Analysis of the Capital Structure in Sustainable Infrastructure Systems: A Methodological Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Methodological Proposal
3.1. Structuring Process
3.2. Development Stage
- The investment plan could be divided into two stages. The first stage (preparation) has a duration of x periods and the second stage (construction) has a duration of k periods. Thus, the development stage, which combines the above stages, has a duration of x + k periods. This way, each investment can be given by Ii, where i indicates each period and, thus,
- 2.
- Each period can have a different capital structure. Thus, equity investment, given by %Ei, could be different at each period i; therefore, the total debt provided by the senior and mezzanine debt would be the complement (1 − %Ei). As a result, Equation (6) is mandatory. This model can be used in any scenario. For example, lenders can limit the sponsors’ investment strategy through guarantees, covenants, or letters of credit; thus, project debts could be disbursed after a 100% equity investment or pari passu. The final capital structure would be given by the participation of the total equity and debt between the total Capex, which is shown in the “Final Capital Structure” column in Equations (4) and (5), respectively. Another method can calculate the weighted average between total equity and total Capex per period (Equation (10)). Similarly, the weighted average could be used, as shown in Equation (11).
- 3.
- Interest rates in senior debt (Kdsi) and mezzanine debt (Kdmi) could be different at each period i. Therefore, according to the project’s risk and development stage duration, it would be possible to have an interest rate arrangement per each period i. Due to intrinsic risk, the relation between these interest rates follows Equation (8). The average cost of debt funding, which includes both senior and mezzanine debt, could be calculated as shown in Equation (12).
- 4.
- Interest generated at each period i by accumulated debt, which includes senior and mezzanine debt, must be paid according to the capital structure of each period i.
- 5.
- The investment plan, which includes both the construction contract and inflation, would be signed by sponsors through a SPV with a construction company. The total interest paid during the development stage can be calculated as the difference between the total Capex and the investment plan, which are given by
- 6.
- A sustainability factor (SF) is defined as an increase in the investment at each period i. According to [47], this could be approximately 5%.
3.3. Operating and Maintenance Stage
- According to PPP law 1508/2012 [44], PIPR projects can obtain financial resources from the Colombian Government. These resources are called “Future Funds”, and are conditioned by their availability, service levels, quality standards, and service continuity. These funds may not exceed 30% of the contract’s originally agreed value and are delivered only at the O&M stage. This scheme assumed that fee structure subsidies given to users were not part of the “Future Funds”.
- Private investors using legal entities would be able to take annual deductions from their taxable income for environmental control and improvement investments. This value cannot exceed 20% of taxable income.
- Income tax can be established per section.
Algorithm 1. Capital Structure Programming. Source: author’s, based on Table 1. |
1 Conversion Debt-Equity = False |
2 For i = 1 to n − 1 |
3 If Criteriai = Certify and Conversion Debt-Equity = False Then |
4 % Debti = (Debti − Mezzaninei)/Asseti |
5 % Equityi = (Equityi + Mezzaninei)/Asseti |
6 Conversion Debt-Equity = True |
7 Else |
8 % Debti = (Debti − Amortizationi)/Asseti |
9 % Equityi = Equityi/Asseti |
10 End if |
11 Next i |
3.4. Proposal for Validating Debt Pay Capacity
Sector | DSCR | LLRC |
---|---|---|
Power | ||
Merchant plants | 2.00x–2.25x | 2.25x–2.75x |
With a tolling agreement | 1.50x–1.70x | 1.50x–1.80x |
Regulated business | 1.40x–1.45x | 1.40x–1.45x |
Transportation | 1.35x–1.50x | 1.40x–1.60x |
Telecommunication | 1.35x–1.50x | 1.35x–1.50x |
Water | 1.20x–1.30x | 1.30x–1.40x |
3.5. Financing Sustainable Infrastructure Projects through Capital Markets
4. Case Study
4.1. Investment Plan
4.2. Development Stage
- Planned investment curve: data based on Aguas Nacionales S.A. E.S.P.
- According to Egler and Frazao [14], the sustainability factor could be approximately 5%.
- Capital structure per period: Although the project was 100% funded by own resources, to apply the methodological proposal based on primary information, it was considered that in the event of acquiring debt, the capital structure per period would behave as presented in Table 4. The debt funds would be a sustainable financial mechanism in COP issued by the SPV.
