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Abstract: In this study, an automatic Change Detection (CD) framework based on a multi-dimensional
deep Siamese network was proposed for CD in bi-temporal hyperspectral imagery. The proposed
method has two main steps: (1) automatic generation of training samples using the Otsu algorithm
and the Dynamic Time Wrapping (DTW) predictor, and (2) binary CD using a multidimensional
multi-dimensional Convolution Neural Network (CNN). Two bi-temporal hyperspectral datasets
of the Hyperion sensor with a variety of land cover classes were used to evaluate the performance
of the proposed method. The results were also compared to reference data and two state-of-the-
art hyperspectral change detection (HCD) algorithms. It was observed that the proposed method
relatively had higher accuracy and lower False Alarm (FA) rate, where the average Overall Accuracy
(OA) and Kappa Coefficient (KC) were more than 96% and 0.90, respectively, and the average FA rate
was lower than 5%.
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1. Introduction

Earth’s surface constantly changes due to different factors, such as climate change and
anthropogenic activities [1]. Detecting these changes helps to understand the relationship
between optimum management of various resources and the Earth system [2,3]. Therefore,
timely and accurate Change Detection (CD) is essential to know the effects of anthropogenic
activities on Earth’s objects [4-7].

CD can be performed using different datasets, such as bi-temporal remote sensing
imagery [8]. So far, different types of remote sensing datasets have been effectively applied
to many applications [9,10] due to several advantages, such as large coverage, low cost,
and availability of archived consistent datasets [11,12]. In this regard, one of the valuable
datasets is those collected by hyperspectral sensors. Hyperspectral imagery is collected in
very narrow spectral sampling intervals [13-15]. The availability of a high number of spec-
tral bands in hyperspectral data considerably facilitates the detection of targets with similar
spectral responses [16-18]. However, one of the limitations of the hyperspectral dataset is
the low temporal resolution, which can be efficiently resolved using the recent and future
series of hyperspectral sensors (e.g., Hyperspectral Infrared Imager (HyspIRI), PRISMA
(PRecursore IperSpettrale Della Missione Applicativa), and HypXIM). Moreover, due to the
unique content of hyperspectral imagery, the extraction of multitemporal information is a
challenge. Finally, atmospheric effects, noise, and data redundancy can negatively affect
the results of Hyperspectral CD (HCD) [19].

So far, many algorithms have been developed for HCD [20]. It is widely reported that
Deep Learning (DL) algorithms have the highest accuracies [21-23]. A DL approach can
automate the learning of features on input data at several abstraction levels [24,25]. Among
different DL frameworks, CNN methods have been extensively applied to remote sensing
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CD applications [8,26-28]. CNN methods are often challenged by the availability of large
sample datasets. Although many approaches for sample data generation are based on
traditional CD methods and use data augmentation procedures, obtaining reliable sample
data is still challenging [29-32].

