Does High-Speed Railway Promote the Level of Human Capital? An Empirical Analysis Based on Three Urban Agglomerations in China
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Literature Review
2.1.1. The Direct and Indirect Impact of HSR on the Level of Human Capital
2.1.2. Review of Existing Studies
2.2. Hypothesis Development
3. Methodology
3.1. Sample Selection and Data Sources
3.2. Variable Definition
3.2.1. Dependent Variable
3.2.2. Independent Variable and Mediating Variables
3.2.3. Control Variables
3.3. Model Construction
Econometric Model
4. Main Results and Discussions
4.1. Descriptive Statistics
4.2. Baseline Regression Results
4.3. Evolutionary Characteristics Analysis
5. Robustness Test
5.1. Parallel Trend Test
5.2. Endogeneity Test
5.3. Alternative Key Variables
5.4. Placebo Test
6. Mechanism Analysis
7. Conclusions and Recommendations
7.1. Conclusions
7.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrison, W.L.; Souleyrette, R.R., II. Transportation, innovation, and development: The companion innovation hypothesis. Logist. Transp. Rev. 1996, 32, 5. [Google Scholar]
- Donaldson, D. Railroads of the Raj: Estimating the impact of transportation infrastructure. Am. Econ. Rev. 2018, 108, 899–934. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Duflo, E.; Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, D.; Hornbeck, R. Railroads and American economic growth: A “market access” approach. Q. J. Econ. 2016, 131, 799–858. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.; Enflo, K. Locomotives of local growth: The short-and long-term impact of railroads in Sweden. J. Urban Econ. 2017, 98, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Jayawarna, D.; Jones, O.; Macpherson, A. Entrepreneurial potential: The role of human and cultural capitals. Int. Small Bus. J. 2014, 32, 918–943. [Google Scholar] [CrossRef]
- Catalini, C.; Fons-Rosen, C.; Gaule, P. Did Cheaper Flights Change the Direction of Science? SSRN 2774366. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2774366 (accessed on 30 September 2022).
- Wang, Y.F.; Ni, P.F. Economic growth spillover and spatial optimization of HSR. China Ind. Econ. 2016, 2, 21–36. (In Chinese) [Google Scholar]
- Sánchez-Mateos, H.S.M.; Givoni, M. The accessibility impact of a new High-Speed Rail line in the UK—A preliminary analysis of winners and losers. J. Transp. Geogr. 2012, 25, 105–114. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. ‘No county left behind?’ The distributional impact of high-speed rail upgrades in China. J. Econ. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef] [Green Version]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. J. Urban Econ. 2017, 98, 98–123. [Google Scholar] [CrossRef]
- Coto-Millán, P.; Inglada, V.; Rey, B. Effects of network economies in high-speed rail: The Spanish case. Ann. Reg. Sci. 2007, 41, 911–925. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Lin, S.; Zhang, J.; Zeng, J. Does high-speed railway promote regional innovation growth or innovation convergence? Technol. Soc. 2021, 64, 101472. [Google Scholar] [CrossRef]
- Kobayashi, K.; Okumura, M. The growth of city systems with high-speed railway systems. Ann. Reg. Sci. 1997, 31, 39–56. [Google Scholar] [CrossRef]
- Vickerman, R. High-speed rail and regional development: The case of intermediate stations. J. Transp. Geogr. 2015, 42, 157–165. [Google Scholar] [CrossRef]
- Aldieri, L.; Sena, V.; Vinci, C.P. Domestic R&D spillovers and absorptive capacity: Some evidence for US, Europe and Japan. Int. J. Prod. Econ. 2018, 198, 38–49. [Google Scholar]
