Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations
Abstract
:1. Introduction
2. Zoonoses Facilitated by Human Proximity to Animals
3. Factory Farms as Sites of Epidemiological Risk
4. Animal and Human Exploitation as a Root of Zoonoses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emerging Infectious Diseases. Available online: https://www.bcm.edu/departments/molecular-virology-and-microbiology/emerging-infections-and-biodefense/emerging-infectious-diseases (accessed on 22 June 2022).
- Kumar, B.; Manuja, A.; Gulati, B.R.; Virmani, N.; Tripathi, B.N. Suppl-2, M5: Zoonotic Viral Diseases of Equines and Their Impact on Human and Animal Health. Open Virol. J. 2018, 12, 80–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recht, J.; Schuenemann, V.J.; Sánchez-Villagra, M.R. Host Diversity and Origin of Zoonoses: The Ancient and the New. Animals 2020, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- WHO. A Safer Future: Global Public Health Security in the 21st Century; World Health Organization: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/bitstream/handle/10665/43713/9789241563444_eng.pdf?sequence=1&isAllowed=y (accessed on 22 June 2022).
- IOM (Institute of Medicine); NRC (National Research Council). Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases; The National Academies Press: Washington, DC, USA, 2009; pp. 1–303. [Google Scholar]
- Cascio, A.; Bosilkovski, M.; Rodriguez-Morales, A.J.; Pappas, G. The socio-ecology of zoonotic infections. Clin. Microbiol. Infect. 2011, 17, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Urbanik, J.; Hovorka, A.J. Animal Geographies in the Time of COVID-19: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2022; pp. 2307–2325. [Google Scholar]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef]
- Mennerat, A.; Nilsen, F.; Ebert, D.; Skorping, A. Intensive farming: Evolutionary implications for parasites and pathogens. Evol. Biol. 2010, 37, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Anomaly, J. What’s wrong with factory farming? Public Health Ethics 2015, 8, 246–254. [Google Scholar] [CrossRef]
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef]
- Slingenbergh, J.; Gilbert, M.; Balogh, K.D.; Wint, W. Ecological sources of zoonotic diseases. Rev. Sci. Tech.-Off. Int. Epizoot. 2004, 23, 467–484. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1influenza virus. Nature 2009, 459, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Taubenberger, J.K.; Morens, D.M. The 1918 influenza pandemic and its legacy. Cold Spring Harb. Perspect. Med. 2020, 10, a038695. [Google Scholar] [CrossRef] [Green Version]
- Greger, M. How to Survive A Pandemic; Flatiron Books: New York, NY, USA, 2020; pp. 1–592. [Google Scholar]
- Chowell, G.; Echevarría-Zuno, S.; Viboud, C.; Simonsen, L.; Tamerius, J.; Miller, M.A.; Borja-Aburto, V.H. Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Med. 2011, 8, e1000436. [Google Scholar] [CrossRef]
- Greger, M. Industrial animal agriculture’s role in the emergence and spread of disease. In The Meat Crisis, 2nd ed.; Joyce D’Silva, J.W., Ed.; Routledge: London, UK, 2017; pp. 217–227. [Google Scholar]
- Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 2009, 360, 2605–2615. [CrossRef] [Green Version]
- Sparke, M.; Anguelov, D. H1N1, globalization and the epidemiology of inequality. Health Place 2012, 18, 726–736. [Google Scholar] [CrossRef]
- Wallace, R.G. Breeding influenza: The political virology of offshore farming. Antipode 2009, 41, 916–951. [Google Scholar] [CrossRef]
- Kung, N.Y.; Morris, R.S.; Perkins, N.R.; Sims, L.D.; Ellis, T.M.; Bissett, L.; Chow, M.; Shortridge, K.F.; Guan, Y.; Peiris, M.J. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong, 2002. Emerg. Infect. Dis. 2007, 13, 412–418. [Google Scholar] [CrossRef]
- Ligon, B.L. Avian influenza virus H5N1: A review of its history and information regarding its potential to cause the next pandemic. Elsevier 2005, 16, 326–335. [Google Scholar] [CrossRef]
- Pappaioanou, M. Highly pathogenic H5N1 avian influenza virus: Cause of the next pandemic? Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 287–300. [Google Scholar] [CrossRef]
- Li, F.C.K.; Choi, B.C.K.; Sly, T.; Pak, A.W.P. Finding the real case-fatality rate of H5N1 avian influenza. J. Epidemiol. Community Health 2008, 62, 555–559. [Google Scholar] [CrossRef]
- Bouma, A.; Claassen, I.; Natih, K.; Klinkenberg, D.; Donnelly, C.A.; Koch, G.; Van Boven, M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathog. 2009, 5, e1000281. [Google Scholar] [CrossRef]
- World Health Organization. Epidemiology of WHO-confirmed human cases of avian influenza A (H5N1) infection. Wkly. Epidemiol. Rec. 2006, 81, 249–257. [Google Scholar]
- WHO (World Health Organization). Available online: https://www.who.int/news-room/questions-and-answers/item/influenza-h5n1#:~:text=What%20is%20H5N1%3F,infection%20from%20person%20to%20person (accessed on 22 June 2022).
