Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Site
2.2. Experimental Field Setup and Treatments
2.3. Crop Culture and Yield Contributing Parameters Recording
2.4. Harvesting, Biomass, and Yield Measurement
2.5. Soil Properties Evaluation
2.6. Soil Infiltration and Water Holding Capacity Estimation
2.7. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.2. Soil Chemical Composition
3.3. Above- and Belowground Biomass
3.4. Yield Parameter and Yields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tormena, C.A.; Karlen, D.L.; Logsdon, S.; Cherubin, M.R. Corn stover harvest and tillage impacts on near-surface soil physical quality. Soil Tillage Res. 2017, 166, 122–130. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Hennessy, D.A.; Feng, H.; Tian, H. Impacts of tillage practices on soil carbon stocks in the US corn-soybean cropping system during 1998 to 2016. Environ. Res. Lett. 2020, 15, 014008. [Google Scholar] [CrossRef]
- Banik, C.; Bartel, C.A.; Laird, D.A.; Moore, K.J.; Lenssen, A.W. Perennial cover crop influences on soil C and N and maize productivity. Nutr. Cycl. Agroecosystems 2020, 116, 135–150. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter content and crop yield. J. Soil. Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.; Wen, T.; Guo, H.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Hongli, M.; Tao, W.; Xiang, G.; Gaoqiong, F. Conservation tillage and residue management improves soil properties under a upland rice–rapeseed system in the subtropical eastern Himalayas. Land Degrad. Dev. 2020, 31, 1775–1791. [Google Scholar]
- Yadav, D.; Vishwakarma, A.K.; Sharma, N.K.; Biswas, A.K.; Ojasvi, P.R.; Kumar, D.; Kumawat, A.; Singh, D. Sustaining the properties of black soil in Central India through crop residue management in a conservation-agriculture-based soybean–wheat system. Land Degrad. Dev. 2021, 32, 2906–2921. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Yadav, A.K.; Choudhary, V.; Gathala, M.K.; Jat, M.L.; McDonald, A. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 2019, 181, 104059. [Google Scholar] [CrossRef]
- Parihar, C.M.; Singh, A.K.; Jat, S.L.; Dey, A.; Nayak, H.S.; Baidya, N.; Mandal, Y.; Saharawat, S.; Jat, M.L.; Yadav, O.P. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil Till. Res. 2020, 202, 104653. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice− wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.K.; Yadav, G.S.; Mohapatra, K.P.; Selvan, T.; Das, A.; Singh, V.K.; Valente, D.; Petrosill, I. Soil carbon dynamics in Indian Himalayan intensified organic rice-based cropping sequences. Ecol. Indic. 2020, 114, 106292. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Datta, M.; Meena, R.S.; Patil, S.B.; Singh, R. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India? Agric. Ecosyst. Environ. 2019, 275, 81–92. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J. Clean. Prod. 2018, 191, 144–157. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M.L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Kool, D.; Tong, B.; Tian, Z.; Heitman, J.L.; Sauer, T.J.; Horton, R. Soil water retention and hydraulic conductivity dynamics following tillage. Soil Tillage Res. 2019, 193, 95–100. [Google Scholar] [CrossRef]
- Dam, R.F.; Mehdi, B.B.; Burgess, M.S.E.; Madramootoo, C.A.; Mehuys, G.R.; Callum, I.R. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Muñoz, M.Á.; Rodríguez, M.G.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237, 60–70. [Google Scholar] [CrossRef]