- The interest rate: Given that the Colombian capital market (and the Latin American one) has little experience in financing sustainable development, the last green bonds emission interest rate (issued by Bancolombia S.A. in December 2016) was considered as referent; it was equal to an IBR + 2.2% at seven years (the IBR is the banking reference indicator in Colombia). This was the first time that a Latin American bank issued this type of financial mechanism [74]. Accordingly, given the project’s duration and characteristics, a 3.5% spread was considered.
- IBR values were obtained from the Bank of the Republic of Colombia and Bancolombia, and projected by the authors.
- Cash flows were projected in current prices.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esty, B. Why Study Large Projects? An Introduction to Research on Project Finance. Eur. Financ. Manag. 2004, 10, 213–224. [Google Scholar] [CrossRef]
- Chen, B.; Mao, C.-K.; Hu, J.-L. The optimal debt ratio of public–private partnership projects. Int. J. Constr. Manag. 2015, 15, 239–253. [Google Scholar] [CrossRef]
- Gonzalez-Ruiz, J.D.; Arboleda, A.; Botero, S.; Rojo, J. Investment valuation model for sustainable infrastructure systems: Mezzanine debt for water projects. Eng. Constr. Archit. Manag. 2019, 26, 850–884. [Google Scholar] [CrossRef]
- Switzer, F.S., III; Ligato, J.; Piratla, K. Interdependent Infrastructures as a Multiteam System: Enhancing Resilience. J. Infrastruct. Syst. 2022, 28, 04022026. [Google Scholar] [CrossRef]
- Saidi, S.; Kattan, L.; Jayasinghe, P.; Hettiaratchi, P.; Taron, J. Integrated infrastructure systems—A review. Sustain. Cities Soc. 2018, 36, 1–11. [Google Scholar] [CrossRef]
- Vatenmacher, M.; Svoray, T.; Tsesarsky, M.; Isaac, S. Performance-driven vulnerability analysis of infrastructure systems. Int. J. Disaster Risk Reduct. 2022, 76, 103031. [Google Scholar] [CrossRef]
- Brichetti, J.P.; Mastronardi, L.; Rivas, M.E.; Serebrisky, T.; Solís, B. The Infrastructure Gap in Latin America and the Caribbean: Investment Needed through 2030 to Meet the Sustainable Development Goals; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Akintoye, A.; Beck, M. Policy, Finance & Management for Public-Private Partnerships, 1st ed.; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- Esty, B. Big Deals: Financing Large-Scale Investments. Working Knowledge: A Report on Research at Harvard Business School. 2000. Available online: http://hbswk.hbs.edu/item/1690.html (accessed on 16 July 2015).
- Kwak, Y.H.; Chih, Y.; Ibbs, C.W. Towards a Comprehensive Understanding of Public Private Partnerships for Infrastructure Development. Calif. Manage. Rev. 2009, 51, 51–78. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Xu, Y.; Shi, L. A chance constrained programming method to determine optimal capital structure for privatized infrastructure. Constr. Manag. Econ. 2021, 39, 579–594. [Google Scholar] [CrossRef]
- Soleymani, H.; Ravanshadnia, M.; Montazer, M. Transportation Infrastructure Project Financing; Highways Capital Structure Design Techniques. Shock Vib. 2021, 2021, 4988577. [Google Scholar] [CrossRef]
- Cai, J.; Li, S.; Cai, H. Empirical Analysis of Capital Structure Determinants in Infrastructure Projects under Public–Private Partnerships. J. Constr. Eng. Manag. 2019, 145, 04019032. [Google Scholar] [CrossRef]
- Soleymani, H.; Ravanshadnia, M.; Montazer, M. An Innovative Conceptual Model to Structure Financing Package of Infrastructure Projects. Shock Vib. 2021, 2021, 6711408. [Google Scholar] [CrossRef]
- Pinto, J.M.; Coutinho dos Santos, M.J.; Verga Matos, P. Governance of PPP Infrastructure Projects: A Variable Capital Structure Valuation Approach. SSRN Electron. J. 2022, 1–25. [Google Scholar] [CrossRef]
- Chen, C.; Bartle, J.R. The Challenges and Opportunities of Financing Infrastructure. In Innovative Infrastructure Finance; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 1–18. [Google Scholar] [CrossRef]
- Regular Funding and Financing Infrastructure: The Joint-Use of Public and Private Finance*—Web of Science Core Collection. Available online: https://www-webofscience-com.ezproxy.unal.edu.co/wos/woscc/full-record/WOS:000633044400005 (accessed on 9 August 2022).
