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Abstract: With the march of global urbanization, there are looming problems including environmental
degradation and remediation all over the world. In this case, urban green development is the key to
overcoming climate crisis, biodiversity loss and pollution. In this paper, a three-stage DEA model
was employed to study the urban green development efficiency (GDE), with cities in the Yangtze
River Delta (YRD) as the object. In the study, the regional economic foundation, urbanization level,
industrial structure and government planning were used as external environmental variables, and
the impact of objective external environmental factors was tested empirically, thereby eliminating the
adverse environmental impact and statistical noise to obtain more truthful GDE. According to the
results, first, the influence of external environmental factors and stochastic disturbance on GDE was
effectively removed by virtue of the three-stage DEA model, and the GDE of the YRD was measured
in a true and objective manner. The GDE of the YRD in Stage III was notably higher than that in
Stage I since the GDE in Stage I was underestimated under the influence of objective environmental
variables. Second, the GDE level showed heterogeneity in different cities, which behaved better in
coastal and southeastern regions than in central, western and northern regions. Third, regarding the
impact of external environmental variables, the GDE was enhanced by increasing the proportion of
the tertiary industry and the green area of built districts but weakened when the area of built districts
(ABD) reflecting urban construction was expanded. The index gross regional product (GRP) reflects
local economic development level, the impact of which on GDE was not determined in this paper.
As a consequence, in the process of urban development, it is suggested to focus on the innovation
and application of green technology, upgrade the industrial structure, cultivate green talents, and
formulate reasonable green transformation policies.

Keywords: urban green development efficiency; Yangtze River Delta; three-stage DEA analysis;
China

1. Introduction

As the global economy develops, the scale of cities has continued to expand and the
urban population has risen sharply, impacting the environment in many aspects. The area
of cities only accounts for 3% of the world’s land, and cities contribute 80% of the gross
world product (GWP) at the expense of 70% of the world’s resources and 75% of the global
greenhouse gas emissions [1,2]. With global urbanization, human beings consumed natural
resources and energy over the past 100 years, reaching an unprecedented level in human
history. Accordingly, resource consumption and greenhouse gas emissions have sharply
deteriorated the global ecological environment. Moreover, urban environmental problems
are no longer limited to cities, but environmental problems involving all regions and all
countries. As Anwarul K. Chowdhury, the Chairman of the Global Forum on Human
Settlements (GFHS) and former Deputy Secretary-General and High Representative of the
United Nations, said, “The world is undergoing a process of urbanization, and a new urban
age has come. It is conceivable that the global urbanization level will be as high as 70% in
the next 40 years. Sustainable urban development is one of the most serious challenges for
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human society in the 21st century. As a growing number of people settle in cities, cities will
face the greatest challenges in the world at all levels, so concerted efforts and sincere coop-
eration are required from all over the world”. On 18 November 2021, the United Nations
Environment Program (UNEP) and UN-Habitat jointly released the Global Environment
Outlook for Cities report, calling for urgent action to achieve net-zero recycling cities that
are resilient, sustainable, inclusive and equitable, thus providing feasible solutions for
the construction of environmentally friendly and green cities. Urban green development
is the key to overcoming climate crisis, biodiversity loss and pollution, and it is also an
important way to build urban ecological civilization and promote economic transformation
by improving the green development level [3]. Not only is green development an idea
describing a green environment from all aspects, but it also puts a premium on coordinated
economic, social and environmental development, which is a comprehensive model aiming
at efficiency, development and sustainability [4]. The economic vitality, innovation and
competitiveness serving high-quality urban development are closely linked to green devel-
opment. In the absence of green development, economic development will lose driving
force and vitality, and similarly, there will be a lack of foundation and support concerning
innovation and competitiveness [5].

The green development level can be measured by two main methods including the
comprehensive index system and green development efficiency (GDE). For the first method,
the regional green development status is evaluated by constructing an index system. Zhang
et al. (2021) established an index system to measure the GDE in the Yangtze River Delta
(YRD) on the strength of four dimensions: social development, economic development,
energy consumption and ecological environment. Yang et al. (2019) evaluated the green
development of resource-based cities in China and found that the green development
level in the east of China was higher than that in the west [6]. The second method is
usually realized by parametric stochastic frontier analysis (SFA) and nonparametric data
envelopment analysis (DEA)) [7]. SFA is commonly applied to a single output scenario and
requires the estimation of specific functional forms, but incorrect results may be caused
by an incorrect functional form [8,9]. As a linear programming technique, DEA is widely
used in the evaluation of the relative efficiency of homogeneous decision-making units,
especially for multiple input-output scenarios [10–12]. Hence, there are an increasing
number of scholars using DEA and its extended models to evaluate regional GDE. For
instance, Wu et al. (2020) analyzed the GDE of 30 provinces in China in 2015 using a
multi-objective DEA model from the perspective of resource allocation [13]. According to
the annual cross-sectional data of different regions, Yang et al. (2015) employed the super-
efficiency DEA model and the Malmquist index model to calculate the GDE of 31 regions
in China during 2008–2012 [14].

Notwithstanding, environmental variables and statistical noise bring about consid-
erable impacts in the traditional DEA, so the estimation of results may be biased and
inaccurate [15]. In order to solve this problem, Fried et al. proposed a three-stage DEA
model, that is, after calculating the efficiency value with the traditional DEA, the changes
in the environment, statistical noise and management efficiency were analyzed with the
help of the SFA model, the original input variables were adjusted, and then a second DEA
calculation was performed to obtain the real efficiency value [16,17]. The three-stage DEA
model has been applied by many scholars to calculate the efficiency of different subjects
in different fields, and the results obtained are superior to those obtained through the
traditional DEA model [18–20]. At present, there is still little information on GDE at the
city level in a region since GDE is calculated using the traditional DEA in most of the
existing studies.

To fill this gap, in this paper, based on the three-stage DEA model, cities in the YRD
were selected as the object of the study. In the study, the regional economic foundation,
urbanization level, industrial structure and government planning were served as external
environmental variables, and the impact of objective external environmental factors was
tested empirically, thereby eliminating environmental factors and statistical noise to obtain
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a more truthful GDE, as well as policy suggestions for improving the urban environment.
The other parts of the paper are organized as follows: The second part contains the scope
of the study, variable selection and description, and computation model description. The
GDE calculation is conducted in the third part, and further discussion on the results is
revealed in the fourth part. Finally, the conclusions are summarized, and some suggestions
and implications for the sustainable ecological development of cities in the future are
put forward.