- Gwenzi, W.; Gotosa, J.; Chakanetsa, S.; Mutema, Z. Effects of tillage systems on soil organic carbon dynamics, structural stability and crop yields in irrigated wheat (Triticum aestivum L.)–cotton (Gossypium hirsutum L.) rotation in semi-arid Zimbabwe. Nutr. Cycl. Agroecosystems 2009, 83, 211–221. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration and aggregation by cover cropping. J. Soil Water Conserv. 2015, 70, 329–339. [Google Scholar] [CrossRef]
- Mtyobile, M.; Muzangwa, L.; Mnkeni, P.N.S. Tillage and crop rotation effects on soil carbon and selected soil physical properties in a Haplic Cambisol in Eastern Cape, South Africa. Soil Water Res. 2019, 15, 47–54. [Google Scholar] [CrossRef]
- Jemai, I.; Aissa, N.B.; Guirat, S.B.; Ben-Hammouda, M.; Gallali, T. Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid Tunisian climate. Soil Tillage Res. 2013, 126, 26–33. [Google Scholar] [CrossRef]
- Ojeniyi, S.; Dexter, A. Changes in the structure of differently tilled soil in a growing season. Soil Tillage Res. 1983, 3, 39–46. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.A.; Karlen, D.L.; da Silva, Á.P.; Keller, T.; Betioli, E., Jr. Seasonal changes in soil physical properties under long-term no-tillage. Soil Tillage Res. 2016, 160, 53–64. [Google Scholar] [CrossRef]
- Anghinoni, G.; Tormena, C.A.; Lal, R.; Moreira, W.H.; Júnior, E.B.; Ferreira, C.J.B. Within cropping season changes in soil physical properties under no-till in Southern Brazil. Soil Tillage Res. 2017, 166, 108–112. [Google Scholar] [CrossRef]
- Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.R.; Silva, E.M.; Peigne, J. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. Sustain. Dev. 2019, 39, 1–15. [Google Scholar] [CrossRef]
- Gull, R.; Bhat, T.A.; Sheikh, T.A.; Wani, O.A.; Fayaz, S.; Nazir, A.; Saad, A.A.; Jan, S.; Nazir, I.; Nisa, R. Climate change impact on pulse in India-A. J. Pharmacogn. Phytochem. 2020, 9, 3159–3166. [Google Scholar]
- Liu, H.; Wang, X.; Zhang, X.; Zhang, L.; Li, Y.; Huang, G. Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China. Agric. Water Manag. 2017, 179, 144–157. [Google Scholar] [CrossRef]
- Muzangwa, L.; Mnkeni, P.N.S.; Chiduza, C. The use of residue retention and inclusion of legumes to improve soil biological activity in maize-based No-till systems of the eastern cape province, South Africa. Agric. Res. 2020, 9, 66–76. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Heitkamp, F. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma 2017, 304, 76–82. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Charles, R. Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crops Res. 2020, 247, 107583. [Google Scholar] [CrossRef]
- Yadav, D.; Shivay, Y.S.; Singh, Y.V.; Sharma, V.K.; Bhatia, A. Enhancing nutrient translocation, yields and water productivity of wheat under rice–wheat cropping system through zinc nutrition and residual effect of green manuring. J. Plant Nutr. 2020, 43, 2845–2856. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K. Bulk density. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 363–375. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D.; Sharma, S.N. Learning by Doing Exercises in Soil Fertility—A Practical Manual for Soil Fertility; Division of Agronomy, Indian Agriculture Research Institute: New Delhi, India, 2006; pp. 1–68.