- Pranata, N.; Firdaus, N.; Mychelisda, E.; Hidayatina, A. Crowdfunding for Infrastructure Project Financing: Lessons Learned for Asian Countries. In Big Data, Green Growth, and Technology Disruption in Asian Companies and Societes; IGI Global: Hershey, PA, USA, 2022; pp. 276–300. [Google Scholar]
- Li, Y.; Xiang, P.; You, K.; Guo, J.; Liu, Z.; Ren, H. Identifying the Key Risk Factors of Mega Infrastructure Projects from an Extended Sustainable Development Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7515. [Google Scholar] [CrossRef]
- Bakhtawar, B.; Thaheem, M.J.; Arshad, H.; Tariq, S.; MAzher, K.M.; Zayed, T.; Akhtar, N. A Sustainability-Based Risk Assessment for P3 Projects Using a Simulation Approach. Sustainability 2022, 14, 344. [Google Scholar] [CrossRef]
- Li, H.; Li, J. Risk Governance and Sustainability: A Scientometric Analysis and Literature Review. Sustainability 2021, 13, 12015. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, S.; Lin, H.; Zeng, R. Impact of Public Sector on Sustainability of Public–Private Partnership Projects. J. Constr. Eng. Manag. 2019, 146, 04019104. [Google Scholar] [CrossRef]
- Mao, X.; Gan, J.; Zhao, X. Debt risk evaluation of toll freeways in Mainland China using the grey approach. Sustainability 2019, 11, 1430. [Google Scholar] [CrossRef] [Green Version]
- Kleimeier, S. Limited and Norecourse. Project Finance: A Survey. Estud. Adm. 1995, 2, 27–67. [Google Scholar] [CrossRef]
- Grimsey, D.; Lewis, M.K. Evaluating the risks of public private partnerships for infrastructure projects. Int. J. Proj. Manag. 2002, 20, 107–118. [Google Scholar] [CrossRef]
- Lee, C.W.; Zhong, J. Financing and risk management of renewable energy projects with a hybrid bond. Renew. Energy 2015, 75, 779–787. [Google Scholar] [CrossRef]
- Shrestha, A.; Chan, T.-K.; Aibinu, A.A.; Chen, C.; Martek, I. Risk Allocation Inefficiencies in Chinese PPP Water Projects. J. Constr. Eng. Manag. 2018, 144, 04018013. [Google Scholar] [CrossRef]
- Leader, S. Risk Management, Project Finance and Rights-Based Development, 1st ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Donkor, E.A.; Duffey, M. Optimal Capital Structure and Financial Risk of Project Finance Investments: A Simulation Optimization Model with Chance Constraints. Eng. Econ. 2013, 58, 19–34. [Google Scholar] [CrossRef]
- Zhao, J.; Su, G.; Li, G. Financing China’s unprecedented infrastructure boom: The evolution of capital structure from 1978 to 2015. Public Money Manag. 2019, 39, 581–589. [Google Scholar] [CrossRef]
- Zhang, X. Financial Viability Analysis and Capital Structure Optimization in Privatized Public Infrastructure Projects. J. Constr. Eng. Manag. 2005, 131, 656–668. [Google Scholar] [CrossRef]
- Kukah, A.S.K.; Owusu-Manu, D.-G.; Badu, E.; Edwards, D.J. Exploring influencing factors for private sector participation in PPP power projects: Case of Ghana. J. Facil. Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Nijs, L. Mezzanine Financing—Tools, Applications and Total Performance; Wiley Finance: West Sussex, UK, 2014. [Google Scholar]
- Copeland, T.E.; Antikarov, V. Real Options: A Practitioner’s Guide, 1st ed.; Texere: Knutsford, UK, 2001; Volume 1. [Google Scholar]
- Bertera, B. Successful Sustainable Infrastructure. Washington, 2015. Available online: http://csengineermag.com/article/successful-sustainable-infrastructure/ (accessed on 12 February 2016).