2. Materials and Methods
2.1. Scope of Study

China is a developing country with the largest energy consumption and carbon dioxide
emissions in the world, where sustainable urban development faces severe challenges.
Benefited from the policy dividends of reform and opening up and the high attention of
the State, the YRD is one of the regions with the most active economic development, the
highest degree of openness, and the strongest innovation capability in China, which holds
a pivotal strategic position in the national modernization and all-round opening-up pattern.
According to the Outline of the Integrated Regional Development of the YRD approved
by the State Council in 2019, the YRD covers an area of 358,000 km2, including Shanghai
municipality and three provinces, i.e., Jiangsu, Zhejiang, and Anhui provinces, as shown
in Figure 1.
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2.2. Variable Selection and Description

The GDE indexes shall be selected in accordance with the connotation of GDE. Based on
previous studies, in this paper, GDE was defined as a fact that the maximum economic and
social benefits are obtained with the minimum factor input and the minimum environmental
output, so as to achieve a win–win situation of “economy–society–ecology”. Comparatively,
this definition better reflects the connotation of the social level than the previous definitions,
which is completely consistent with the concept of urban green development.

For input indexes, the general input factors mainly include capital, labor, resources and
technology [15,18]. Referring to the multilayer evaluation indexes on urban development
systems of Feng and Xu (1999), Su et al. (2019), Zhang et al. (2021) [21–23], the investment
in fixed assets (IFA) represents the capital input factor, the employment in the management
of water conservancy and environment (EMWCE) indicates the elements of labor input,
the annual electricity consumption (AEC) of the entire society stands for the input of
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energy factors, and the expenditure for education, science and technology (EEST) denotes
the technical input factors. According to relevant study results and the availability of
data, the total retail sales of consumer goods (TRSCG) were used as the desired output to
represent the economic and social levels of a city. The volume of industrial wastewater
discharged (VIWD) and volume of industry sulfur dioxide produced (VISDP) were selected
to comprehensively investigate the environmental pollution factors.

Environmental variables in this study refer to factors that can affect GDE but cannot
be controlled or changed by samples subjectively [24,25]. In this paper, the indexes gross
regional product (GRP) [26], area of built districts (ABD) [22], the tertiary industry as a
percentage of GRP (TIP) [27] and green covered area of complete area (GCA) [28] were
selected as the environmental variables to indicate the economic development, urban
construction, industrial structure and government planning, respectively.

With 41 cities in the YRD as the object of the study, the GDE there during 2009–2018
was evaluated, and corresponding data were obtained from the China Statistical Yearbook,
China City Statistical Yearbook and official websites of the Bureau of Statistics of various
cities. Table 1 presents the evaluation index system, where four inputs, three desirable
outputs and four environmental variables are listed, and descriptive statistics of the selected
data are exhibited in Table 2.

Table 1. Evaluation index system of GDE.

Variable No. Index Unit

Input Variables

I1 AEC 10,000 kwh
I2 IFA 10,000 yuan
I3 EEST 10,000 yuan
I4 EMWCE person

Output Variables
O1 VIWD 10,000 tons
O2 VISDP ton
O3 TRSCG 10,000 yuan

Environmental Variables

E1 GRP 10,000 yuan
E2 ABD sq. km
E3 TIP %
E4 GCA hectare

Source: Authors’ work.

Table 2. Descriptive statistics.

Variable Number Mean Value Standard
Deviation Min. Max.

I1 410 1,828,000 3,031,000 67,166 31,820,000
I2 410 21,730,000 18,060,000 2,352,000 112,400,000
I3 410 1,022,000 1,572,000 64,104 13,440,000
I4 410 9873 12,761 455 93,600
O1 410 11,624 13,123 486 80,468
O2 410 43,067 45,387 1407 496,377
O3 410 13,540,000 16,900,000 791,784 126,700,000
E1 410 35,780,000 44,200,000 1,331,000 326,800,000
E2 410 176.5 186.4 31 1238
E3 410 0.42 0.0825 0.234 0.793
E4 410 7925 10,934 1256 139,427

Source: Authors’ work.

For indexes of desirable output, environmental factors are always considered unde-
sirable outputs [7]. Given that the outputs of the DEA model are generally desirable, it is
unreasonable to select the three-stage DEA method when environmental pollutants are
undesirable outputs. Some scholars treat undesirable outputs as inputs [29,30], which
only requires information on whether the data should be minimized or maximized but
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cannot reflect the real production process. Therefore, the above-required indexes should
be converted accordingly. The data conversion function processing method is an ideal
efficiency evaluation method proposed by Seiford and Zhu (2002), containing negative
output, linear and nonlinear data conversion and other types. In this study, the method
was specially selected for data conversion of the environmental pollutant indexes. The
specific formula is Yi = −Yi + D, where D represents a very large vector to ensure that all
converted output data are positive. Referring to the existing study results, the C value was
set to 1.1 times the maximum value in the sample area.

Under the application conditions of the DEA model, the pollution emission index was
transformed and processed. The industrial wastewater and sulfur dioxide emissions were
reduced to a comprehensive index, and the pollution index was converted by the data
conversion function processing method. The linear data conversion method for reinforcing
the environmental pollutants after conversion can reasonably solve the problem of the
undesirable outputs in the three-stage DEA model for efficiency evaluation, effectively
maintaining the convex and linear relationship.

2.3. Computation Model Description

Leveraging the three-stage DEA model, the true GDE was calculated as per the
steps below:

Stage I: The traditional DEA model was applied. Charnes, Cooper and Rhodes
introduced a DEA method, also called the CCR model, to calculate the relative effectiveness
of decision-making units (DMUs) under constant returns to scale [12]. Later, Banker,
Charnes and Cooper decomposed the comprehensive technical efficiency in the CCR model
into PTE (pure technical efficiency) and SE (scale efficiency) which have been used to
measure the effectiveness of DMUs under variable returns to scale, also known as the BCC
model [31]. This paper employed the BCC model to estimate the initial effectiveness of
41 cities in the study area, and the calculation process is expressed as follows:

min
θ,λ

=
[
θ −

(
ets− + ets+

)]
(1)

n

∑
k=1

λiyrk − s+ = y0k (2)

n

∑
k=1

λiyrk + s− = θx0k (3)

where i = 1, 2, . . . , m and r = 1, 2, . . . , s. n indicates the number of measuring units,
m represents the number of input indexes and s denotes the number of output indexes.
xik (i = 1, 2 , . . . , m) refers to the ith input element of the kth measuring unit,
yrk (r = 1, 2 , . . . , s) stands for the rth output element of the kth measuring unit and θ
indicates the valid value of DMUs. If θ = 1 and s+ = s− = 0, the measuring unit is of
DEA efficiency; if θ = 1 and s+ 6= s− 6= 0, the measuring unit is of weak DEA efficiency;
if θ < 1, the measuring unit is of non-DEA efficiency.

