Hill Dam Design to Improve Water Use in Rural Areas—Case Study: Sacachún, Santa Elena
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Ancestral Hydraulic Structures Review
2.2. Selection of the Technically Appropriate Site for a Hill Dam
2.3. Hydrological Study
2.4. Geotechnical Study
2.5. Hydraulic Structures Design
2.6. Crop Proposal
3. Results
3.1. Ancestral Hydraulic Structures Review
3.2. Selection of the Technically Appropriate Site for the Construction of the Hill Dam
3.3. Hydrological Study
3.4. Geotechnical Study
3.5. Hydraulic Structures Design
3.6. Crop Proposal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aragonés, J.I.; Raposo, G.; Izurieta, C. The Dimensions of Sustainable Development in Social Discourse. Stud. Psychol. 2001, 22, 23–36. [Google Scholar] [CrossRef]
- Naciones Unidas CEPAL La Agenda 2030 y Los Objetivos de Desarrollo Sostenible Una Oportunidad Para América Latina y El Caribe Gracias Por Su Interés En Esta Publicación de La CEPAL. 2018. Available online: https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf (accessed on 9 February 2022).
- Hinojosa, L.; Villegas, W.G.; Muñoz, P.A. Exploring water security and water demand determinants in rural areas. The case of canton Cotacachi in Ecuador. Water Resour. Rural Dev. 2017, 10, 22–32. [Google Scholar] [CrossRef]
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; de Roo, A.; Mekonnen, M.M.; van de Bund, W.J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.M.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Sci. Total Environ. 2018, 613-614, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Sathler, D. Understanding human development, poverty and water scarcity patterns in the Brazilian Semi-arid through cluster analysis. Environ. Sci. Policy 2021, 125, 167–178. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Alvarado, J.; Gordillo, P.; Veintimilla, L.; Merchan, B.; Carrión-Mero, P.; Berrezueta, E. Communication Methods on Water Care during the COVID-19 Pandemic and Its Impact on the Resilience of the Rural Community of “Libertador Bolívar”, Ecuador. WIT Trans. Ecol. Environ. 2021, 250, 109–118. [Google Scholar] [CrossRef]
- Zarei, Z.; Karami, E.; Keshavarz, M. Co-production of knowledge and adaptation to water scarcity in developing countries. J. Environ. Manag. 2020, 262, 110283. [Google Scholar] [CrossRef]
- Molina, E. La Agricultura en Países Subdesarrollados. Particularidades de Su Financiamiento; CLACSO: Buenos Aires, Argentina, 2015; ISBN 2015090801053. [Google Scholar]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Venancio, L.P.; Filgueiras, R.; Mantovani, E.C.; Do Amaral, C.H.; Da Cunha, F.F.; Dos Santos Silva, F.C.; Althoff, D.; Dos Santos, R.A.; Cavatte, P.C. Impact of drought associated with high temperatures on Coffea canephora plantations: A case study in Espírito Santo State, Brazil. Sci. Rep. 2020, 10, 19719. [Google Scholar] [CrossRef]
- Panigrahi, B.; Panda, S.N. Optimal Sizing of On-Farm Reservoirs for Supplemental Irrigation. J. Irrig. Drain. Eng. 2003, 129, 117–128. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Vargas-Ormaza, V.; Apolo-Masache, B.; Jaya-Montalvo, M. A Conceptual Socio-Hydrogeological Model Applied to Sustainable Water Management. Case Study of the Valdivia River Basin, Southwestern Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 1275–1285. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Briones-Bitar, J. Management Practices for a Sustainable Community and Its Impact on Development, Manglaralto-Santa Elena, Ecuador. In Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education and Technology, Montego Bay, Jamaica, 24–26 July 2019. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Ohana-Levi, N.; Shachak, M.; Zaady, E.; Karnieli, A. Ecosystem effects of integrating human-made runoff-harvesting systems into natural dryland watersheds. J. Arid Environ. 2017, 147, 133–143. [Google Scholar] [CrossRef]