So far, many studies have been devoted to HCD using DL methods. For example,
Guo et al. [33] designed a practical hybrid pixel/subpixel levels analysis HCD framework.
This formwork was designed in three main steps: (1) pixel level analysis; the subtraction
operator was first utilized to extract spectral change difference. Following this, the principal
component analysis was used to reduce the dimension of the features. The convolutional
sparse analysis manner was also employed to consider spatial structures. (2) Subpixel level
analysis; a temporal, spectral unmixing approach was applied to provide more details
of the subpixel abundance. Following this, (3) change map generation was undertaken;
the results of the first and second steps were integrated, and the binary change map
was generated using a support vector machine classifier. The F1-Score of their proposed
method was 97% in CD of the Farmland-1 dataset. In addition, Wang et al. [34] presented
a Siamese HCD network based on a spectral/spatial attention module. This framework
extracted the deep features from the bi-temporal hyperspectral imagery based on spectral
and spatial information by a convolutional block attention module. Then, the similarity
of the extracted deep features was generated using the Euclidean distance metric. In the
final step, features were flattened and fed into a fully connected layer with a sigmoid
activation function. The excremental results of HCD in this resulted in an OA of 97% for
the Farmland-1 dataset. Seydi and Hasanlou [35] proposed an HCD method based on
match-based learning. This method can be applied within two main parts: (1) the predictor
phase to predict the change areas by combining the similarity and distance metrics, and
(2) the thresholding phase to decide on change pixels based on a thresholding method. They
reported an OA of 96% for the Farmland-2 dataset. Moreover, Tong et al. [36] presented a
multiple change detection technique using transfer learning and uncertain area analysis.
Four phases were used to implement their method: (1) a binary change map obtained using
the uncertain area analysis procedure; (2) reference image classification using an active
learning procedure; (3) target data classification based on the enhanced transfer learning
manner; and (4) finally, the post-classification comparison manner employed to provide a
multiple change map. The OA of their HCD method was 97% for the Farmland-2 dataset.
Additionally, Liu et al. [37] proposed a semi-supervised HCD method based on a multilayer
cascade screening strategy. This framework increased the training sample dataset by
combining the spatial information of labelled data with an active learning framework. The
OAs of HCD on the Farmland-1 and Farmland-2 datasets were 91% and 94%, respectively.
Finally, Seydi and Hasanlou [29] proposed a supervised HCD method based on a 3D CNN
and an image differencing algorithm. This framework was developed based on two main
steps: (1) highlighting change and no-change pixels by utilizing a spectral differencing
algorithm and (2) making decisions by 3D CNN for binary change map generation. This
HCD method had an OA of 95% for both Farmland-1 and Farmland-2 datasets.

Although many DL methods have been developed for HCD, there are still several
challenges. These limitations are: (1) there is a need for selecting an optimum threshold
value and for collecting training data, both of which are time-consuming; (2) some of
the state-of-the-art DL methods are relatively complex and are hard to use for practical
applications; (3) the existence of noise and atmospheric conditions cause unreliable CD
results; and (4) most studies have only investigated spectral features and ignored the
potential of the spatial features in HCD. Consequently, it is essential to develop a DL
algorithm that can minimize the mentioned issues and improve the result of HCD. To
this end, a new framework for HCD was developed in this research, utilizing the DTW
algorithm and CNN algorithm. The proposed method was implemented within two
main steps: (1) automatic sample data generation and (2) end-to-end CNN-based binary
classification and CD. The proposed method has the following advantages: (1) it uses
multiple dimensional kernel convolution instead of only 2D kernel convolution to include
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both spectral and spatial features in the CD process; (2) it is an automatic framework and
does not require setting the parameters and selecting training data; and (3) it is end-to-end
and does not need any additional processing steps.

2. Case Study and Reference Data

The two widely-used hyperspectral datasets acquired by Hyperion (Figure 1) were
utilized in this study. Many CD studies have used these benchmark HCD datasets [38—41].
The first dataset is called the Farmland-1 dataset and are of an agricultural field near
Yuncheng in China. The images of the Farmland-1 dataset were captured on 3 May 2006,
and 23 April 2007. The second dataset is the Farmland-2 dataset which is of farmland in
Hermiston city, Oregon, USA. The images of this dataset were captured on 1 May 2004, and
8 May 2007.

W

=

Figure 1. (a,b) False-color composites of the hyperspectral dataset captured in 2006 and 2007 from
the Farmland-1 study area. (c) The binary reference data was generated for the Farmland-1 dataset.
(d,e) False-color composites of the hyperspectral dataset were captured in 2004 and 2007 from the
Farmland-2 study area. (f) The binary reference data was generated for the Farmland-2 dataset.

The quality and quantity of the reference dataset are paramount. To this end, this
dataset utilized two benchmark datasets for HCD. The reference data for both datasets were
created using visual analysis of the previous studies which employed these hyperspectral
datasets (i.e., [19,29,36,38,42,43]).
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3. Methodology

Figure 2 demonstrates the flowchart of the proposed HCD framework. The proposed
method has two main phases: (1) sample data generation; and (2) End-to-end CNN-based
binary classification and CD.
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Figure 2. Overview of the proposed framework for HCD.