Stage II: In the second stage, the input slacks in Stage I were decomposed with the
SFA model for eliminating the influence of uncontrollable effects on efficiency. It was a
regression equation with input slacks as the explained variable and environmental variables
as the explanatory variable [32]. Input slack refers to the difference between the input of the
ith measuring unit and the optimal efficiency of a certain actual input in Stage I. According
to the study by Fried et al. (2002), the input slacks in Stage I was decomposed into three
components including the influence of environmental effects, managerial inefficiencies,
and stochastic disturbance. In the case of n DMUs, every DMU contains p observable
environmental variables Zi =

[
Z1i , . . . Zpi

]
. Input slacks can be decomposed into the

following form:
sik = f i

(
zk; βi

)
+ vik + uik (4)
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where is the slack value for the ith input of the kth DMU and f i(zk ; βi) marks the envi-
ronmental effects, which is denoted as f i(zk ; βi) = zk × βi. vik + uik stands for the mixed
error term, vik is the stochastic error term, and µik refers to the managerial inefficiency.
If vik ∼ N (0 , θ2

vi), vik ∼ N+ (ui , σ2
ui), vik and uik are independent of each other.

γ = σ2
ui/(σ

2
ui + σ2

vi) is defined. When γ tends to 1, the influence of managerial factors
is dominant, and when γ tends to 0, the difference in efficiency is mainly attributed to
stochastic disturbance.

To adjust the measuring unit to the same external environment and stochastic factor
state based on the most effective measuring unit, the unknown parameters were estimated
by the maximum likelihood method, and then the original input was adjusted according to
the formula below.

∧
xik = xik +

[
maxk

{
zk

∧
βi

}
− zk

∧
βi

]
+
[
maxk

{ ∧
vik

}
− ∧

vik

]
(5)

i = 1, 2, . . . , m; k = 1, 2, . . . , n;

where x̂ik is the adjusted input variable, and xik is the original input variable. The first
square bracket indicates that the environment of DMU is adjusted to the same level, and
the second indicates that the statistical noise of DMU is adjusted to the same situation.
According to the above formula, statistical noise and managerial inefficiency shall be
separated first. The statistical noise condition was estimated as:

∧
E[vik|vik + uik ] = sik − zk

∧
βi−

∧
E[uik|vik + uik ] (6)

Fried et al. (2002) failed to provide an estimation formula for management inefficiency,
but recommended the formula proposed by Jondrow et al. (1982), i.e., Ê [uik | vik + uik], to
estimate the managerial inefficiency. However, the estimation formula by Jondrow et al.
(1982) was based on the stochastic frontier production function, and the DEA model by
Fried et al. (2002) was on the basis of the stochastic frontier cost function [33]. Some
scholars failed to notice this point and misused the formula, resulting in low credibility of
results [32,34,35]. Instead, the estimation formula of managerial inefficiency in the three-
stage DEA model should be derived according to their methods. Luo (2012) proposed an
estimation formula for the managerial inefficiency of the three-stage DEA model based
on the assumption of uniform distribution, earning a more reasonable construction of the
DEA model.

E(u|ε ) = σ∗

[
φ(λ ε

σ )

Φ( λε
σ )

+
λε

σ

]
(7)

where σ∗ = σuσv/σ, σ =
√

σ2
u + σ2

v , and λ = σu/σv, φ(.), Φ(.) refer to the density and
distribution functions of the standard normal distribution, respectively.

Stage III: The adjusted input variable and the original output variable were put into
the BCC model again, obtaining the efficiency value without the influence of environmental
effects, managerial inefficiencies, and stochastic disturbance. Comparatively, this efficiency
value was more objective and scientific than that obtained in Stage I.

See Figure 2 for the process framework of the whole model.
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3. Results
3.1. Stage I: Comprehensive Technical Efficiency from the BCC Model

The GDE of 41 cities in the YRD during 2009–2018 was obtained using the input-
oriented BCC model (Table 3). The mean comprehensive efficiency was 1 in both Wenzhou
and Jinhua cities, being the highest among the 41 cities. The mean comprehensive efficiency
was lower than 0.7 in Suqian, Wuhu and Huai’an cities, showing poor performance, which
was 0.560, 0.593 and 0.655, respectively. The mean comprehensive efficiency was higher
than 0.98 and lower than 1 in Nanjing, Quzhou, Huaibei, Lishui, Taizhou2, Huangshan and
Shanghai, showing excellent performance, which was 0.996, 0.996, 0.994, 0.992, 0.992, 0.985
and 0.980, respectively. The mean comprehensive efficiency of the other cities, Chuzhou,
Lianyungang, Anqing, Suzhou2, Lu’an, Ma’anshan, Taizhou1, Hefei, Xuzhou, Bengbu,
Zhenjiang, Ningbo, Yangzhou and Huainan, was lower than the mean of the overall mean
comprehensive efficiency of the 41 cities in the YRD (0.859), which was 0.707, 0.709, 0.722,
0.734, 0.751, 0.770, 0.788, 0.792, 0.794, 0.797, 0.833, 0.837, 0.840 and 0.845, respectively.
The mean comprehensive efficiency of Suzhou1, Yancheng, Jiaxing, Zhoushan, Shaoxing,
Nantong, Xuancheng, Hangzhou, Tongling, Changzhou, Bozhou, Wuxi, Fuyang, Huzhou
and Chizhou was higher than the mean of the overall mean comprehensive efficiency of
the 41 cities in the YRD (0.859), which was 0.861, 0.863, 0.868, 0.878, 0.881, 0.887, 0.891,
0.893, 0.909, 0.933, 0.939, 0.946, 0.95, 0.952 and 0.956, respectively. From 2009 to 2018, the
GDE of some of the 41 cities in the YRD fluctuated greatly. For example, the GDE of
Chizhou was 0.647 in 2016 and above 0.9 in the other years; the GDE of Wuxi was 0.740
in 2015 and above 0.9 in the other years; the GDE of Xuancheng was all above 0.9 from
2009 to 2015 and dropped to 0.646, 0.668 and 0.691 respectively in 2016–2018; the GDE of
Yancheng was all above 0.9 from 2009 to 2014 and dropped to 0.631, 0.792, 0.682 and 0.634
respectively in 2015–2018. The above results showed that the changing trend of GDE is
unstable, presenting big fluctuations in this area. In consequence, more measures should
be taken to improve GDE steadily.
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Table 3. GDE of 41 cities (2009–2018) in Stage I.