- Liebe, J.; van de Giesen, N.; Andreini, M. Estimation of Small Reservoir Storage Capacities in a Semi-Arid Environment. Phys. Chem. Earth Parts A/B/C 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Merchán-Sanmartín, B.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Carrión-Mero, P.; Guambaña-Palma, J.; Mestanza-Solano, D.; Berrezueta, E. Design of Sewerage System and Wastewater Treatment in a Rural Sector: A Case Study. Int. J. Sustain. Dev. Plan. 2022, 17, 51–61. [Google Scholar] [CrossRef]
- Ogilvie, A.; Riaux, J.; Massuel, S.; Mulligan, M.; Belaud, G.; Le Goulven, P.; Calvez, R. Socio-hydrological drivers of agricultural water use in small reservoirs. Agric. Water Manag. 2019, 218, 17–29. [Google Scholar] [CrossRef]
- Martos-Rosillo, S.; Herrera-Franco, G.; Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Durán, A.; Upegui, J.V.; Lucic, M.C.; Mateos, L.; Bardales, J.D.; et al. Water Sowing and Harvesting (SyCA), Ancestral Techniques That Solve Problems of the XXI Century. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education and Technology, Virtual, 27–31 July 2020. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Herrera-Borja, P.; Chávez-Moncayo, M.; Arévalo-Ochoa, J. Design of a Technical-Artisanal Dike for Surface Water Storage and Artificial Recharge of the Manglaralto Coastal Aquifer. Santa Elena Parish, Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 515–523. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Briones-Bitar, J. Ancestral Knowledge Application via “Albarradas” and “Tapes” in Water Management in Santa Elena Province, Ecuador. Boletín Geológico Y Min. 2020, 131, 75–88. [Google Scholar] [CrossRef]
- Carrión, P.; Briones, J.; Herrera, G.; Sánchez, C.; Limón, J. Practical Adaptations of Ancestral Knowledge for Groundwater Artificial Recharge Management of Manglaralto Coastal Aquifer, Ecuador. WIT Trans. Ecol. Environ. 2019, 217, 375–386. [Google Scholar] [CrossRef]
- World Bank. Biodiversity, Climate Change and Adaptation: Nature-Based Solutions from the World Bank Portfolio; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; pp. 1–97. ISBN 9782831718125. [Google Scholar]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. GAIA 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Bouzouidja, R.; Cannavo, P.; Bodénan, P.; Gulyás, Á.; Kiss, M.; Kovács, A.; Béchet, B.; Chancibault, K.; Chantoiseau, E.; Bournet, P.-E.; et al. How to evaluate nature-based solutions performance for microclimate, water and soil management issues–Available tools and methods from Nature4Cities European project results. Ecol. Indic. 2021, 125, 107556. [Google Scholar] [CrossRef]
- Chávez, M.Á.; Julieth, K.; Chang, R. Control De Inundaciones Y Diseño De Soluciones Viales Especiales En La Población De Ayangue, Cantón Santa Elena. 2017. Available online: http://www.dspace.espol.edu.ec/xmlui/handle/123456789/43450 (accessed on 9 February 2022).
- Mullo, A.; Oquendo, C. Estudio y Diseño de La Presa Colinar En Sacachún #1; ESPOL: Guayaqui, Ecuador, 2021. [Google Scholar]
- Ronaldo, N.; Stay, D. Estudios y Diseños de Presa Colinar En La Comuna Sacachún, Provincia de Santa Elena; ESPOL: Guayaqui, Ecuador, 2021. [Google Scholar]
- Berhane, G.; Gebreyohannes, T.; Martens, K.; Walraevens, K. Overview of micro-dam reservoirs (MDR) in Tigray (northern Ethiopia): Challenges and benefits. J. Afr. Earth Sci. 2016, 123, 210–222. [Google Scholar] [CrossRef]
- Kemeze, F.H. Economic valuation of supplemental irrigation via small-scale water harvesting. Water Resour. Econ. 2020, 31, 100160. [Google Scholar] [CrossRef]
- Aristizábal, M.F.V. Albarradas: Pertinencia de Los Saberes Ancestrales Frente a La Colonialidad Del Desarrollismo. Rev. Ciências Sociais 2019, 50, 223–247. [Google Scholar] [CrossRef]
- Instituto Nacional de Patrimonio Cultural San Biritute: Lluvia, Amor y Fertilidad; Guayaquil. 2012. Available online: https://issuu.com/inpc/docs/san_biritute_lluvia_amor_y_fertilid?embed_cta=embed_badge&embed_context=embed&embed_domain=www.patrimoniocultural.gob.ec&utm_medium=referral&utm_source=www.patrimoniocultural.gob.ec (accessed on 9 February 2022).
- BGS-CODIGEM Mapa Geológico de La República Del Ecuador. Escala, 1:1000000. 1983. Available online: https://sni.gob.ec/coberturas (accessed on 15 June 2022).