3.1. Pre-Processing

An essential step in producing accurate CD results is data pre-processing. In the
proposed method, the pre-processing step starts with spectral and spatial corrections.
Spectral correction of the Hyperion L1R data includes removing no-data bands, correcting
striping and noise effects, radiometric correction, and atmospheric correction. Finally,
154 spectral bands were used for HCD.

3.2. Sample Data Generation

The primary purpose of the sample data generation phase is to generate reliable
samples for the CNN algorithm. To this end, a new framework for sample data gener-
ation is proposed in this study. This framework has three main steps: (1) determining
sample regions (sub-regions) to select the training samples; (2) highlighting change and
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no-change areas using the Dynamic Time Wrapping (DTW) algorithm for the sub-regions;
and (3) hierarchical thresholding using the Otsu method.

3.2.1. Sub-Regions Determination

Since the proposed framework utilizes a CNN algorithm for CD, it requires sample
data to optimize the hyperparameters. The sample data can be generated from specific
regions and then can be utilized to learn the CNN algorithm to generate a change map of
other areas. To this end, it is required to define sub-regions for sample data generation
and, subsequently, to extract reliable sample data from those sub-regions. In this study,
the sub-regions were randomly identified from different regions well distributed over the
study area.

3.2.2. Change/No-Change Prediction

It was required to highlight change and no-change areas over the selected sub-regions.
The predictor phase was mainly used to discriminate change areas from no-change areas.
To this end, the DTW algorithm was utilized in this study due to its high potential and
robustness [44].

The DTW algorithm transforms the global optimization problem into a local optimiza-
tion problem using a sequence matching method [44,45]. This procedure is defined for
bi-temporal images (X1 and X2, respectively) as follows:

X1= [x11 Joaeees , xln] (1)

XZI [X21 Joeesess ’ in] (2)

The Euclidean distance (Equation (3)) is employed as a metric to measure the similarity
of pixels in bi-temporal hyperspectral images.

N(xq;, x21) = \/Zle(xlib — xp)° ©)

In which x1;, and xy;; are the ith pixel in the first and second times of hyperspectral
images at the bth spectral band, and B is the total number of spectral bands.
DTW for two pixels gained at two different times is defined using Equation (4).

. (X1ip—1, X2ip—1)
A(Xq, Xo) = R(x14, X01) +ming  (X1ip, X2ip—1) 4)
(xlib—erZib)

(X1ib-1, X2ib—1)
where (xy;5, X2;5_1) are the upper, left, and upper left neighboring spectral elements in
(X1ip-1, X2ib)
the bi-temporal hyperspectral images.

3.2.3. Hierarchical Otsu Thresholding

The Otsu method is a global clustering-based image thresholding method that can
automatically divide objects of images from the background using a threshold value [46].
The main idea behind this algorithm is to divide the histogram of input into two segments
by minimizing the weight of the variance within the cluster [46,47].

There are multiple factors, including pixels affected by atmospheric and noise, as well
as mixed pixels, which can cause issues in the results produced by the Otsu algorithm. These
factors cause a mix of change and no-change pixels in the histogram. In this study, a new
framework was designed to perform thresholding based on the hierarchical Otsu method
to resolve these issues. The use of hierarchical thresholding increased the reliability of the
training samples. The output of the DTW was used within the Otsu thresholding method
to discriminate the change and no-change pixels. This resulted in an initial change/no-
change map. The no-change training pixels were selected from the no-change areas in
this initial map. In the next step, the Otsu thresholding method was employed to the
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output of DTW and only on the change areas in the initial change/no-change map. This
resulted in a new change/no-change map where the change areas were selected with better
accuracy. The change training pixels were selected from the change areas in this second
change/no-change map.

3.3. End-to-End CNN-Based Binary CD

A CNN framework can generally contain two main parts of feature extractor and class
label assignment, which a softmax can perform [31]. A CNN network includes multiple
layers, including a convolution layer, pooling layers, and a fully connected layer [48].