- Acemoglu, D.; Moscona, J.; Robinson, J.A. State capacity and American technology: Evidence from the nineteenth century. Am. Econ. Rev. 2016, 106, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Alumni, R.; Books, R.; Series, A.S.; Nominal, I.S.; Rates, R.E.; Series, S.; From, I.Z. Economics of Agglomeration: Cities, Industrial Location, and Globalization, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 234–356. [Google Scholar]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Hanna, R.; Oliva, P. The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Ebenstein, A.; Lavy, V.; Roth, S. The long-run economic consequences of high-stakes examinations: Evidence from transitory variation in pollution. Am. Econ. J. Appl. Econ. 2016, 8, 36–65. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Hsu, P.H.; Podolski, E.; Veeraraghavan, M. In the Mood for Creativity: Weather-Induced Mood, Inventor Productivity, and Firm Value. FIRN Res. Pap. Forthcom. 2016, 55, 10–33. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Lei, S.; Teng, J.; Zhang, J.; Zhang, L.; Xu, X. The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling. Energy 2019, 182, 1193–1201. [Google Scholar] [CrossRef]
- Yang, X.; Lin, S.; Li, Y.; He, M. Can high-speed rail reduce environmental pollution? Evidence from China. J. Clean. Prod. 2019, 239, 118135. [Google Scholar] [CrossRef]
- Kamga, C.; Yazici, M.A. Achieving environmental sustainability beyond technological improvements: Potential role of high-speed rail in the United States of America. Transp. Res. Part D Transp. Environ. 2014, 31, 148–164. [Google Scholar] [CrossRef]
- Bell, C.; van Dillen, S. On the way to good health? Rural roads and morbidity in Upland Orissa. J. Transp. Health 2018, 10, 369–380. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Lou, N.S.; Zhou, G.F. Does the Opening of High-speed Railway Help Improve Residents’ health? J. Financ. Econ. 2020, 46, 92–107. (In Chinese) [Google Scholar]
- Ke, X.; Chen, H.; Hong, Y.; Hsiao, C. Do China’s high-speed-rail projects promote local economy?—New evidence from a panel data approach. China Econ. Rev. 2017, 44, 203–226. [Google Scholar] [CrossRef]
- Cairó, I.; Cajner, T. Human capital and unemployment dynamics: Why more educated workers enjoy greater employment stability. Econ. J. 2018, 128, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Bernard, A.B.; Moxnes, A.; Saito, Y.U. Production networks, geography, and firm performance. J. Political Econ. 2019, 127, 639–688. [Google Scholar] [CrossRef] [Green Version]
- Xu, M. Riding on the new silk road: Quantifying the welfare gains from high-speed railways. Job Mark. Pap. 2017, 25, 32–40. [Google Scholar]
- Wang, C.Y.; Lan, Z.M.; Zhang, C.; Hou, X.S. High-speed rail construction, human capital migration and regional innovation. China Ind. Econ. 2020, 12, 102–120. (In Chinese) [Google Scholar]
- Bils, M.; Klenow, P.J. Does schooling cause growth? Am. Econ. Rev. 2000, 90, 1160–1183. [Google Scholar] [CrossRef] [Green Version]
- Krugman, P. Increasing returns and economic geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Lu, M. Human-capital externalities in China. Natl. Bur. Econ. Res. 2018. [Google Scholar] [CrossRef]
- Von Hippel, E. “Sticky information” and the locus of problem solving: Implications for innovation. Manag. Sci. 1994, 40, 429–439. [Google Scholar] [CrossRef]
- Schultz, T.W. The economic importance of human capital in modernization. Educ. Econ. 1993, 1, 13–19. [Google Scholar] [CrossRef]
- Chen, S.T.; Kuo, H.I.; Chen, C.C. The relationship between GDP and electricity consumption in 10 Asian countries. Energy Policy 2007, 35, 2611–2621. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Wang, D.P. An empirical study on the impact of economic development on the scale of higher education. Stat. Decis. Mak. 2010, 10, 78–80. (In Chinese) [Google Scholar] [CrossRef]