City 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean Ranking

Shanghai 0.898 0.934 1.000 1.000 1.000 1.000 1.000 0.968 1.000 1.000 0.980 I
Nanjing 1.000 1.000 1.000 1.000 1.000 1.000 0.956 1.000 1.000 1.000 0.996 I

Wuxi 0.973 0.926 1.000 0.968 0.953 0.903 0.740 1.000 1.000 1.000 0.946 II
Xuzhou 0.783 0.721 0.615 1.000 0.622 0.741 0.666 1.000 0.824 0.965 0.794 III

Changzhou 1.000 0.956 0.889 0.938 0.925 0.923 0.695 1.000 1.000 1.000 0.933 II
Suzhou 1 0.838 0.819 0.766 0.759 0.762 0.808 0.860 1.000 1.000 1.000 0.861 III
Nantong 1.000 0.951 0.841 1.000 0.785 0.778 0.739 0.935 0.902 0.943 0.887 II

Lian Yungang 0.839 0.766 0.681 0.636 0.654 0.580 0.549 1.000 0.660 0.721 0.709 IV
Huaian 0.694 0.632 0.587 0.581 0.614 0.636 0.547 0.736 0.689 0.832 0.655 IV

Yancheng 0.970 0.952 0.984 0.987 1.000 1.000 0.631 0.792 0.682 0.634 0.863 III
Yangzhou 0.966 0.958 0.888 0.884 0.867 0.853 0.585 0.801 0.765 0.832 0.840 III
Zhenjiang 0.859 0.857 0.854 0.806 0.804 0.900 0.664 0.920 0.833 0.830 0.833 III
Taizhou 1 0.846 0.819 0.889 0.811 0.783 0.868 0.601 0.764 0.730 0.764 0.788 IV

Suqian 0.547 0.498 0.546 0.522 0.509 0.782 0.505 0.570 0.559 0.561 0.560 IV
Hangzhou 0.816 0.788 0.842 0.902 0.951 0.953 0.865 0.934 1.000 0.877 0.893 II

Ningbo 0.768 0.768 0.803 0.813 0.852 0.858 0.852 0.869 0.904 0.886 0.837 III
Wenzhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I

Jiaxing 0.929 0.888 0.831 0.844 0.839 0.820 0.981 1.000 0.781 0.767 0.868 III
Huzhou 0.886 0.986 0.972 1.000 0.995 0.871 0.918 1.000 0.925 0.963 0.952 II
Shaoxing 0.954 0.976 0.988 0.947 0.840 0.789 0.714 1.000 0.827 0.773 0.881 II

Jinhua 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I
Quzhou 1.000 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 I

Zhoushan 0.929 1.000 0.953 0.918 0.878 0.781 0.664 0.728 0.925 1.000 0.878 III
Taizhou 2 0.954 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 I

Lishui 0.929 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 1.000 0.992 I
Hefei 0.948 0.837 0.750 0.650 0.690 0.688 0.708 0.666 1.000 0.979 0.792 IV
Wuhu 0.766 0.665 0.563 0.526 0.509 0.470 0.519 0.529 0.622 0.760 0.593 IV

Bengbu 0.985 0.881 0.745 0.756 0.710 0.711 0.786 0.597 0.919 0.880 0.797 III
Huainan 1.000 0.954 0.761 0.852 0.763 0.929 0.714 1.000 0.707 0.766 0.845 III

Maanshan 0.890 0.778 0.644 0.629 0.587 0.736 0.717 0.953 1.000 0.767 0.770 IV
Huaibei 0.939 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 I
Tongling 1.000 1.000 1.000 0.916 0.896 0.912 0.791 0.749 0.821 1.000 0.909 II
Anqing 0.625 0.652 0.650 0.699 0.706 0.706 0.865 0.674 0.840 0.805 0.722 IV

Huangshan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.846 1.000 1.000 0.985 I
Chuzhou 0.744 0.722 0.831 0.696 0.741 0.740 0.800 0.710 0.573 0.508 0.707 IV
Fuyang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.856 0.926 0.720 0.950 II

Suzhou 2 0.817 0.834 0.686 0.678 0.737 0.713 0.621 0.736 0.634 0.883 0.734 IV
Luan 0.767 0.746 0.691 0.789 0.726 1.000 0.725 0.558 0.750 0.759 0.751 IV

Bozhou 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.718 0.847 0.834 0.939 II
Chizhou 1.000 1.000 1.000 1.000 1.000 0.995 0.918 0.647 1.000 1.000 0.956 I

Xuancheng 1.000 1.000 1.000 1.000 1.000 0.909 1.000 0.646 0.668 0.691 0.891 II
YRD 0.893 0.877 0.860 0.866 0.846 0.862 0.802 0.851 0.861 0.871 0.859

Source: Authors’ work. I II III IV represents the ranking 1~10, 11~20, 21~30, 31~41, respectively. Suzhou 1

and Taizhou 1 belong to Jiangsu Province. Suzhou 2 belongs to Anhui province, and Taizhou 2 belongs to
Zhejiang provinces.

In this study, 41 cities were divided into Shanghai Municipality, Jiangsu, Zhejiang
and Anhui provinces by provincial level, and the GDE time series in the YRD was further
analyzed, as shown in Figure 3. The GDE for the whole region was between 0.802 and 0.893
during the study period, with a zero cut-off point in 2015. Distinctively, the GDE of Shang-
hai Municipality rose from 2009 to 2011 and remained at the forefront almost throughout
the subsequent period, the GDE of Zhejiang Province ranked second overall, and the GDE
showed a trend of declining first and then rising in both Jiangsu and Anhui provinces. The
foregoing results demonstrated that the GDE needs to be promoted constantly in the YRD
and stabilized in Jiangsu and Anhui provinces.
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3.2. Stage II: SFA Model

In this part, an SFA regression model was built, of which the slack value of each input
variable served as the explained variable and GRP, ABD, TIP and GCA were taken as
explanatory variables and an SFA regression model was built with the software Frontier
4.1 to estimate the impact of environmental variables [36]. The SFA regression results are
listed in Table 4.