- United Nations (UN). Environment Programme and International Livestock Research Institute. Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission. 2020, pp. 1–72. Available online: https://www.Uunep.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and (accessed on 22 June 2022).
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- Ding, Y.; He, L.I.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef]
- Killerby, M.E.; Biggs, H.M.; Midgley, C.M.; Gerber, S.I.; Watson, J.T. Middle East respiratory syndrome coronavirus transmission. Emerg. Infect. Dis. 2020, 26, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhong, W.; Bian, Z.; Li, Z.; Zhang, K.; Liang, B.; Zhong, Y.; Hu, M.; Lin, L.; Liu, J.; et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. J. Infect. 2020, 81, e18–e25. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020, 19, 141–154. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, J. Adverse impact of industrial animal agriculture on the health and welfare of farmed animals. Integr. Zool. 2006, 1, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Hribar, C. Understanding Concentrated Animal Feeding Operations and Their Impact on Communities; National Association of Local Boards of Health (NALBOH): Kimberly, WI, USA, 2010; pp. 1–23. [Google Scholar]
- Weis, T. Industrial livestock and the ecological hoofprint. In The Routledge Handbook on Rural Studies; Shucksmith, M., Brown, D.L., Eds.; Routledge: London, UK, 2016; pp. 205–214. [Google Scholar]
- Pica-Ciamarra, U.; Otte, J. The ‘Livestock Revolution’: Rhetoric and reality. Outlook Agric. 2011, 40, 7–19. [Google Scholar] [CrossRef]
- Epstein, J.H.; Price, J.T. The significant but understudied impact of pathogen transmission from humans to animals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2009, 76, 448–455. [Google Scholar] [CrossRef]
- Rothenburger, J.L.; Himsworth, C.H.; Nemeth, N.M.; Pearl, D.L.; Jardine, C.M. Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth 2017, 14, 630–641. [Google Scholar] [CrossRef]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Sims, L.D.; Guan, Y.; Ellis, T.M.; Liu, K.K.; Dyrting, K.; Wong, H.; Kung, N.Y.; Shortridge, K.F.; Peiris, M. An update on avian influenza in Hong Kong 2002. Avian Dis. 2003, 47, 1083–1086. [Google Scholar] [CrossRef]
- Webster, R.G. Wet markets—A continuing source of severe acute respiratory syndrome and influenza? Lancet 2004, 363, 234–236. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Update: Isolation of avian influenza A (H5N1) viruses from humans—Hong Kong, 1997–1998. MMWR. Morb. Mortal. Wkly. Rep. 1998, 46, 1245–1247. [Google Scholar]
- Kapan, D.D.; Bennett, S.N.; Ellis, B.N.; Fox, J.; Lewis, N.D.; Spencer, J.H.; Saksena, S.; Wilcox, B.A. Avian influenza (H5N1) and the evolutionary and social ecology of infectious disease emergence. EcoHealth 2006, 3, 187–194. [Google Scholar] [CrossRef]
- Apata, D.F. Antibiotic resistance in poultry. Int. J. Poult. Sci. 2009, 8, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Stibbe, A. Language, power and the social construction of animals. Soc. Anim. 2001, 9, 145–161. [Google Scholar] [CrossRef]
- Dhont, K.; Piazza, J.; Hodson, G. The role of meat appetite in willfully disregarding factory farming as a pandemic catalyst risk. Appetite 2021, 64, 105279. [Google Scholar] [CrossRef]
- Cassuto, D.N. Bred meat: The cultural foundation of the factory farm. Law Contemp. Probl. 2007, 70, 59–87. [Google Scholar] [CrossRef] [Green Version]
- Akram-Lodhi, H. The Ecological Hoofprint: The Global Burden of Industrial Agriculture. Can. Food Stud. 2014, 1, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Kreuziger, C. Dismembering the meat industry piece by piece: The value of federalism to farm animals. Law Ineq. 2005, 23, 363–407. [Google Scholar]