The proposed CNN algorithm was based on a Siamese framework and has two
main differences compared to the original deep Siamese networks: (1) utilizing multi-
dimensional kernel convolution (i.e., 3-D, 2-D, and 1-D kernel convolutions); and (2) em-
ploying depth-wise dilated convolution for investigating spectral information. Figure 3
presents the architecture of the proposed deep Siamese CNN for HCD. The proposed
architecture has three 3D dilated convolution layers, a 2D convolution layer, and a 1D
convolution layer (Figure 4). Then, the features were transmitted to a fully connected layer
that was two layers. Finally, the softmax layer classified the two classes of change and
no-change.

!Concatenate
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! and Prediction :
1 | |
1 | Change |
: — i
- | No-Change -
(N : |
. L. |
o |l
1
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Figure 3. The architecture of the proposed deep Siamese CNN for HCD applications. Feature map
size is indicated by the numbers.
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(b) ()
Figure 4. Comparison of kernel convolutions. (a) 1-D, (b) 2-D, and (c) 3-D.

The optimization algorithm used in this study was the Adam optimizer. This algorithm
is the adaptive learning rate optimization algorithm. The cost function was also cross-
entropy (Equation (5)).

Hy(9) = — Ty ylog (p(y)) + (1~ yi) dog(1 — ply:)) ©)

where y is a real label, p(y) is the predicted value by the model, and N refers to the number
of classes.

The convolution layer consisted of a set of filters to automatically generate informative
features from the raw input data. The kernel of the convolution layer e designed in different
dimensional (1D, 2D, and 3D). Figure 4 presents the main difference of kernel convolutions
in different dimensions.

The convolution layer uses x as input and provides y in the @th layer using Equation (6).

ye = p(w‘px‘pfl) +b® (6)

where p is the nonlinear activation function, w is the weight in the lth layer, and b is defined
as the bias vector of the current layer.

The new output of the wth feature map in the ¢th layer (v, () at position (x,y,z) for
the 3D-convolution is defined based on Equation (7)

vﬁgzw —P( w+z Z“w 12.3(0 12%4)*1 rs,t,q E;ch;)q(ers)(ert)) 7)

where g is the feature cube connected to the current feature cube in the (¢ — I)th layer; and
«, B, and 7y are the length, width, and depth of the convolution kernel size, respectively.
The output of the 2D convolution layer can be computed using Equation (8).

U}(prw —P( ot +Z Zvcnp—l Zﬁw—l o E;Hr;’?q(wrs)) (8)

The computational in 1D convolution at spatial position x can be expressed based on
Equation (9).

Vo,w ( <pw+22y“’ Wi, w,q ((px+1t)q> )

An activation function and a batch normalization function are included in each convo-
lutional layer.

3.4. Accuracy Assessment and Comparison

The results of CD were compared with the reference data (see Section 2) by calculating
several accuracy indices, including the OA, F1-Score, Precision, KC, Recall, Miss-Detection
(MD), and False Alarm (FA) extracted from a confusion matrix (Table 1). The confusion
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matrix is generated based on four components of True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN).

Table 1. Confusion matrix.

Predi
Confusion Matrix redicted
Change No-Change
7; Change TP N
<<E No-Change EP TN

Our proposed method was compared with four other advanced HCD methods to
assess its performance. Liu et al. [49] was an unsupervised Multiple HCD framework
using the Spectral Unmixing (MSU) method. The second method was introduced by
Jafarzadeh and Hasanlou [39], which utilized the Spectral Unmixing (SU) method and
similarity measure index. The third HCD method was designed by Hou et al. [50] based
on a combination of deep, slow features and differencing (DSFA-Diff) methods. Finally,
Du et al. [51] introduced an HCD method based on multiple morphological attributes and
spectral angle weighted-based local absolute distance (SALA) methods.

4. Experiments and Results

The weights of the proposed CNN algorithm were initialized using the Glorot nor-
mal initializer technique [52]. Moreover, the CNN algorithm was trained with a back-
propagation manner and the Adam optimizer. The input patch size was 11 x 11 x 154, and
the size of mini-batches was 500. Additionally, the initial learning rate and the number of
iterations were set to 10~* and 750 epochs, respectively.

