1 | Age (years) | 0.335 | 0.71 | 0.05 |
2 | Gender | −0.470 ** | 0.09 | 0.05 |
3 | Length of Stay in Village (years) | 0.167 | 0.370 | 0.01 |
4 | Education (years) | 0.081 | 0.671 | 0.05 |
5 | Main Job | 0.019 | 0.919 | 0.05 |
6 | Side Job | 0.170 | 0.370 | 0.05 |
7 | Farming Experience (years) | 0.290 | 0.120 | 0.05 |
8 | Number of Family Members (person) | −0.394 * | 0.031 | 0.05 |
9 | Land Ownership (ha) | −0.230 | 0.906 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winara, A.; Fauziyah, E.; Suhartono; Widiyanto, A.; Sanudin; Sudomo, A.; Siarudin, M.; Hani, A.; Indrajaya, Y.; Achmad, B.; et al. Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security. Sustainability 2022, 14, 11981. https://doi.org/10.3390/su141911981
Winara A, Fauziyah E, Suhartono, Widiyanto A, Sanudin, Sudomo A, Siarudin M, Hani A, Indrajaya Y, Achmad B, et al. Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security. Sustainability. 2022; 14(19):11981. https://doi.org/10.3390/su141911981
Chicago/Turabian StyleWinara, Aji, Eva Fauziyah, Suhartono, Ary Widiyanto, Sanudin, Aris Sudomo, Mohamad Siarudin, Aditya Hani, Yonky Indrajaya, Budiman Achmad, and et al. 2022. "Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security" Sustainability 14, no. 19: 11981. https://doi.org/10.3390/su141911981
APA StyleWinara, A., Fauziyah, E., Suhartono, Widiyanto, A., Sanudin, Sudomo, A., Siarudin, M., Hani, A., Indrajaya, Y., Achmad, B., Diniyati, D., Handayani, W., Suhaendah, E., Maharani, D., Swestiani, D., Murniati, Widyaningsih, T. S., Sulistiadi, H. B. S., Azmi, C., ... Diana, M. (2022). Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security. Sustainability, 14(19), 11981. https://doi.org/10.3390/su141911981