- Mallon, R. The Deplorable Standard of Living Faced by Farmed Animals in America’s Meat Industry and How to Improve Conditions by Eliminating the Corporate Farm. J. Med. L 2005, 9, 389–416. [Google Scholar]
- Williams, N.M. Affected ignorance and animal suffering: Why our failure to debate factory farming puts us at moral risk. J. Agric. Environ. Ethics 2008, 21, 371–384. [Google Scholar] [CrossRef]
- Maerz, M. Corporate Cruelty: Holding Factory Farms Accountable for Animal Cruelty Crimes to Encourage Systemic Reform. J. Animal Nat. Resour. L. 2020, 16, 137. [Google Scholar] [CrossRef]
- Taylor, S. Animal crips. In Disability and Animality, 1st ed.; Jenkins, S., Montford, K.S., Taylor, C., Eds.; Routledge: London, UK, 2020; pp. 13–34. [Google Scholar]
- Taylor, A.; Taylor, S. Solidarity across species. Dissent 2020, 67, 103–105. [Google Scholar] [CrossRef]
- Moura, D.J.; Nääs, I.A.; Pereira, D.F.; Silva, R.B.T.R.; Camargo, G.A. Animal welfare concepts and strategy for poultry production: A review. Braz. J. Poult. Sci. 2006, 8, 137–147. [Google Scholar] [CrossRef]
- Kwon, J.S.; Lee, H.J.; Lee, D.H.; Lee, Y.J.; Mo, I.P.; Nahm, S.S.; Kim, M.J.; Lee, J.B.; Park, S.Y.; Choi, I.S.; et al. Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res. 2008, 133, 187–194. [Google Scholar] [CrossRef]
- Micciche, A.C.; Feye, K.M.; Rubinelli, P.M.; Wages, J.A.; Knueven, C.J.; Ricke, S.C. The implementation and food safety issues associated with poultry processing reuse water for conventional poultry production systems in the United States. Front. Sustain. Food Syst. 2018, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, D. The Broiler Production Systems of Sweden and the United States. 2021. Available online: https://stud.epsilon.slu.se/16830/ (accessed on 22 June 2022).
- Pesti, G.M.; Miller, B.R. Animal Feed Formulation: Economic and Computer Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993; pp. 1–174. [Google Scholar]
- Biswas, A. Pulmonary hypertension syndrome in broiler chickens: A review. Vet. Arh. 2019, 89, 723–734. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Kong, A.; Cao, Q.; Tong, Z.; Wang, X. The role of blood vessels in broiler chickens with tibial dyschondroplasia. Poult. Sci. 2019, 98, 6527–6532. [Google Scholar] [CrossRef] [PubMed]
- Kittelsen, K.E.; Granquist, E.G.; Aunsmo, A.L.; Moe, R.O.; Tolo, E. An evaluation of two different broiler catching methods. Animals 2018, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- De Lima, V.A.; Ceballos, M.C.; Gregory, N.G.; Da Costa, M.J.P. Effect of different catching practices during manual upright handling on broiler welfare and behavior. Poult. Sci. 2019, 98, 4282–4289. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Tuyttens, F.A. Broiler chickens dead on arrival: Associated risk factors and welfare indicators. Poult. Sci. 2017, 96, 259–265. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Sulaiman, N.F.A.; Ramiah, S.K.; Awad, E.A.; Idrus, Z. The effect of water shower spray on stress physiology and mortality in broiler chickens subjected to road transportation under the hot and humid tropical condition, Research Square. 2022; not undergone peer review. [Google Scholar]
- Samsuddin, N.S.B. Performance of A State Farmers’ Organization on Broiler Supply Chain Based on Environmental Life Cycle Costing In Johor, Malaysia. Master’s Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2019. [Google Scholar]
- Compa, L.A. Blood, Sweat, and Fear: Workers’ Rights in US Meat and Poultry Plants. 2004, pp. 1–185. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/75316/Compa80_Blood_Sweat_and_Fear.pdf?sequence=1&isAllowed=y (accessed on 22 June 2022).