The number of sub-regions for the Farmland-1 and Farmland-2 datasets were consid-
ered 2 and 7, respectively. The sample data generation results of the proposed method are
demonstrated in Figure 5. As can be seen, the generated samples had a high correlation
with the reference data.

The results of the statistical accuracy assessment of the sample data generation method
for sample regions (Figure 5a,d) are provided in Table 2. Based on the results, utilizing the
hierarchical Otsu algorithm increased the reliability of the sample data generation. For
example, for the Farmland-1 dataset, the OA was 93.97 when the original Otsu method
was used (i.e., Level-I). However, it was increased by 4.5% when the hierarchical Otsu
thresholding method was employed (i.e., Level-II).

Table 2. The sample data generation accuracy levels by the proposed hierarchical Otsu thresholding.
Level-0 and Level-1 indicate when the original and the proposed hierarchical Otsu thresholding
methods were employed.

Dataset Level OA KC TP TN FP FN
Earmland1 I 93.97 0.865 4968 2377 386 85
armiand- | 98.51 0.964 4968 2056 21 85

I 97.08 0.938 4317 7037 309 32

Farmland-2

99.53 0.990 3831 7037 19 32
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(a) Selected Sample Region  (b) Generated Sample Data (c) Reference Data

(d) Selected Sample Region  (e) Generated Sample Data (f) Reference Data

Figure 5. The result of sample data generation for (a—c) Farmland-1 and (d-f) Farmland-2 datasets.
White and gray colors demonstrate the TP and TN pixels, respectively.

The generated sample data were randomly divided into three groups. Figure 5b,e
illustrates the distribution of the reference data, and Table 3 provides the number of the
generated samples.

Table 3. Numbers of reference samples in the two hyperspectral datasets which were used for HCD.

Case Study All Sample Data Training (50%) Validation (17%) Testing (33%)
Farmland-1 7130 3566 1212 2352
Farmland-2 10,919 5460 1856 3603

The results of the HCD using the proposed framework and the SU and MSU methods
for the Farmland-1 dataset are presented in Figure 6. The results are different, especially
in the areas where no changes occurred (i.e., there are no FN pixels). Relatively, more
no-change areas were considered as change pixels using the MSU, DSFA-Diff, and SU
methods. However, the proposed CD method showed a high performance compared to the
reference data (i.e., Figure 6d). Furthermore, there were many FN pixels in the result of the
SALA method.

Figure 7 shows the errors using different HCD algorithms for the Farmland-1 dataset.
SU, DSFA-Diff, and MSU CD methods had significant amounts of FP and FN pixels (i.e., red
and blue colors, respectively). Overall, the proposed HCD method had the least number
of errors.
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Figure 6. The results of binary HCD for the Farmland-1 dataset using (a) DSFA-Diff, (b) SU, (c) MSU,
(d) SALA, and (e) proposed methods. (f) Binary reference data. White and black colors demonstrate

the TP and TN pixels, respectively.

The result of the numerical analysis of the HCD methods for the Farmland-1 dataset is
presented in Table 4. Our framework had a higher performance than other methods. The
OA and KC of the proposed framework were more than 96% and 0.91, respectively. The SU
method also had good performance in detecting TP pixels, although it had a limitation in

detecting TN pixels.

Table 4. The accuracy of different HCD methods for the Farmland-1 dataset.

Method DSFA-Diff SU MSU SALA Propose-Method
OA (%) 86.64 92.50 95.16 94.65 96.33
Precision (%) 73.25 95.37 93.07 86.30 94.35
MD (%) 9.80 16.85 8.40 1.50 6.04
FA (%) 15.0 2.25 3.17 7.10 2.57
F1-Score (%) 80.86 88.83 92.32 92.01 94.15
Recall (%) 90.23 83.14 91.59 98.53 93.95
KC 0.71 0.83 0.89 0.880 0.91
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Figure 7. The CD errors of (a) DSFA-DIff, (b) SU, (c) MSU, (d) SALA, and (e) proposed for the
Farmland-1 datasets. Gray, red, and blue colors demonstrate TP /TN, FN, and FP pixels, respectively.