- Lal, R. Physical properties and moisture retention characteristics of some Nigerian soils. Geoderma 1978, 21, 209–223. [Google Scholar] [CrossRef]
- Bouwer, H. Intake rate: Cylinder infiltrometer. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 825–844. [Google Scholar]
- SAS Institute Inc. SAS User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density hydraulic conductivity and strength of a loam sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 5764. [Google Scholar]
- Sharma, A.; Singh, R.; Dhyani, S.; Dube, R. Effect of live mulching with annual legumes on performance of maize (Zea mays) and residual effect on following wheat (Triticum aestivum). Indian J. Agron. 2010, 55, 177–184. [Google Scholar]
- Leary, J.; DeFrank, J. Living mulches for organic farming systems. Hort. Tech. 2000, 10, 692–698. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.K.; Mohapatra, K.P.; et al. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sust. Energ. Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Deguchi, S.; Uozumi, S.; Tawaraya, K.; Kawamoto, H.; Tanaka, O. Living mulch with white clover improves phosphorus nutrition of maize of early growth stage. Soil Sci. Plant Nutr. 2005, 51, 573–576. [Google Scholar] [CrossRef]
- Bashir, S.S.; Hussain, A.; Hussain, S.J.; Wani, O.A.; Zahid Nabi, S.; Dar, N.A.; Baloch, F.S.; Mansoor, S. Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotechnol. Biotechnol. Equip. 2021, 35, 1912–1925. [Google Scholar] [CrossRef]
- Villamil, M.; Bollero, G.; Darmody, R.; Simmons, F.; Bullock, D. No-till corn/soybean systems including winter cover crops: Effects on soil properties. Soil Sci. Soc. Am. J. 2006, 70, 1936–1944. [Google Scholar] [CrossRef]
- Lachnicht, S.; Parmelee, R.; McCartney, D.; Allen, M. Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: Implications for infiltration and nutrient transport. Soil Biol. Biochem. 1997, 29, 493–498. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Jabran, K. Role of Mulching in Pest Management and Agricultural Sustainability; Springer: Cham, Switzerland, 2019; pp. 41–46. [Google Scholar]
- Sanders, Z.P.; Andrews, J.S.; Hill, N.S. Water use efficiency in living mulch and annual cover crop corn production systems. Agron. J. 2018, 110, 1128–1135. [Google Scholar] [CrossRef]
- Bartel, C.A.; Banik, C.; Lenssen, A.W.; Moore, K.J.; Laird, D.A.; Archontoulis, S.V.; Lamkey, K.R. Living mulch for sustainable maize stover biomass harvest. Crop Sci. 2017, 57, 3273. [Google Scholar] [CrossRef]
- Etemadi, F.; Hashemi, M.; Zandvakili, O.; Dolatabadian, A.; Sadeghpour, A. Nitrogen contribution from winter-killed faba bean cover crop to spring-sown sweet corn in conventional and no-till systems. Agron. J. 2018, 110, 455–462. [Google Scholar] [CrossRef]
- Singh, R.; Babu, S.; Avasthe, R.K.; Meena, R.S.; Yadav, G.S.; Das, A.; Mohapatra, K.P.; Rathore, S.S.; Kumar, A.; Singh, C. Conservation tillage and organic nutrients management improve soil properties, productivity, and economics of the maize-vegetable pea system in the Eastern Himalayas. Land Degrad. Dev. 2021, 32, 4637–4654. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.K.; Yadav, G.S.; Das, A.; Singh, V.K.; Mohapatra, K.P.; Rathore, S.S.; Chandra, P.; Kumar, A. Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn in Eastern Himalayas. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Babu, S.; Avasthe, R.K.; Yadav, G.S.; Das, A.; Mohapatra, K.P.; Kumar, A.; Singh, V.K.; Chandra, P. Crop productivity, soil health, and energy dynamics of Indian Himalayan intensified organic maize-based systems. Int. Soil Water Conserv. Res. 2021, 9, 260–270. [Google Scholar] [CrossRef]