- Aspden, J.A.; McCourt, W.J.; Brook, M. Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of Western Colombia. J. Geol. Soc. 1987, 144, 893–905. [Google Scholar] [CrossRef]
- Cediel, F.; Shaw, R.P.; Cáceres, C. Tectonic Assembly of the Northern Andean Block. AAPG Mem. 2003, 79, 815–848. [Google Scholar] [CrossRef]
- Del Arco, N. Geología del Ecuador. Fac. Ing. En Ciencias La Tierra La Esc. Super. Politécnica Del Litoral; ESPOL: Guayaqui, Ecuador, 2003; p. 249. Available online: https://fdocuments.ec/document/libro-geologia-del-ecuador-por-ing-nunez-del-arco.html (accessed on 15 June 2022).
- Berrezueta, E.; López, K.; González-Menéndez, L.; Ordóñez-Casado, B.; Benítez, S. Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): Petrology, geochemistry and tectonic setting. J. Iber. Geol. 2021, 47, 367–386. [Google Scholar] [CrossRef]
- Aguayo, C.; Edwin, I. Levantamiento de Línea Base de La Gestión de Desechos Del Campus Como Zona de Amortiguamiento Del Bosque Protector Prosperina. 2019. Available online: https://www.scielo.org.mx/pdf/iit/v11n2/v11n2a5.pdf (accessed on 15 June 2022).
- CADS; ESPOL. Proyecto de Evaluación de Vulnerabilidad y Reducción de Riesgo de Desastres a Nivel Municipal En El Ecuador. 2013. Available online: https://docplayer.es/72636535-Proyecto-de-evaluacion-de-vulnerabilidad-y-reduccion-de-riesgo-de-desastres-a-nivel-municipal-en-el-ecuador-echo-dip-bud-2011-91002.html (accessed on 15 June 2022).
- Köppen, W. The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorol. Z. 2011, 20, 351–360. [Google Scholar] [CrossRef]
- INAMHI Tipos de Climas Del Ecuador. 2017. Available online: https://www.inamhi.gob.ec/mapas-climaticos/ (accessed on 10 April 2022).
- GAD Provincia Santa Elena. GAD Provincia Santa Elena Actualización Del Plan de Desarrollo Provincial y Ordenamiento Territorial de Santa Elena 2015-2023; GAD Provincia Santa Elena: Santa Elena, Ecuador, 2015; p. 323. [Google Scholar]
- Paltán Obregón, J.B. Percepciones y Dinámicas Socioambientales En Manejo de Agroecosistemas: Casos de Las Comunas de Sacachún y Dos Mangas, Provincia de Santa Elena; FLACSO Sede Ecuador: Quito, Ecuador, 2016; 137p. [Google Scholar]
- Paz y Miño, M.E. San Biritute: Lluvia, Amor y Fertilidad; INPC: Guayaquil, Ecuador, 2012; ISBN 978-9942-07-335-8. [Google Scholar]
- Xu, J.; Zhang, L.; Zhu, Y.; Gou, H. The Application of GPS-RTK in Engineering Measurement and Position. In Proceedings of the 2009 2nd International Symposium on Knowledge Acquisition and Modeling, KAM 2009, Wuhan, China, 30 November–1 December 2009; Volume 3, pp. 186–189. [Google Scholar]
- Environmental Systems Research Institute. ESRI ArcGis Desktop; Environmental Systems Research Institute: Redlands, CA, USA, 2009. [Google Scholar]
- Maidment, D. Arc Hydro GIS for Water Resources; ESRI Press: Redlands, CA, USA, 2002. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorología e Hidrología–INAMHI. Available online: http://www.inamhi.gob.ec/ (accessed on 24 March 2022).
- Escuela Superior Politecnica del Litoral. Cálculo de Las Curvas IDF, a Partir de Registros de Lluvia Máxima En 24 Horas y Relaciones Duración LLuvia Promedio. Subdirección Reg. Noreste Obras Hidráulicas e Ing. Agric. para el Desarro. Rural, 1st ed.; Escuela Superior Politecnica del Litoral: Guayaquil, Ecuador, 1978. [Google Scholar]
- Carvajal, Á.D.; Fernández, T.M. Determination of Curve Number in Betancí Subwatershed (Córdoba, Colombia) through Remote Sensing and GIS. Ing. Desarro. 2017, 35, 452–470. [Google Scholar]
- Critchley, W.; Sieger, K.; FAO. Manual de Captación y Aprovechamiento Del Agua de Lluvia. Tomo I: Bases Técnicas y Experiencias En África y Asia; Oficina Regional de la FAO para America Latina y el Caribe: Santiago, Chile, 1996. [Google Scholar]
- Bureau of Reclamation. Design of Small Dams, 3rd ed.; A Water Resources Technical Publication: Washington, DC, USA, 1987; ISBN 978-8190309806. [Google Scholar]
- Spencer, E. A Method of analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Clover Technology. GALENA-Slope Stability; Clover Technology: Robertson, Australia, 2003. [Google Scholar]
- NEC-SE-GC Norma Ecuatoriana de La Construcción-NEC: NEC-SE-CM-Geotecnia y Cimentación; Quito. 2015. Available online: https://www.cconstruccion.net/normas_files/doc/NEC-SE-GC-Geot%C3%A9cnia-y-Cimentaciones.pdf (accessed on 9 February 2022).