Table 4. The results of SFA regression.

Explanatory Variable
Slacks of Input Variables

AEC IFA EEST EMWCE

Constant term
−177,242.07 −2,391,731.60 −49,187.69 −816.14
−140,141.30 −1,891,088.14 −751.78 −71.51

GRP
−6226.56 −2,017,080.80 −30,534.40 385.84

(−511.36) *** (−165,654.65) *** (−319.20) *** (1.44) *

ABD
363,134.99 18,522,799.00 499,887.82 7736.39

(23,017.63) *** (1,174,083.64) *** (40,106.30) *** (17.37) ***

TIP
−55,091.87 −1,120,127.10 −38,150.40 −531.48

(−5258.59) *** (−106,917.67) *** (−234.72) *** (−11.99) ***

GCA
−328,483.35 −15,710,684.00 −455,881.82 −7669.25

(−21,419.04) *** (−1,024,428.59) *** (−19,887.36) *** (−111.83) ***

γ 1.00 1.00 0.98 1.00

Log likelihood function −561.07559 −675.04933 −529.03493 −357.3225

LR test 35.5 34.6 37.3 28.7

Notes: *, and *** indicate the significance level at 10%, 5% and 1%, respectively.

According to Table 4, the four models were subject to the LR test and the value of γ
was 1 or close to 1, indicating that in the mixed error term, the management inefficiency
has a much greater impact on the input slack than the stochastic error term. In the case of a
negative regression coefficient, the increase of the explanatory variable reduced the slack
of the input variable, narrowing the gap between the actual and ideal value of the input
variable. Hence, the increase of the explanatory variable was conducive to the enhancement
of GDE. On the contrary, when the regression coefficient was greater than 0, the increase of
the explanatory variables was adverse to the improvement of GDE. As shown in Table 4,
GRP had a significant negative relationship with AEC, IFA and EEST and a significant
positive relationship with EMWCE, ABD significantly had a positive impact on the slack
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variables of the four inputs, and both TIP and GCA had significant negative impacts on the
slack variables of the four inputs (below 1%), which are discussed in the next part.

In accordance with Formulas (4)–(6), ui the management inefficiency term was sepa-
rated and calculated next, so that the measuring unit was adjusted to the same external
environment and stochastic factor state, thereby adjusting the original data to obtain new
input variables. The calculation process was complicated, and it was omitted herein due to
the limited space.

3.3. Stage III: Actual GDE in the YRD

Table 5 lists the actual GDE in the YRD based on the adjusted input value (2009~2018).
As shown in the table, the actual mean GDE was 1 in Nanjing, Wenzhou and Jinhua cities,
notably superior to that in other cities. The actual mean GDE of Huai’an, Wuhu and
Suqian was dramatically lower than that of other regions, which was 0.754, 0.734 and
0.705, respectively, showing poor performance. Besides, the actual mean GDE was higher
than 0.98 in Huaibei, Shanghai, Tongling and Taizhou2, being 0.999, 0.990, 0.990 and 0.982,
respectively, which was better than that in other cities. The overall mean of the actual GDE
of the 41 cities in the YRD was 0.908. In addition to the aforementioned cities, the actual
mean GDE was lower than the overall mean (0.908) in Taizhou1, Lianyungang, Suzhou2,
Xuzhou, Anqing, Zhenjiang, Maanshan, Zhoushan, Hefei, Jiaxing, Ningbo, Yangzhou,
Yancheng, Lishui and Shaoxing, which was 0.828, 0.832, 0.850, 0.853, 0.858, 0.866, 0.871,
0.872, 0.875, 0.885, 0.887, 0.888, 0.901, 0.903 and 0.907, respectively. Meanwhile, the actual
mean GDE was higher than the overall mean (0.908) in Lu’an, Chuzhou, Hangzhou,
Suzhou1, Xuancheng, Nantong, Chizhou, Quzhou, Huangshan, Huzhou, Bengbu, Huainan,
Bozhou, Changzhou, Wuxi and Fuyang, which was 0.908, 0.909, 0.915, 0.918, 0.921, 0.926,
0.937, 0.938, 0.941, 0.941, 0.946, 0.953, 0.955, 0.959, 0.965 and 0.977, respectively. From the
overall trend, the actual GDE of many cities dropped dramatically in 2016. For example,
the actual GDE of Chizhou was 0.378 in 2016 and above 0.995 in the other years. The actual
GDE of Xuancheng was 0.559 in 2016 and above 0.8 in the other years. The actual GDE of
Bengbu was 0.581 in 2016 and above 0.9 in the other years. The actual GDE trend of most
other cities was relatively stable. For example, the actual GDE of Huzhou exceeded 0.9 in
the ten years from 2009 to 2018.

Table 5. GDE of 41 cities (2009–2018) in Stage III.

City 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean Ranking

Shanghai 0.926 0.969 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 I
Nanjing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I

Wuxi 0.959 0.914 0.992 0.938 0.991 0.968 0.887 1.000 1.000 1.000 0.965 I
Xuzhou 0.817 0.755 0.664 1.000 0.724 0.867 0.832 1.000 0.891 0.983 0.853 IV

Changzhou 1.000 0.923 0.914 0.935 0.994 1.000 0.820 1.000 1.000 1.000 0.959 I
Suzhou 1 0.853 0.833 0.849 0.772 0.877 1.000 1.000 1.000 1.000 1.000 0.918 II
Nantong 1.000 0.961 0.809 1.000 0.844 0.843 0.915 0.997 0.942 0.951 0.926 II

Lian Yungang 0.915 0.824 0.848 0.736 0.793 0.839 0.705 1.000 0.864 0.853 0.838 IV
Huaian 0.767 0.681 0.704 0.681 0.749 0.828 0.715 0.677 0.842 0.896 0.754 IV

Yancheng 1.000 1.000 0.950 1.000 1.000 1.000 0.774 0.864 0.741 0.682 0.901 III
Yangzhou 0.997 0.984 0.877 0.878 0.950 0.954 0.743 0.770 0.867 0.862 0.888 III
Zhenjiang 0.928 0.903 0.864 0.808 0.868 0.908 0.756 0.833 0.912 0.875 0.866 IV
Taizhou 1 0.881 0.840 0.851 0.816 0.873 0.906 0.766 0.696 0.818 0.837 0.828 IV

Suqian 0.616 0.552 0.757 0.638 0.683 0.978 0.765 0.562 0.775 0.728 0.705 IV
Hangzhou 0.837 0.813 0.855 0.931 1.000 1.000 0.938 0.905 1.000 0.869 0.915 III

Ningbo 0.783 0.801 0.856 0.880 0.951 0.787 0.928 0.913 1.000 0.975 0.887 III
Wenzhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I

Jiaxing 0.932 0.913 0.787 0.805 0.861 0.845 1.000 1.000 0.883 0.825 0.885 III
Huzhou 0.913 0.990 0.927 0.946 0.989 0.931 0.990 0.909 0.902 0.913 0.941 II
Shaoxing 0.949 0.999 0.883 0.943 0.909 0.844 0.810 1.000 0.910 0.826 0.907 III

Jinhua 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I
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Table 5. Cont.