- Fatemi, A.M.; Fooladi, I.J. Sustainable finance: A new paradigm. Glob. Financ. J. 2013, 24, 101–113. [Google Scholar] [CrossRef]
- Bolton, B. Sustainable Financial Invesment. Maximizing Corporate Profits and Long-Term Economic Value Creation, 1st ed.; Palgrave Macmillan: New York, NY, USA, 2015. [Google Scholar]
- Martens, M.L.; Carvalho, M.M. Key factors of sustainability in project management context: A survey exploring the project managers’ perspective. Int. J. Proj. Manag. 2016, 35, 1084–1102. [Google Scholar] [CrossRef]
- Sundararajan, S.K.; Tseng, C.-L. Managing Project Performance Risks under Uncertainty: Using a Dynamic Capital Structure Approach in Infrastructure Project Financing. J. Constr. Eng. Manag. 2017, 143, 04017046. [Google Scholar] [CrossRef]
- Demirel, H.C.; Leendertse, W.; Volker, L. Mechanisms for protecting returns on private investments in public infrastructure projects. Int. J. Proj. Manag. 2022, 40, 155–166. [Google Scholar] [CrossRef]
- Gebhardt, J.; Ziegler, R.C.; Mourant, A. Water infrastructure financing: The experience of the United States. Financ. Investig. Water Secur. 2022, 263–293. [Google Scholar] [CrossRef]
- Hernández, R.; Fernández, C.; Baptista, M.D.P. Metodología de la Investigación, 5th ed.; McGraw Hill: Mexico City, Mexico, 2010. [Google Scholar]
- Corbetta, P. Metodología y Técnicas de Investigación Social; McGraw Hill: Madrid, Spain, 2007. [Google Scholar]
- Congreso de Colombia. Ley 1508 de 2012. Por la cual se Establece el Regime n Jurídico de las Asociaciones Público-Privadas. Diario Oficial; Congreso de Colombia: Bogotá, Colombia, 2012; p. 14. [Google Scholar]
- Departamento Nacional de Planeación—DNP. Asociaciones Público Privadas—APP—en Infraestructura en Colombia. Presentaciones APPs. p. 86. 2016. Available online: https://www.dnp.gov.co/programas/participación-privada-y-en-proyectos-de-infraestructura/asociaciones-publico-privadas/Paginas/presentaciones.aspx (accessed on 15 December 2016).
- Kurniawan, F.; Mudjanarko, S.W.; Ogunlana, S. Best practice for financial models of PPP projects. Procedia Eng. 2015, 125, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Egler, H.-P.; Frazao, R. Sustainable Infrastructure and Finance—How to Contribute to a Sustainable Future. 2016. Available online: http://unepinquiry.org/wp-content/uploads/2016/06/Sustainable_Infrastructure_and_Finance.pdf (accessed on 10 December 2017).
- González-Ruiz, J.D.; Botero-Botero, S.; Duque-Grisales, E. Financial eco-innovation as a mechanism for fostering the development of sustainable infrastructure systems. Sustainability 2018, 10, 4463. [Google Scholar] [CrossRef] [Green Version]
- Comisión de Regulación de Agua Potable y Saneamiento—CRA. Definición de la Tasa de Descuento Aplicable a los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado, Bogotá D.C. 2014. Available online: http://cra.gov.co/apc-aa-files/30653965346361386366633062643033/4.-documento-de-trabajo-tasa-de-descuento_1.pdf (accessed on 10 March 2015).
- World Bank. Green Infrastructure Finance: Framework Report; World Bank: Washington, DC, USA, 2012; Available online: http://www.iadb.org/intal/intalcdi/pe/2012/10331.pdf (accessed on 7 March 2014).
- Bielenberg, A.; Kerlin, M.; Oppenheim, J.; Roberts, M. Financing Change: How to Mobilize Private Sector Financing for Sustainable Infrastructure; Mckinsey & Company: Washington, DC, USA, 2016; Available online: http://newclimateeconomy.report/2015/wp-content/uploads/sites/3/2016/01/Financing_change_How_to_mobilize_private-sector_financing_for_sustainable-_infrastructure.pdf (accessed on 10 June 2017).