- Moretti, E. Estimating the social return to higher education: Evidence from longitudinal and repeated cross-sectional data. J. Econom. 2004, 121, 175–212. [Google Scholar] [CrossRef] [Green Version]
- Berry, C.R.; Glaeser, E.L. The divergence of human capital levels across cities. Pap. Reg. Sci. 2005, 84, 407–444. [Google Scholar] [CrossRef] [Green Version]
- Diamond, R. The determinants and welfare implications of US workers’ diverging location choices by skill: 1980–2000. Am. Econ. Rev. 2016, 106, 479–524. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Lu, M. Growth led by human capital in big cities: Exploring complementarities and spatial agglomeration of the workforce with various skills. China Econ. Rev. 2019, 57, 101113. [Google Scholar] [CrossRef]
- Bai, J.H.; Wang, Y.; Jiang, F.X.; Li, J. R&D factor flow, Spatial knowledge spillover and Economic Growth. Econ. Res. 2017, 52, 109–123. (In Chinese) [Google Scholar]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Lockwood, C.M.; Hoffman, J.M.; West, S.G.; Sheets, V. A comparison of methods to test mediation and other intervening variable effects. Psychol. Methods 2002, 7, 83. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
Urban Agglomeration | Number of Cities | City Name |
---|---|---|
Beijing–Tianjin–Hebei | 12 | Beijing, Tianjin, Baoding, Tangshan, Langfang, Shijiazhuang, Qinhuangdao, Handan, Xingtai, Zhangjiakou, Chengde, Cangzhou |
Yangtze River Delta | 23 | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Hangzhou, Ningbo, Shaoxing, Huzhou, Jiaxing, Jinhua, Zhoushan, Taizhou, Hefei, Maanshan, Tongling, Anqing, Chuzhou, Chizhou |
Pearl River Delta | 15 | Guangzhou, Shenzhen, Foshan, Dongwan, Zhongshan, Huizhou, Zhuhai, Jiangmen, Zhaoqing, Shaoguan, Yangjiang, Shanwei, Heyuan, Qingyuan, Yunfu |
Variables Type | Variables | N | Mean | Std Dev. | Minimum | Maximum |
---|---|---|---|---|---|---|
Dependent Variable | Lnhc | 850 | 4.9418 | 1.0626 | 1.8077 | 7.1471 |
Independent Variable | HSR | 850 | 0.5129 | 0.5001 | 0.0000 | 1.0000 |
Control Variables | Lnstrc | 850 | 5.4464 | 0.0632 | 5.2578 | 5.6369 |
FDI | 850 | 0.0371 | 0.0304 | 0.0007 | 0.2011 | |
Finance | 850 | 1.092 | 0.7105 | 0.1886 | 9.0122 | |
Rd | 850 | 0.0031 | 0.0038 | 0.0000 | 0.0415 | |
Lnedu | 850 | 3.6908 | 0.223 | 1.2461 | 4.8859 | |
Mediating Variables | Laborflow | 850 | 0.7009 | 0.4747 | 0.1081 | 2.5120 |
Lnsedu | 850 | 8.4903 | 1.2993 | 1.2301 | 10.8528 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | Lnhc | ||||
HSR | 0.445 *** | 0.208 *** | 0.218 ** | 0.091 | 0.133 |
(18.23) | (4.40) | (2.61) | (1.17) | (1.53) | |
Lnstrc | 3.438 *** | 1.106 | 4.038 *** | 2.018 | |
(4.10) | (0.81) | (3.35) | (1.62) | ||
FDI | −2.553 *** | 1.009 | −0.24 | −6.439 *** | |
(−2.74) | (0.64) | (−0.30) | (−3.61) | ||
Finance | −0.045 | −0.021 | −0.129 ** | 0.05 | |
(−1.17) | (−0.40) | (−2.30) | (0.53) | ||
Rd | 5.302 | 9.096 | 25.636 * | −6.236 | |
(0.67) | (0.52) | (1.85) | (−0.58) | ||
Lnedu | 0.464 ** | −0.928 *** | 0.377 | 0.713 *** | |
(2.43) | (−3.37) | (1.16) | (4.46) | ||
Constants | 4.713 *** | −15.478 *** | 2.269 | −18.166 ** | −9.035 |
(34.70) | (−3.37) | (0.31) | (−2.66) | (−1.35) | |
Year and Ind | Controlled | Controlled | Controlled | Controlled | Controlled |
N | 850 | 850 | 204 | 391 | 255 |
R2 | 0.292 | 0.468 | 0.445 | 0.425 | 0.663 |
2003–2007 | 2008–2013 | 2014–2019 | |
---|---|---|---|
Variables | Lnhc | ||
HSR | −0.047 | 0.108 ** | −0.025 |
(−0.51) | (2.36) | (−0.37) | |
Lnstrc | 1.318 | 1.099 | 0.863 * |
(0.66) | (0.85) | (1.86) | |