City 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean Ranking

Quzhou 0.986 0.947 0.905 0.960 0.961 0.975 0.912 1.000 0.846 0.883 0.938 II
Zhoushan 0.843 0.942 0.961 0.898 0.910 0.929 0.799 0.490 0.952 1.000 0.872 IV
Taizhou 2 0.940 0.966 0.983 0.940 1.000 1.000 1.000 0.986 1.000 1.000 0.982 I

Lishui 0.846 1.000 0.922 0.909 1.000 0.968 1.000 0.668 0.865 0.851 0.903 III
Hefei 0.987 0.879 0.837 0.741 0.777 0.831 0.898 0.804 1.000 1.000 0.875 III
Wuhu 0.849 0.755 0.798 0.626 0.717 0.890 0.668 0.588 0.664 0.787 0.734 IV

Bengbu 1.000 0.938 0.967 1.000 0.980 1.000 0.991 0.581 1.000 1.000 0.946 II
Huainan 1.000 0.925 0.937 1.000 0.930 0.938 0.897 1.000 0.926 0.974 0.953 II

Maanshan 1.000 0.787 0.818 0.723 0.811 0.878 0.793 0.961 1.000 0.937 0.871 IV
Huaibei 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 I
Tongling 1.000 1.000 1.000 0.915 1.000 1.000 1.000 1.000 0.981 1.000 0.990 I
Anqing 0.674 0.723 0.840 0.863 0.889 0.964 1.000 0.655 0.978 0.995 0.858 IV

Huangshan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.422 0.995 0.993 0.941 II
Chuzhou 0.984 0.917 0.867 0.998 0.990 0.974 0.988 0.784 0.822 0.769 0.909 III
Fuyang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.882 0.978 0.905 0.977 I

Suzhou 2 0.906 0.918 0.843 0.870 0.892 0.936 0.875 0.654 0.791 0.812 0.850 IV
Luan 0.901 0.824 0.855 0.977 0.921 1.000 0.999 0.600 1.000 1.000 0.908 III

Bozhou 1.000 1.000 1.000 1.000 1.000 1.000 0.965 0.580 1.000 1.000 0.955 II
Chizhou 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.378 1.000 1.000 0.937 II

Xuancheng 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.559 0.849 0.801 0.921 II
YRD 0.924 0.906 0.900 0.906 0.923 0.946 0.906 0.822 0.927 0.922 0.908

Source: Authors’ work. I, II, III and IV represent the ranking of 1~10, 11~20, 21~30 and 31~41, respectively.
Suzhou 1 and Taizhou 1 belong to Jiangsu Province. Suzhou 2 belongs to Anhui province, and Taizhou 2 belongs
to Zhejiang provinces.

Figure 4 illustrates the time series of the actual GDE in the YRD. According to Figure 4,
the GDE in the YRD generally tends stable, with the highest level of 0.946 in 2014 and the
lowest level of 0.822 in 2016, presenting a downward trend from 2014 to 2016. The actual
GDE had been kept at 1 in Shanghai Municipality since it rose from 0.926 in 2009 to 1 in
2011, which fluctuated continuously in Jiangsu, Zhejiang and Anhui provinces from 2009
to 2018. Among them, the actual GDE of Jiangsu and Anhui provinces dropped sharply
in 2015 and 2016, respectively. On the whole, the fluctuation range of GDE in Zhejiang
Province was relatively small, and the GDE of Jiangsu Province was at the lowest level
during 2009–2018. The above results indicated that although the influence of external
environmental factors is removed, there are still regional differences in the actual GDE of
cities in the YRD.
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4. Discussion
4.1. GDE Analysis in the YRD

As shown in Figure 4, the actual mean GDE of the YRD was 0.908 (2009~2018). After
adjustment, the GDE of the YRD in Sage III was obviously higher than that in Stage I,
which testified that objective environmental factors cause people to underestimate GDE.
Comparing the initial GDE (Table 3) and the actual GDE (Table 5) in the YRD, except for
Chizhou, Huangshan, Huzhou, Quzhou, Taizhou2 and Zhoushan, the GDE was enhanced
upon the removal of external environmental factors and the mixed error term. From 2009 to
2018, the mean GDE of 41 cities in the YRD was 0.859 when external factors were taken into
account, which was increased to 0.908 when external environmental factors were excluded.
In stage III, the GDE of Nanjing, Jinhua and Wenzhou cities reached the optimal level,
while only Jinhua and Wenzhou cities maintained this efficiency level in Stage I, which
showed that external environmental factors negatively affected the GDE of Nanjing City.
Consequently, there is substantial potential to improve the external environment.

Since it was a national strategy of China to integrate the YRD, the development of the
YRD has been constantly concerned by all walks of life. In this case, the ecological envi-
ronment is also one of the inevitable problems in the development process, and the main
causes of excessive resource consumption and environmental pollution can be explored
by virtue of effective environmental efficiency measurement, so as to improve environ-
mental governance policies. There are many GDE calculation methods, of which the use
of the three-stage DEA model enables obtains more objective and accurate efficiency by
separating environmental variables such as management inefficiency and statistical noise.
Before the environmental interference factors were excluded, that is, in Stage I of this study,
the obtained GDE in the YRD showed a trend of falling first and then rising, and the zero
cut-off point appeared in 2015. Wang et al. (2019) measured the GDE in the YRD from
2005 to 2015 using the Super-SBM model and concluded that there was a downward trend,
thus predicting that the efficiency would increase after 2015 [37], which was verified in
this study. Nevertheless, when the environmental factors and stochastic disturbance were
removed, that is, when the actual GDE was obtained, no matter from the perspective of the
entire region or the four provinces, the GDE in the entire time series was improved to a
certain extent compared with that in Stage I, indicating that objective factors may cause
people to underestimate the GDE. Consistent with the results herein, Guo et al. (2018) also
came to the conclusion that the mean environmental efficiency of the central, eastern and
western regions, as well as the whole country, was underestimated during the three-stage
measurement of environmental efficiency in China [38].