Treatment | Bulk Density (Mg m−3) | Maximum Water Holding Capacity (%) | Soil Moisture Content (%) | |||
---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
NT | 1.36 | 1.40 | 46.8 | 40.8 | 19.8 | 22.2 |
NT+CLM | 1.32 | 1.38 | 47.7 | 42.0 | 20.7 | 24.0 |
MT | 1.34 | 1.38 | 46.7 | 41.0 | 20.9 | 22.7 |
MT+CLM | 1.31 | 1.37 | 48.9 | 43.1 | 22.4 | 25.0 |
CT | 1.35 | 1.39 | 39.8 | 34.1 | 15.3 | 16.6 |
SEm± | 0.01 | 0.01 | 2.0 | 1.2 | 1.0 | 0.9 |
LSD0.05 | 0.03 | NS | 5.9 | 3.5 | 2.8 | 2.7 |
Treatment | pH | Available Nitrogen (kg ha−1) | Available Phosphorus (kg ha−1) | Available Potassium (kg ha−1) | ||||
---|---|---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
NT | 5.21 | 5.16 | 466.0 | 445.5 | 11.3 | 9.3 | 363.7 | 347.3 |
NT+CLM | 5.27 | 5.19 | 489.5 | 470.5 | 12.0 | 9.7 | 370.0 | 355.0 |
MT | 5.26 | 5.14 | 466.0 | 449.0 | 11.3 | 9.0 | 368.2 | 351.5 |
MT+CLM | 5.29 | 5.20 | 495.0 | 473.0 | 12.9 | 10.1 | 371.7 | 352.7 |
CT | 5.05 | 5.05 | 426.5 | 409.5 | 9.4 | 8.1 | 329.7 | 341.0 |
SEm± | 0.04 | 0.03 | 4.0 | 4.6 | 0.6 | 0.5 | 6.3 | 5.6 |
LSD0.05 | 0.11 | 0.08 | 11.8 | 13.5 | 1.8 | NS | 18.5 | NS |
Treatment | Maize | Cowpea | Total (Maize + Cowpea) | |||
---|---|---|---|---|---|---|
AGB (Mg ha−1) | BGB (Mg ha−1) | AGB (Mg ha−1) | BGB (Mg ha−1) | AGB (Mg ha−1) | BGB (Mg ha−1) | |
NT | 8.41 | 1.54 | 0.00 | 0.00 | 8.41 | 1.54 |
NT+ CLM | 9.32 | 1.71 | 1.60 | 0.29 | 10.92 | 2.00 |
MT | 8.52 | 1.52 | 0.00 | 0.00 | 8.52 | 1.52 |
MT+CLM | 10.47 | 1.96 | 1.70 | 0.31 | 12.17 | 2.27 |
CT | 7.89 | 1.53 | 0.00 | 0.00 | 7.89 | 1.53 |
SEm± | 0.21 | 0.04 | 0.03 | 0.00 | 0.21 | 0.04 |
LSD0.05 | 0.62 | 0.11 | 0.08 | 0.01 | 0.62 | 0.12 |
Treatment | Cob Length (cm) | Kernels cob−1 | Kernel Weight (g) cob−1 | Cobs m−2 | Grain Yield (Mg ha−1) | Stover Yield (Mg ha−1) | Harvest Index | Cowpea Pod Yield (Mg ha−1) |
---|---|---|---|---|---|---|---|---|
NT | 14.8 | 321.2 | 57.0 | 4.73 | 2.26 | 6.15 | 0.27 | 0.00 |
NT+ CLM | 15.0 | 336.9 | 61.5 | 4.98 | 2.47 | 6.85 | 0.27 | 1.60 |
MT | 15.7 | 337.2 | 63.7 | 5.54 | 2.43 | 6.10 | 0.29 | 0.00 |
MT+CLM | 15.8 | 371.6 | 68.0 | 5.77 | 2.63 | 7.84 | 0.25 | 1.70 |
CT | 13.9 | 272.4 | 45.4 | 4.45 | 1.77 | 6.12 | 0.22 | 0.00 |
SEm± | 0.2 | 12.3 | 3.5 | 0.23 | 0.06 | 0.16 | 0.001 | 0.03 |
LSD0.05 | 0.7 | 36.2 | 10.2 | 0.68 | 0.18 | 0.46 | 0.01 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.; Babu, S.; Singh, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Datta, M.; Yadav, S.K.; Wani, O.A.; Yadav, D. Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas. Sustainability 2022, 14, 12078. https://doi.org/10.3390/su141912078
Das A, Babu S, Singh R, Kumar S, Rathore SS, Singh VK, Datta M, Yadav SK, Wani OA, Yadav D. Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas. Sustainability. 2022; 14(19):12078. https://doi.org/10.3390/su141912078
Chicago/Turabian StyleDas, Anup, Subhash Babu, Raghavendra Singh, Sanjeev Kumar, Sanjay Singh Rathore, Vinod K. Singh, Mrinmoy Datta, Sanjay K. Yadav, Owais Ali Wani, and Devideen Yadav. 2022. "Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas" Sustainability 14, no. 19: 12078. https://doi.org/10.3390/su141912078
APA StyleDas, A., Babu, S., Singh, R., Kumar, S., Rathore, S. S., Singh, V. K., Datta, M., Yadav, S. K., Wani, O. A., & Yadav, D. (2022). Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas. Sustainability, 14(19), 12078. https://doi.org/10.3390/su141912078