- Borgonovoa, E.; Gatti, S.; Peccati, L. What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. Eur. J. Oper. Res. 2010, 205, 227–236. [Google Scholar] [CrossRef]
- Aragonés, J.; Blanco, C.; Iniesta, F. Modelización del riesgo de crédito en proyectos de infraestructura. Innovar. 2009, 19, 65–80. [Google Scholar]
- López, J.; García, P. Finanzas en el Mundo Corporativo; McGraw Hill: Madrid, Spain, 2005. [Google Scholar]
- Gatti, S. Project Finance in Theory and Practice: Designing, Structuring, and Financing Private and Public Projects, 2nd ed.; Elsevier: London, UK, 2013. [Google Scholar]
- Moszoro, M. Project Finance: Financiación de un Parque Eólico. Caso de Estudio; IESE Publising: Barcelona, Spain, 2013. [Google Scholar]
- Iyer, K.; Sagheer, M. Optimization of Bid-Winning Potential and Capital Structure for Build-Operate-Transfer Road Projects in India. J. Manag. Eng. 2012, 28, 104–113. [Google Scholar] [CrossRef]
- Espinoza, D.; Morris, J. Decoupled NPV: A simple, improved method to value infrastructure investments. Constr. Manag. Econ. 2013, 31, 471–496. [Google Scholar] [CrossRef]
- Konstantin, P.; Konstantin, M. Financial and Economic Analysis of Projects, 1st ed.; Springer: London, UK, 2018; Volume 1. [Google Scholar]
- UNEP. The Financial System We Need—Aligning the Financial System with Sustainable Development. 2015. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/9862/-The_Financial_System_We_Need_Aligning_the_Financial_System_with_Sustainable_Development-2015The_Financial_System_We_Need_EN.pdf.pdf (accessed on 15 July 2016).
- Schmidt-Traub, G.; Sachs, J. Financing Sustainable Development: Implementing the SDGs through Effective Investment Strategies and Partnerships, Washington, 2015. Available online: http://unsdsn.org/wp-content/uploads/2015/04/150619-SDSN-Financing-Sustainable-Development-Paper-FINAL-02.pdf (accessed on 15 July 2016).
- World Economic Forum. Blended Finance Vol. 1: A Primer for Development Finance and Philanthropic Funders an Overview of the Strategic Use of Development fi Nance and Philanthropic Funds to Mobilize Private Capital for Development. 2015. Available online: https://www3.weforum.org/docs/WEF_Blended_Finance_A_Primer_Development_Finance_Philanthropic_Funders.pdf (accessed on 15 July 2016).
- Ministerio de Hacienda y Credito Público de Colombia. Decreto 1385 de 2015; Ministerio de Hacienda y Credito Público: Bogotá, Colombia, 2015; p. 8.
- Dong, F.; Chiara, N.; Kokkaew, N.; Wu, J. Stochastic optimization of Capital Structure in Privately Funded Infrastructure Projects. J. Priv. Equity 2011, 15, 36–47. [Google Scholar] [CrossRef]
- Mostafavi, A.; Abraham, D.M.; Sinfield, J.V. Innovation in Infrastructure Project Finance: A Typology for Conceptualization. Int. J. Innov. Sci. 2014, 6, 127–144. [Google Scholar] [CrossRef]
- Gouldson, A.; Kerr, N.; Millward-Hopkins, J.; Freeman, M.C.; Topi, C.; Sullivan, R. Innovative financing models for low carbon transitions: Exploring the case for revolving funds for domestic energy efficiency programmes. Energy Policy 2015, 86, 739–748. [Google Scholar] [CrossRef]
- Barbero, J.; Forteza, J.H.; Skerk, C.; Meija, A.; Katz, R.; Garcia, R.; Givogri, P.; Lleres, G.; Kohon, J.; Rodriguez, V.; et al. IDEAL 2014. La Infraestructura en el Desarrollo de América Latina (Main Document); CAF: Bogota, Colombia, 2015; Available online: http://scioteca.caf.com/handle/123456789/746 (accessed on 15 July 2016).