- Budhu, M. Soil Mechanics and Foundations, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-0-470-55684-9. [Google Scholar]
- Geo-Slope International Ltd. GeoStudio; Geo-Slope International Ltd.: Calgary, AB, Canada, 2007. [Google Scholar]
- Das, B. Fundamentos de Ingeniería Geotécnica; Thomson Learning: Polanco, Mexico, 2013; ISBN 9781111576752. [Google Scholar]
- Armas, R.; Horta, E. Presas de Tierra; ISPJAE: Cuidad de la Habana, Cuba, 1987. [Google Scholar]
- ASTM D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2020.
- Gestiriego Riego Por Goteo en El Cultivo del Maíz. Available online: https://www.gestiriego.com/riego-por-goteo-en-el-cultivo-del-maiz/ (accessed on 9 February 2022).
- El Comercio El Maíz Ya Está Listo para la Cosecha. Available online: https://www.elcomercio.com/actualidad/negocios/maiz-ya-listo-cosecha.html (accessed on 9 February 2022).
- Mateos Del Vas, J. Análisis Comparativo Sobre la Producción de Sandía Bajo Riego Localizado e Inundación en El Sureste Español; Universidad Politécnica de Cartagena: Cartagena, Spain, 2017; pp. 1–107. [Google Scholar]
- Cultivo de la Sandía y El Melón-ABC Rural-ABC Color. Available online: https://www.abc.com.py/edicion-impresa/suplementos/abc-rural/cultivo-de-la-sandia-y-el-melon-780377.html (accessed on 9 February 2022).
- Grupo Cooperativo Cajamar Boletín Informativo-Dosis de Riego Cultivo de Melón N° 157. 2015, pp. 6–7. Available online: https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/investigacion/documentos-y-programas/boletin-huerto-157-1496658321.pdf (accessed on 29 June 2022).
- Instituto Nacional de Investigaciones Forestale. Agenda Técnica Agrícola Chihuahua; Instituto Nacional de Investigaciones Forestale: Ciudad de México, México, 2017. [Google Scholar]
- Cultivo de Cebolla-Origen, Cultivo, Usos y Más-Agrotendencia.Tv. Available online: https://agrotendencia.tv/agropedia/el-cultivo-de-cebolla/ (accessed on 9 February 2022).
- Cultivo de Tomate: Producción y Manejo Agronómico-Agrotendencia.Tv. Available online: https://agrotendencia.tv/agropedia/el-cultivo-de-tomate/ (accessed on 9 February 2022).
- De, E.; De, D.E.T.; Granja; Sosa Medina, J.M.; Guillén Rodríguez, B. Revista Agropecuaria Granja. 2014. Available online: http://anuariosatlanticos.casadecolon.com/index.php/GRANJA/issue/view/298 (accessed on 9 February 2022).