For further analysis, the GDE calculated in the previous parts was divided into five
levels, and the GDE spatial distribution maps in the YRD in 2009, 2012, 2015 and 2018
were drawn using ArcGIS, as shown in Figure 5. Thereout, the differences in spatial
distribution, as well as the spatial characteristics, were determined intuitively, and it was
visibly that spatial heterogeneity existed in the GDE of the YRD and changed with time. For
example, the GDE in the northeast coastal region changed from a high level at the beginning
to a low level in the later period, while the GDE in the western region experienced the
opposite process. In addition, the GDE was maintained at a high level in some cities in the
northwest, southeast and middle of China, as well as a small area formed around Shanghai
Municipality, presenting certain clustering characteristics, and the GDE there was better
than that in other regions.
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Based on the spatial distribution maps drawn from the actual GDE results, the GDE in
the YRD showed certain spatial heterogeneity, not only different from the conclusion of
Wang et al. (2018) who calculated that the GDE is low in the east and high in the west of
the YRD [37], but also different from the conclusion of Deng et al. (2021) who found that
the GDE in the eastern region is significantly higher than that in the western region [39].
In this study, it was discovered that the GDE showed high clustering characteristics to
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some extent in several cities in the northwest, southeast, and middle of China, as well as a
small area around Shanghai Municipality. Combined with the efficiency decomposition
diagram in Figure 5, the GDE tends to have high-high clustering in cities with good
economic development levels and low-low clustering in cities with relatively low economic
development levels. In this sense, environmental protection was better implemented in the
eastern region with better economic development than in the western region. Feng et al.
(2020) believed that economic development is correlated with green development, but
there is not a complete positive correlation [33]. As shown in this paper, after excluding
the objective factor of economic development, the GDE was high in some economically
underdeveloped regions. For example, surrounded by mountains and rivers, some cities in
central China such as Xuancheng, Huangshan, and Quzhou are famous for tourism and
mainly develop tourism and service industries, and there are few industries characterized
by high pollution, presenting high green development levels. Topography affects industries,
thereby affecting local green development. Accordingly, it is necessary to comprehensively
consider the factors affecting GDE from various aspects [40].

4.2. SFA Regression Analysis

In Stage II, SFA regression was performed on the input slack variables obtained in
Stage I and four environmental variables, and some meaningful information was obtained.

(1) GRP is negatively correlated with the slacks of electricity consumption, fixed asset
investment and scientific education investment in the whole society, while it has a positive
correlation with the slacks of water conservancy and environment practitioners. It indicates
that the increase in GRP makes the electricity consumption, fixed asset investment and
scientific education investment rationalized on the one hand, and on the other hand, it
shows inefficiency in the input of water conservancy and environmental practitioners. GRP
represents the local economic development level, and the classic environmental Kuznets
curve shows that the quality of the environment will first decline and then rise with the
development of the economy [41]. From the perspective of input, it is the rationality and
waste of these different input factors that explain the complexity of the mechanism of the
relationship between economic development and green development.

(2) ABD has a significant positive correlation with the slacks of the four input variables,
proving that the increase in the urban construction area will increase the input slacks, which
goes against the GDE. With the expansion of urban space, among the land cover types
in the urban fringe area, land types with less interference from human activities such
as cultivated land, forest land and orchards have been greatly reduced and replaced by
high-density urban land. The impervious area in the urban center area has been increased,
and the natural green area has been reduced, replaced by squares and roads covered with
cement and asphalt. The increase of impervious area and the reduction of the green area
have seriously caused problems for the water environment and atmospheric environment
in cities [22,42]. On the contrary, in terms of geographic space, cities surrounded by
mountainous terrain and famous for tourism enjoy high GDE as large-scale construction
may not be applicable, such as Xuancheng, Huangshan, Quzhou and Jinhua, which is
consistent to the conclusion of Li et al. (2022) [40].

(3) TIP has a negative impact on the slacks of the four input variables, that is, the higher
the proportion of the tertiary industry, the more beneficial to input slack reduction and GDE
improvement, which fully reveals that the optimization of industrial structure is conducive
to local green development. According to the 13th Five-Year Plan for Economic and Social
Development of the People’s Republic of China (2016–2020), green development can be achieved
through industrial restructuring. Many studies also support that the high proportion of
the tertiary industry is conducive to the protection of the ecological environment [27,43].
Guo et al. (2020) concluded that the secondary industry is adverse to green development,
which in turn supports the aforesaid statement [44]. The rise of the tertiary industry, on
the one hand, compresses the secondary industry supported by a large amount of fixed
capital investment, which is conducive to reducing the waste of capital input; on the other
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hand, it has a strong ability to absorb labor employment and reduces the slack degree of
labor equivalent. In this sense, industrial structure optimization is the appropriate path for
green development.

(4) GCA is negatively correlated with the slacks of the four input variables. The
increase in the urban green area supports the social fixed asset input, social electricity
consumption, scientific education investment and water conservancy and environmental
management personnel to reach the ideal input value, suggesting that the increase in
urban green area is helpful to the rational use of energy, capital, labor and innovation
input. Similar to the formulation of environmental policies and the investment in pollution
control, the planning of urban green areas demonstrates the active intervention of the
government in green development planning and plays an essential role in urban sustainable
development [45]. Today, governments are gradually conscious that the construction of
green spaces has become a vital issue for high-quality economic development [22]. Many
policies have been issued by governments at all levels, such as the Regulations of China on
Urban Greening, Shanghai Greening Regulations, specifying that urban greening should keep
pace with urban development. In line with the study results of this paper, in the process
of urban expansion, reasonable planning and investment should be carried out on the
coverage of the urban green area, in a bid to prevent the expansion of urban construction
area from reducing the GDE and causing a series of environmental problems.