- González-Ruiz, J.D.; Arboleda, C.A.; Botero, S. Social Infrastructure Development: The case for Private Participation in Potable Water Supply in Colombia. PM World J. 2015, IV, 1–15. [Google Scholar]
- Inter-American Development Bank and Mercer. Building a Bridge to Sustainable Infrastructure—Mapping the Global Initiatives That are Paving Way; Inter-American Development Bank and Mercer: Washington, DC, USA, 2016. [Google Scholar]
- Hernández, J.M. Contratos Financieros Derivados del Clima como Estrategia de Cobertura en Colombia. Aplicación a una central de Generación Hidroeléctrica”; Universidad Nacional de Colombia: Bogotá, Colombia, 2013. [Google Scholar]
- Serebrisky, T. Infraestructura Sostenible para la competitividad y el Crecimiento Inclusivo; Banco Interamericano de Desarrollo: Washington, DC, USA, 2014. [Google Scholar]
- Aguas Nacionales Epm S.a. E.s.p. Informe de Sostenibilidad 2015; Aguas Nacionales Epm S.a. E.s.p.: Medellín, Colombia, 2015. [Google Scholar]
- Empresas Públicas de Medellín. “Planta de Tratamiento de Aguas Residuales Bello Comenzara a Operar en 2015”; Boletines Estamos Ahí. 2016. Available online: http://www.epm.com.co/site/Home/Saladeprensa/BoletinesEstamosAhi/PlantadetratamientodeaguasresidualesBelloco.aspx (accessed on 13 November 2016).
- Bancolombia. “Bonos Verdes Grupo Bancolombia,” Información Corporativa—Sostenibilidad. 2016. Available online: http://www.grupobancolombia.com/wps/portal/acerca-de/informacion-corporativa/sostenibilidad/bonos-verdes/ (accessed on 10 December 2016).
- Mascareñas, J. Fusiones y Adquisiciones de Empresas, 5th ed.; Ecobook: Madrid, Spain, 2011. [Google Scholar]
- Vélez, I. Decisiones de Inversión para la Valoración de Proyectos y Empresas; Editorial de la Pontificia Universidad Javeriana: Bogota, Colombia, 2013. [Google Scholar]
- Damodaran, A. Applied Corporate Finance, 4th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Congreso de Colombia. Plan Nacional de Desarrollo 2014–2018 “Todos por un Nuevo País”. Colombia; p. 145. 2015. Available online: https://observatorioplanificacion.cepal.org/es/planes/plan-nacional-de-desarrollo-todos-por-un-nuevo-pais-de-colombia-2014-2018 (accessed on 20 August 2016).
- Flyvbjerg, B. What you Should Know about Megaprojects and Why: An Overview. Proj. Manag. J. 2014, 45, 6–19. [Google Scholar] [CrossRef]
- Decision-Making on Mega-Projects: Cost-Benefit Analysis, Planning and Innovation—Google Books. Available online: https://books.google.com.co/books?hl=en&lr=&id=tenILJ-MowQC&oi=fnd&pg=PR1&dq=bent+flyvbjerg+megaprojects&ots=_CnKMFEBBJ&sig=afhl5bXQaf9ys1DvdeqF6Ld_BK8#v=onepage&q=bentflyvbjergmegaprojects&f=false (accessed on 9 August 2022).
- González-Ruiz, J.D. Sustainable Financing as a Mechanism to Increase Private Participation in the Development of Infrastructure Systems in the Water Sector; Universidad Nacional de Colombia: Medellín, Colombia, 2016. [Google Scholar]
Financial Mechanism | Development Stage | Final Capital Structure | ||||
---|---|---|---|---|---|---|
Preparation → x Periods | Construction → k Periods | |||||
Equity | (4) | |||||
Debt | Senior | (5) | ||||
Mezzanine | ||||||
(6) | (7) | (8) | = (2) + (3) | = (1) | Total Capex | |
Item | Development Stage | |||||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |
Investment --> $1,493,000 | 200,000 | 100,000 | 175,335 | 330,000 | 364,000 | 323,665 |
Sustainability Factor | 5% | 5% | 5% | 5% | 5% | 5% |
Accumulated Investment (9) | 200,000 | 300,000 | 475,335 | 805,335 | 1,169,335 | 1,493,000 |
Capital Structure | ||||||
% Debt Mezzanine | 0.0% | 16.7% | 36.6% | 50.6% | 57.0% | 60.1% |