- Hernandez, E.; Beaver, L. Guía Para La Producción Comercial de La Calabaza Tropical; Universidad de Puerto Rico: San Juan, Puerto Rico, 2015; pp. 1–9. [Google Scholar]
- Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Franco, G.; Jaya-Montalvo, M.; Rodríguez, D.; Loor-Flores de Valgas, C.; Berrezueta, E. Community-University Partnership in Water Education and Linkage Process. Study Case: Manglaralto, Santa Elena, Ecuador. Water 2021, 13, 1998. [Google Scholar] [CrossRef]
- Merchán-Sanmartín, B.; Aucapeña-Parrales, J.; Alcívar-Redrován, R.; Carrión-Mero, P.; Jaya-Montalvo, M.; Arias-Hidalgo, M. Earth Dam Design for Drinking Water Management and Flood Control: A Case Study. Water 2022, 14, 2029. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M. Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [Google Scholar] [CrossRef]
- Mohammadzadeh-Habili, J.; Khalili, D. Assessment of Artificial Recharge Dams and Improvement of Their Groundwater-Recharge Capacity. J. Hydrol. Eng. 2020, 25, 04020011. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Loor-Flores de Valgas, C.; Apolo-Masache, B.; Heredia, J. Flow and Transport Numerical Model of a Coastal Aquifer Based on the Hydraulic Importance of a Dyke and Its Impact on Water Quality: Manglaralto—Ecuador. Water 2021, 13, 443. [Google Scholar] [CrossRef]
- Blanc, E.; Strobl, E. Is Small Better? A Comparison of the Effect of Large and Small Dams on Cropland Productivity in South Africa. World Bank Econ. Rev. 2014, 28, 545–576. [Google Scholar] [CrossRef]
- MVOTMA. Manual de Diseño y Construcción de Pequeñas Presas; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogota, Colombia, 2011; Volume 1, p. 101.
- Potter, P.E. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee. V. C. Miller. J. Geol. 1957, 65, 112–113. [Google Scholar] [CrossRef]
- Bharath, A.; Kumar, K.K.; Maddamsetty, R.; Manjunatha, M.; Tangadagi, R.B.; Preethi, S. Drainage morphometry based sub-watershed prioritization of Kalinadi basin using geospatial technology. Environ. Challenges 2021, 5, 100277. [Google Scholar] [CrossRef]
- Abboud, I.A.; Nofal, R.A. Morphometric analysis of wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques. J. Afr. Earth Sci. 2017, 126, 58–74. [Google Scholar] [CrossRef]
- Chanson, H. Embankment overtopping protection systems. Acta Geotech. 2015, 10, 305–318. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; de Lima, A.; Adami, M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. Int. J. Geosci. 2020, 9, 583. [Google Scholar] [CrossRef]
- Havel, J.E.; Kovalenko, K.E.; Thomaz, S.M.; Amalfitano, S.; Kats, L.B. Aquatic invasive species: Challenges for the future. Hydrobiologia 2015, 750, 147–170. [Google Scholar] [CrossRef]
- Derua, Y.A.; Kahindi, S.C.; Mosha, F.W.; Kweka, E.J.; Atieli, H.E.; Wang, X.; Zhou, G.; Lee, M.; Githeko, A.K.; Yan, G. Microbial larvicides for mosquito control: Impact of long lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non-target organisms in western Kenya highlands. Ecol. Evol. 2018, 8, 7563–7573. [Google Scholar] [CrossRef]
- Serrano-Coronel, G.; Chipana-Rivera, R.; Moreno-Pérez, M.F.; Roldán-Cañas, J. Study of vertical water flows contribution to the crop water consumption in suka kollus using a mixed drainage system. Agric. Water Manag. 2018, 206, 86–94. [Google Scholar] [CrossRef]
- Rivera, R.C.; Moreno-Pérez, M.F.; Velasco, R.C.; Roldán-Cañas, J. Performance of pre-hispanic irrigation systems in the Andean region of Bolivia. Agric. Water Manag. 2016, 170, 180–188. [Google Scholar] [CrossRef]
- Mohammad-Hosseinpour, A.; Molina, J.-L. Improving the Sustainability of Urban Water Management through Innovative Groundwater Recharge System (GRS). Sustainability 2022, 14, 5990. [Google Scholar] [CrossRef]
- Maheshwari, B.; Varua, M.; Ward, J.; Packham, R.; Chinnasamy, P.; Dashora, Y.; Dave, S.; Soni, P.; Dillon, P.; Purohit, R.; et al. The Role of Transdisciplinary Approach and Community Participation in Village Scale Groundwater Management: Insights from Gujarat and Rajasthan, India. Water 2014, 6, 3386–3408. [Google Scholar] [CrossRef]