4.3. GDE Decomposition Analysis in the YRD

To better understand the GDE in the YRD, the software DEAP 2.1 was applied to divide
the actual GDE into two types, that is, the comprehensive technical efficiency (TE) was
decomposed into pure technical efficiency (PTE) and scale efficiency (SE) [31]. PTE reflected
the production efficiency of DMUs at certain input factors at an exact scale (usually optimal)
and explained how to effectively apply green technologies to achieve maximum efficiency,
and SE presented the realization degree of scale effects on green development [46].

The efficiency decomposition scatters diagram of 41 cities was drawn according to PTE
and SE, which was divided into four quadrants according to the mean value to represent
four categories of high-high, low-high, low-low and high-low, respectively (Figure 6). It
can be seen that after the environmental factors and stochastic disturbance were eliminated,
the mean PTE rose from 0.883 to 0.966, while the mean SE slightly dropped from 0.974 to
0.939. On the whole, environmental factors affected the real performance of PTE, causing
GDE to be underestimated.

The high-high category contained areas with high PTE and high SE. According to the
efficiency decomposition in Stage I, 13 cities were included in this category, and Shanghai,
Changzhou, Tongling, Huainan, and Bozhou cities became new members of this category
in Stage III, implying that the SE level of these cities was improved dramatically with
consideration of the environmental disturbance factors. Among them, both PTE and SE
of Nanjing, Jinhua and Wenzhou cities were 1, indicating that these cities achieved a
high-efficiency level.

The high-low category contained cities with high SE and low PTE. According to the
calculation results of Stage I, 10 cities were classified into this category, and the number
was reduced to 8 in Stage III. Among them, Huangshan, Nantong, Huzhou and Shaoxing
cities fell from the original high-high category to the high-low category, reflecting that
the utilization efficiency there in the exogenous environment should be strengthened. It
is necessary to invest more in green technology innovation and application, enhance the
quality of green talents and raise energy utilization to improve the overall GDE locally.

The low-high category contained areas with low SE and high PTE. Nantong, Huzhou
and Shaoxing cities, which were originally included in the high-high category in Stage I,
were assigned to this category in Stage III, indicating that the SE of the three cities was over-
estimated. For these cities, the SE should be enhanced by increasing the green investment,
conducting green transformation and strengthening green talent aggregation.
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The low-low category contained areas with low PTE and low SE. Comparing Stage I
with Stage III, the number of cities in this category was increased from 7 to 12, and
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all cities included in this category presented poor GDE. Xuzhou, Huai’an and Suqian
cities were contained in the low-low category no matter whether the influence of external
environmental factors and statistical noise was excluded. Most cities in this category were
weak in economic foundations and dominated by traditional energy-intensive industries.
In consequence, for cities in this category, it is not only necessary to advance technological
innovation during green transformation, but also to consider the stimulation of scale effect.
In the meantime, the priority should be given to the construction of a green economy and a
sound green development foundation.

5. Conclusions

At present, green development is a considerable environmental management issue
in China, aiming to improve the status of regional environmental development in light of
energy saving, emission reduction and pollutant control [13]. Since the integration of the
YRD was brought into the national strategy, the development of the region has received
continuous attention from all sectors of society. As a result, the ecological environment
is one of the inevitable issues in the development process. In this study, panel data from
2009 to 2018 of 41 cities in the YRD were selected and the three-stage DEA model was
applied to calculate the objective GDE in this region. Besides, a comprehensive analysis
was performed on the grounds of the empirical results. After the adjustment, the GDE in
each city changed considerably, which proved that it is objective and accurate to measure
GDE after eliminating environmental factors and stochastic disturbance. On this basis, the
following suggestions and implications were drawn:

(1) The GDE in the YRD adjusted in Stage III was clearly higher than that in Stage I,
mainly because the GDE was underestimated under the influence of objective environmen-
tal variables. The GDE levels of different cities showed heterogeneity upon the removal
of external environmental factors and stochastic disturbances. The GDE developed out
of balance in the four provincial administrative regions and generally behaved better in
the coastal and southeastern areas than that in the central, western and northern regions
in terms of spatial distribution. As a national central city, Shanghai Municipality serves
as the center of the international economy, finance, trade, shipping and technological in-
novation in China, which is required to not only maintain high-quality development as
a leader in the YRD but also to focus on the balanced development of cities in the YRD
as a whole. For other regions, it is necessary to control the industrial scale, actively use
foreign capital to improve production technologies, achieve clean production and reduce
energy consumption.

(2) In terms of external environmental variables, the ABD reflecting urban construction
has a negative impact on GDE since urban construction requires the improvement of urban
governance infrastructure, which will inevitably lead to an increase in investment in
pollution control. Consequently, the faster the urban construction process is, the more
capital, labor, energy and resources will be required, which partly generates redundant
inputs, thus reducing GDE. Moreover, industrial structure adjustment and green covered
area are conducive to GDE, so it is necessary to sequentially strengthen the development of
the tertiary industry, reduce the idle employees caused by labor aggregation, and improve
the regional economic level while improving the capital utilization efficiency. Besides, the
government should increase green investment and carry out rational layouts of urban green
spaces to prevent the reduction of the green development level in the process of urban
expansion and construction.

(3) The GRP reflects the local economic development level, the impact of which on
GDE was not determined in this paper. In spite of this, it is believed that in the new era
emphasizing high-quality development, more emphasis should be put on innovation and
ecology, which are beneficial to the healthy and sustainable development of cities. In the
future, the government still needs to play an active role in pollution control and urban green
planning. While accelerating the process of urbanization, it is necessary to promote clean
production, control pollution emissions, eliminate passive terminal control, pay attention
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to the excessive consumption of resources and energy in urban construction, keep abreast
of the speed of urbanization, adhere to quality-oriented policies, and create a new spatial
pattern of intensive and efficient urbanization. Additionally, it is necessary to cultivate new
growth points for cities, give play to regional advantages pursuant to different orientations,
and realize the coordinated development of urban agglomerations, cities and industries.

Suggestions for future study: First and foremost, when measuring the GDE of 41 cities
in YRD from 2009 to 2018, the time lag effect and delayed utility between inputs and outputs
have been neglected to some extent. The digestion and absorption of inputs often take
time to produce effective outputs, which means that green development inputs will not be
converted into relevant outputs in an instant, and further verification is required. Secondly,
although the influence mechanism of four objective environmental variables has been
involved in this paper, there are still some unconsidered factors, such as urban resources,
culture, society, etc. [22,23], and more attention can be paid to the correlations between
the factors and the green ecology of cities in future studies. Last but not least, though
complex, in-depth research is required to reveal the impact of economic development on
urban green development.
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