The result of binary change maps for the Farmland-2 dataset using different HCD
methods is also presented in Figure 8. The proposed method provided relatively better
performance and lower FA rates.

The CD errors using different methods for the Farmland-2 dataset were also evaluated,
and the results are demonstrated in Figure 9. It was observed that the SALA and proposed
method had lower FP and MD pixels than the other methods. Overall, the proposed
method resulted in the lowest FP pixels but more FN pixels than SALA.

The statistical accuracy indices obtained by different HCD methods for the Farmland-2
dataset are also presented in Table 5. Based on the results, all HCD algorithms had relatively
lower performance than the results obtained for the Farmland-1 dataset. This issue was
more severe for the MSU and SU methods in terms of OA, KC, and PCC. For this dataset,
the FA and PCC were considerably different compared to the results of the Farmland-1
dataset. Although the SALA method had the lowest MD rate, it had a high FA rate (more
than 4%). Generally, the proposed method provided the highest accuracy and lowest error
compared to the other four HCD methods.
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Figure 8. The results of binary HCD for the Farmland-2 dataset using (a) DSFA-Diff, (b) SU, (c) MSU,
(d) SALA, and (e) proposed methods. (f) Binary reference data. White and black colors indicate the
TP and TN pixels, respectively.

Table 5. The accuracy of different HCD methods for the Farmland-2 dataset.

Method DSFA-Diff SU MSU SALA Propose-Method
OA (%) 88.38 90.06 89.68 95.96 96.86
Precision (%) 72.37 63.10 80.78 85.25 94.62
MD (%) 35.45 9.92 24.55 4.31 11.20
FA (%) 5.87 9.95 5.76 4.02 1.42
F1-Score (%) 68.22 74.21 78.02 90.16 91.72
Recall (%) 64.52 90.08 75.45 95.67 88.99
KC 0.61 0.68 0.72 0.876 0.898

The ablation analysis in deep learning frameworks measures a network’s performance
after removing one or more components to understand how the ablated components con-
tribute to the overall performance. We removed the 1D/2D/3D convolution layers to
consider the effects of these layers in our proposed method. In this regard, four scenarios
were considered: (S#1) without 1-D convolution layers, (5#2) without 2-D convolution lay-
ers, (S#3) without 3-D convolution layers, and (S#4) proposed method with all components.
The result of the ablation analysis of the proposed method for the Farmland-2 dataset is
presented in Table 6. The 2D and 3D convolution layers had the highest and lowest impact
on the proposed HCD method, respectively.
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Figure 9. The CD errors of the (a) DSFA-Diff, (b) SU, (c) MSU, (d) SALA, and (e) proposed methods for
the Farmland-2 dataset. Gray, red, and blue colors indicate the TP /TN, FN, and FP pixels, respectively.

Table 6. The ablation analysis of the proposed HCD method for different scenarios. Scenario 1:
without 1-D convolution layers. Scenario 2: without 2-D convolution layers. Scenario 3: without 3-D
convolution layers. Scenario 4: the proposed method with all components.

Method Scenario 1 Scenario 2 Scenario 3 Propose-Method
OA (%) 95.55 95.05 96.18 96.86
Precision (%) 87.98 92.52 93.27 94.62
MD (%) 11.10 18.8 13.50 11.20
FA (%) 2.90 1.60 1.50 1.20
F1-Score (%) 88.45 86.46 89.74 91.72
Recall (%) 88.92 81.16 86.48 88.99
KC 0.857 0.834 0.874 0.898

5. Discussion

Based on the results, hyperspectral imagery is an excellent resource for CD purposes,
providing an average OA of more than 90% using different HCD algorithms. The SU
method had a low FA (2.25%) rate and a high MD rate (16.85%) for the Farmland-1 dataset.
There is, however, a trade-off between detecting change and non-changed classes. For
example, the SALA method provided lower MD rates in both datasets but had higher FA
rates than the proposed method. Ideally, a method should be able to detect both change
and no-change pixels with the lowest error.