- Alataway, A.; El Alfy, M. Rainwater Harvesting and Artificial Groundwater Recharge in Arid Areas: Case Study in Wadi Al-Alb, Saudi Arabia. J. Water Resour. Plan. Manag. 2019, 145, 1–13. [Google Scholar] [CrossRef]
- Gonzalez, D.; Dillon, P.; Page, D.; Vanderzalm, J. The Potential for Water Banking in Australia’s Murray–Darling Basin to Increase Drought Resilience. Water 2020, 12, 2936. [Google Scholar] [CrossRef]
Country | Ancestral Hydraulic Structure | Structure’s description | Function |
---|---|---|---|
Ecuador | Albarrada | Structures made of earth walls | Wetland formation Aquifer recharge |
Tape (artisanal dam) | Accumulation of rocks and sediments in a section of a river. | Aquifer recharge | |
Colombia | Agricultural Camellones | Land platforms surrounded by wide water channels. | Maintain moisture in the fields during droughts |
Peru | Amunas | Canals built with impermeable Stone on permeable ground | Artificial aquifer recharge |
Acequias | Canals that capture water even in permeable areas | Artificial aquifer recharge | |
Qochas | Dug wells connected by small canals | Artificial aquifer recharge | |
Spain | Acequias de careo | Canals dug into the ground to collect water from melting ice | Artificial aquifer recharge |
Mexico | Terrazas (terraces) | Canals and aqueducts | Retain moisture and reduce crop’s soil erosion |
Qanats | Underground Aqueducts | Artificial aquifer recharge | |
Chile | Capta niebla | Takes advantage of the water droplets present in fog | Capable of producing around 10,000 L in 8 h |
Runoff Coefficient | ||
Curve number (CN) | Hydro group C | 70 |
Land destined for forests | ||
Potential retention (S) | 259.19 mm | |
Runoff threshold (Po) | 51.84mm | |
Probable Maximum Precipitation (P) | 145.44 mm | |
Runoff coefficient (C) | 0.24 | |
Design flow | ||
Contribution basin area (A) | 380,000 km2 | |
Rain intensity (I); T = 50 years | 177.8 mm/h | |
Runoff coefficient (C) | 0.24 | |
Design flow (Q) | 4.5 m3/s |
Figure | Protection against Leaks | Convergence of the Saturation Lines | Infiltration Rate | Dam Status |
---|---|---|---|---|
11 | Unfiltered | Convergence at 4.72 m from the heel of the dam. | 3.48 × 10−7 m3/s | Imminent failure |
12 | 25.5 × 0.5 m horizontal permeable filter | Convergence towards the permeable filter | 1.11 × 10−5 m3/s | Stable dam |
Plantation Type. | Water Needs for Drip | Production Time |
---|---|---|
Corn | 5000–6000 m3/ha [64] | 100–125 day [65] |
Watermelon | 2000–3721 m3/ha [66] | 75–95 day [67] |
Melon | 3000–4000 m3/ha [68] | 90–120 day |
Pearl onion | 3500–4500 m3/ha [69] | 150–170 day [70] |
Tomato | 2000 m3/ha | 90–150 day [71] |
Pumpkin | 1000–1250 m3/ha [72] | 100–120 day [73] |
Average | 3160 m3/ha | 101–130 day |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mullo-Sinaluisa, A.; Oquendo-Borbor, C.; Velastegui-Montoya, A.; Merchan-Sanmartín, B.; Chávez-Moncayo, M.; Herrera-Matamoros, V.; Carrión-Mero, P. Hill Dam Design to Improve Water Use in Rural Areas—Case Study: Sacachún, Santa Elena. Sustainability 2022, 14, 12268. https://doi.org/10.3390/su141912268
Mullo-Sinaluisa A, Oquendo-Borbor C, Velastegui-Montoya A, Merchan-Sanmartín B, Chávez-Moncayo M, Herrera-Matamoros V, Carrión-Mero P. Hill Dam Design to Improve Water Use in Rural Areas—Case Study: Sacachún, Santa Elena. Sustainability. 2022; 14(19):12268. https://doi.org/10.3390/su141912268
Chicago/Turabian StyleMullo-Sinaluisa, Anthony, Carla Oquendo-Borbor, Andrés Velastegui-Montoya, Bethy Merchan-Sanmartín, Miguel Chávez-Moncayo, Viviana Herrera-Matamoros, and Paúl Carrión-Mero. 2022. "Hill Dam Design to Improve Water Use in Rural Areas—Case Study: Sacachún, Santa Elena" Sustainability 14, no. 19: 12268. https://doi.org/10.3390/su141912268
APA StyleMullo-Sinaluisa, A., Oquendo-Borbor, C., Velastegui-Montoya, A., Merchan-Sanmartín, B., Chávez-Moncayo, M., Herrera-Matamoros, V., & Carrión-Mero, P. (2022). Hill Dam Design to Improve Water Use in Rural Areas—Case Study: Sacachún, Santa Elena. Sustainability, 14(19), 12268. https://doi.org/10.3390/su141912268