FDI | −1.51 | −2.242 | −0.008 |
(−1.52) | (−1.15) | (−0.02) | |
Finance | −0.706 *** | 0.230 ** | −0.001 |
(−4.10) | (2.02) | (−0.05) | |
Rd | 440.278 ** | 8.352 | −0.425 |
(2.59) | (0.6) | (−0.13) | |
Lnedu | 0.432 | 0.343 * | 0.012 |
(1.15) | (1.72) | (0.23) | |
Constant | −3.571 | −2.444 | 0.419 |
(−0.33) | (−0.34) | (0.17) | |
Year and Ind | Controlled | Controlled | Controlled |
N | 250 | 300 | 300 |
R2 | 0.457 | 0.195 | 0.023 |
Variables | (1) | (2) |
---|---|---|
Lnhc | Lnhc | |
HSR4 | 0.124 | 0.089 |
(3.96) | (1.71) | |
HSR3 | 0.075 | 0.042 |
(1.33) | (0.47) | |
HSR2 | −0.007 | −0.035 |
(−0.14) | (−0.42) | |
HSR1 | 0.06 | 0.128 |
(1.18) | (1.62) | |
Current | 0.036 | 0.025 |
(0.71) | (0.33) | |
HSRL1 | 0.081 | 0.09 * |
(0.16) | (1.12) | |
HSRL2 | 0.063 * | 0.109 * |
(0.27) | (1.25) | |
HSRL3 | 0.104 * | 0.146 ** |
(0.78) | (1.36) | |
HSRL4 | 0.221 * | 0.281 ** |
(1.2) | (2.05) | |
N | 850 | 204 |
R2 | 0.535 | 0.541 |
2SLS | First Stage | Second Stage |
---|---|---|
(1) | (2) | |
HSR | Lnhc | |
HSR | 0.390 *** | |
(5.35) | ||
IV | 0.015 *** | |
(140.88) | ||
Control | YES | YES |
Constant | 0.089 * | 0.423 |
(1.68) | (0.78) | |
N | 850 | 850 |
R2 | 0.969 | 0.264 |
Cragg-Donald Wald F Statistic | 5201.54 |
Variables | (1) | Beijing–Tianjin–Hebei | Yangtze River Delta | Pearl River Delta |
---|---|---|---|---|
Tedu | Tedu | Tedu | Tedu | |
HSR | 0.378 ** | 0.605 ** | 0.043 | 0.26 |
(2.06) | (2.31) | (0.12) | (0.91) | |
N | 50 | 50 | 50 | 50 |
R2 | 0.541 | 0.588 | 0.642 | 0.855 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Mediating variable | Lnsedu | Laborflow | ||||
Dependent variable | Lnhc | Lnsedu | Lnhc | Lnhc | Laborflow | Lnhc |
First stage | Second stage | Third stage | First stage | Second stage | Third stage | |
HSR | 0.208 *** | 0.592 *** | 0.164 *** | 0.208 *** | 0.068 *** | 0.183 *** |
(4.4) | (4.87) | (3.49) | (4.4) | (4.55) | (3.52) | |
Z | 0.075 *** | 0.375 | ||||
(3.08) | (1.47) | |||||
Control | YES | YES | YES | YES | YES | YES |
Constant | −15.478 *** | −73.134 *** | −10.002 ** | −15.478 *** | −4.101 *** | −13.941 *** |
(−3.37) | (−7.47) | (−2.09) | (−3.37) | (−2.77) | (−2.89) | |
Year and Ind | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
N | 850 | 850 | 850 | 850 | 850 | 850 |
R2 | 0.468 | 0.38 | 0.511 | 0.468 | 0.549 | 0.478 |
coef | Z | P > |Z| | |
---|---|---|---|
Sobel | 0.0365 | 2.327 | 0.01996 |
Goodman-1 (Aroian) | 0.0365 | 2.307 | 0.02108 |
Goodman-2 | 0.0365 | 2.348 | 0.01887 |
Indirect effect | 0.0365 | 2.327 | 0.01996 |
Direct effect | 0.0605 | 0.991 | 0.3218 |
Total effect | 0.0970 | 1.550 | 0.1213 |
Proportion of total effect that is mediated | 0.376 | ||
Ratio of indirect to direct effect | 0.603 | ||
Ratio of total to direct effect | 1.603 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Ou, G. Does High-Speed Railway Promote the Level of Human Capital? An Empirical Analysis Based on Three Urban Agglomerations in China. Sustainability 2022, 14, 12631. https://doi.org/10.3390/su141912631
Xu Y, Ou G. Does High-Speed Railway Promote the Level of Human Capital? An Empirical Analysis Based on Three Urban Agglomerations in China. Sustainability. 2022; 14(19):12631. https://doi.org/10.3390/su141912631
Chicago/Turabian StyleXu, Yafei, and Guoli Ou. 2022. "Does High-Speed Railway Promote the Level of Human Capital? An Empirical Analysis Based on Three Urban Agglomerations in China" Sustainability 14, no. 19: 12631. https://doi.org/10.3390/su141912631
APA StyleXu, Y., & Ou, G. (2022). Does High-Speed Railway Promote the Level of Human Capital? An Empirical Analysis Based on Three Urban Agglomerations in China. Sustainability, 14(19), 12631. https://doi.org/10.3390/su141912631