% Equity | 100.0% | 83.3% | 63.4% | 49.4% | 43.0% | 39.9% |
Interest Rate --> kd (AE) | 8.7% | 7.1% | 7.5% | 8.4% | 10.9% | 9.0% |
IBR (AE) | 5.01% | 3.39% | 3.84% | 4.69% | 7.10% | 5.30% |
Spread MV | 3.50% | 3.50% | 3.50% | 3.50% | 3.50% | 3.50% |
Capex | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|
Debt Mezzanine (3) | 0 | 52,500 | 131,635 | 253,370 | 300,882 | 284,561 |
Equity (1) | 210,000 | 52,500 | 56,415 | 108,587 | 128,950 | 121,955 |
Total Capex (7) | 210,000 | 105,000 | 188,049 | 361,957 | 429,832 | 406,516 |
Accumulated | ||||||
Debt Mezzanine (3) | 0 | 52,500 | 184,135 | 437,504 | 738,387 | 1,022,948 |
Equity (1) | 210,000 | 262,500 | 318,915 | 427,502 | 556,451 | 678,406 |
Total Capex (13) | 210,000 | 315,000 | 503,049 | 865,006 | 1,294,838 | 1,701,354 |
% Debt Mezzanine (11) | 0.0% | 16.7% | 36.6% | 50.6% | 57.0% | 60.1% |
% Equity (10) | 100.0% | 83.3% | 63.4% | 49.4% | 43.0% | 39.9% |
Total (6) | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
Interest Rate --> kd (AE) (12) | 7.1% | 7.4% | 8.0% | 9.2% | 9.1% |
Item/Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 |
---|---|---|---|---|---|---|---|---|---|---|
(+) EBIT | 208,631 | 212,327 | 220,666 | 227,953 | 235,895 | 243,791 | 251,650 | 260,197 | 268,739 | 277,547 |
(-) Operating Taxes | 10,432 | 10,616 | 11,033 | 11,398 | 11,795 | 12,190 | 12,583 | 13,010 | 13,437 | |
(=) NOPLAT | 208,631 | 201,895 | 210,050 | 216,920 | 224,497 | 231,996 | 239,461 | 247,614 | 255,729 | 264,110 |
(+) Depreciation | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 | 26,713 |
(=) Gross Cash Flow | 235,344 | 228,608 | 236,763 | 243,633 | 251,210 | 258,709 | 266,174 | 274,327 | 282,443 | 290,823 |
(-) Net Working Capital | 25,174 | 7091 | 1303 | 1119 | 1196 | 1205 | 1232 | 1221 | 1226 | 1264 |
(-) Capex --> $1,567,650 | ||||||||||
Free Cash Flow --> 13.10% | 210,170 | 221,517 | 235,460 | 242,514 | 250,014 | 257,504 | 264,941 | 273,106 | 281,217 | 289,559 |
(-) Interest | 92,889 | 89,792 | 86,696 | 83,600 | 80,503 | 77,407 | 74,311 | 71,215 | 68,118 | 65,022 |
(-) Principal | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 | 34,098 |
(+) Tax Shield | 4644 | 4490 | 4335 | 4180 | 4025 | 3870 | 3716 | 3561 | 3406 | |
(=) Outstanding Debt | 988,850 | 954,751 | 920,653 | 886,555 | 852,457 | 818,358 | 784,260 | 750,162 | 716,063 | 681,965 |
Equity Cash Flow 15.56% | 83,183 | 102,271 | 119,156 | 129,151 | 139,592 | 150,024 | 160,403 | 171,509 | 182,561 | 193,845 |
Equity IRR | Project IRR | Cost of Debt | ||||||||
Including | 15.56% | 13.10% | 9.08% | |||||||
Excluding | 14.19% | 11.71% | 9.08% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ruiz, J.D.; Botero-Botero, S.; Peña, A. Analysis of the Capital Structure in Sustainable Infrastructure Systems: A Methodological Approach. Sustainability 2022, 14, 12662. https://doi.org/10.3390/su141912662
González-Ruiz JD, Botero-Botero S, Peña A. Analysis of the Capital Structure in Sustainable Infrastructure Systems: A Methodological Approach. Sustainability. 2022; 14(19):12662. https://doi.org/10.3390/su141912662
Chicago/Turabian StyleGonzález-Ruiz, Juan David, Sergio Botero-Botero, and Alejandro Peña. 2022. "Analysis of the Capital Structure in Sustainable Infrastructure Systems: A Methodological Approach" Sustainability 14, no. 19: 12662. https://doi.org/10.3390/su141912662
APA StyleGonzález-Ruiz, J. D., Botero-Botero, S., & Peña, A. (2022). Analysis of the Capital Structure in Sustainable Infrastructure Systems: A Methodological Approach. Sustainability, 14(19), 12662. https://doi.org/10.3390/su141912662