The DTW model is a robust predictor and can efficiently predict the change and no-
change areas. One of the main limitations of the original DTW predictor is that it takes
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more time to predict the bi-temporal hyperspectral datasets (about 5 h). However, our
proposed method improved the time processing of HCD (less than one hour). Another
limitation of the original DTW predictor is that it utilizes only a spectral dataset for HCD.
However, in this study, both spatial /spectral features were combined to enhance the results
of HCD.

DL methods need a high number of sample datasets, which is usually a challenge for
bi-temporal datasets. Additionally, the sample dataset’s quality and quantity are other
challenges for the supervised methods. The proposed method in this study did not require
setting parameters and collecting user training data. This could significantly reduce the
cost and time.

Recently, several HCD methods were proposed to generate sample data using an
unsupervised framework [53]. Mainly, these methods generate the sample data with
a traditional predictor (i.e., principal component analysis, change vector analysis) and
thresholding methods. Although they obtained promising results, the generation of reliable
sample data is still challenging. The unreliable sample data result in low accuracies because
the supervised classifiers are trained with false sample data. One of the achievements of
the proposed method was refining sample data in a hierarchical thresholding method to
improve the reliability of sample data. Additionally, utilizing a robust predictor (i.e., DTW
algorithm) helped achieve promising results.

Although hyperspectral imagery contains rich spectral information, spatial features
should also be included in the HCD process to obtain more accurate results. Most HCD
methods have only utilized spectral features, neglecting the importance of spatial features.
On the other hand, although there are many methods to extract spatial features, they need
to optimize them. Optimizing these features by optimization algorithms is a big challenge
and time confusing. This issue can reduce the accuracy of HCD using both traditional and
advanced methods. The proposed method could automatically extract the deep features
containing spatial and spectral information. In conclusion, the proposed method yielded
accurate and reliable results for HCD.

The proposed method contained multi-dimensional convolution layers to improve
the results of HCD. Although there are many DL methods based on only 2-D convolution
filters, the proposed method used 3D dilated convolution to employ both spatial features
and the relationship between spectral bands and, consequently, improved the accuracy of
HCD. Additionally, the dilated convolution increased the receptive field without missing
information. Furthermore, this research replaced the 2D convolution layer with 1D kernel
convolution to decrease the number of parameters of the proposed network. This also
decreased the time of the learning process.

The proposed HCD method effectively extracted the changes in an automatic frame-
work. In this study, we focused on binary change detection, though multi-change detection
could provide more details of changes. Thus, our future work will be focused on developing
a new HCD method for multiple change detection.

6. Conclusions

Developing robust and reliable HCD algorithms is a relatively challenging task due to
the specific content of the hyperspectral data, such as a high number of spectral bands and
noise conditions. It is also essential to develop an HCD algorithm that can effectively utilize
spectral and spatial features within hyperspectral imagery to improve the result of CD.
Although DL methods have proved to be efficient for HCD, they require a large number of
samples to produce accurate CD results. In this study, a new HCD method based on deep
Siamese CNN was proposed for HCD to resolve some of the HCD challenges. The hierar-
chical Otsu thresholding within the proposed framework improved the performance of the
sample generation by producing a high number of reliable sample data. The proposed CNN
architecture also improved the HCD by employing spatial and spectral deep features. In
addition to comparing the results with the reference data and state-of-the-art CD methods,
the proposed method was applied to two bi-temporal hyperspectral datasets. According
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to the results, hyperspectral imagery has a high potential for CD purposes but requires
special techniques to extract change information accurately. Based on visual and statistical
accuracy analyses, in comparison with other state-of-the-art HCD methods, the proposed
method has the following advantages: (1) it provides a higher accuracy (more than 93%)
as well as low MD and FA rates; (2) it is an automatic framework and did not require
collecting training data; (3) it is robust to a variety of datasets and land cover classes, (4) it
can effectively extract robust deep features using multi-dimensional kernel convolution.
All of these advantages illustrate the high potential of the proposed DL framework for
different HCD applications.
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