- Richards, R.J.; Richards, E.L. Cheap meat: How factory farming is harming our health, the environment, and the economy. Ky. J. Equine Agric. Nat. Resour. L 2011, 4, 31. [Google Scholar]
- Moyce, S.C.; Schenker, M. Migrant workers and their occupational health and safety. Annu. Rev. Public Health 2018, 39, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C.S. Explaining peripheral labor: A poultry industry case study. Berkeley J. Emp. Lab. L 2012, 33, 353. [Google Scholar]
- Constance, D.H.; Martinez-Gomez, F.; Aboites-Manrique, G.; Bonanno, A. The problems with poultry production and processing. In The Ethics and Economics of Agrifood Competition; Springer: Dordrecht, The Netherlands, 2013; pp. 155–175. [Google Scholar]
- Schwartzman, K.C. The Chicken Trail: Following Workers, Migrants, and Corporations across the Americas; Cornell University Press: Ithaca, NY, USA, 2012; pp. 1–195. [Google Scholar]
- Williams, B.; Freshour, C. Carceral geographies of pesticides and poultry. Food Foodways 2022, 30, 38–57. [Google Scholar] [CrossRef]
- Stories of Vulnerability: COVID-19 in Slaughterhouses. Available online: https://www.prindleinstitute.org/2020/05/stories-of-vulnerability-covid-19-in-slaughterhouses/ (accessed on 22 June 2022).
- Wibisono, F.M.; Wibisono, F.J.; Effendi, M.H.; Plumeriastuti, H.; Hidayatullah, A.R.; Hartadi, E.B.; Sofiana, E.D. A review of salmonellosis on poultry farms: Public health importance. Syst. Rev. Pharm. 2020, 11, 481–486. [Google Scholar]
- Arzey, G.G.; Kirkland, P.D.; Arzey, K.E.; Frost, M.; Maywood, P.; Conaty, S.; Hurt, A.C.; Deng, Y.M.; Iannello, P.; Barr, I.; et al. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg. Infect. Dis. 2012, 18, 814. [Google Scholar] [CrossRef]
- Tweed, S.A.; Skowronski, D.M.; David, S.T.; Larder, A.; Petric, M.; Lees, W.; Li, Y.; Katz, J.; Krajden, M.; Tellier, R.; et al. Human illness from avian influenza H7N3, British Columbia. Emerg. Infect. Dis. 2004, 10, 2196. [Google Scholar] [CrossRef]
- Lopez-Martinez, I.; Balish, A.; Barrera-Badillo, G.; Jones, J.; Nuñez-García, T.E.; Jang, Y.; Aparicio-Antonio, R.; Azziz-Baumgartner, E.; Belser, J.A.; Ramirez-Gonzalez, J.E.; et al. Highly pathogenic avian influenza A (H7N3) virus in poultry workers, Mexico, 2012. Emerg. Infect. Dis. 2013, 19, 1531. [Google Scholar] [CrossRef]
- Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; van der Nat, H.; Vennema, H.; Meijer, A.; van Steenbergen, J.; Fouchier, R.; Osterhaus, A.; et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004, 363, 587–593. [Google Scholar] [CrossRef]
- Gray, G.C.; Trampel, D.W.; Roth, J.A. Pandemic influenza planning: Shouldn’t swine and poultry workers be included? Vaccine 2007, 25, 4376–4381. [Google Scholar] [CrossRef] [Green Version]
- Wickramage, K.; Gostin, L.O.; Friedman, E.; Prakongsai, P.; Suphanchaimat, R.; Hui, C.; Duigan, P.; Barragan, E.; Harper, D.R. Missing: Where are the migrants in pandemic influenza preparedness plans? Health Hum. Rights 2018, 20, 251. [Google Scholar]
- Mackenzie, J.S.; Jeggo, M. The One Health approach—Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Centre for Global Development. One Health: Placing Human, Animal, and Environmental Issues at the Heart of COVID-19 Recovery in the Asia-Pacific Region. Available online: https://www.cgdev.org/blog/one-health-placing-human-animal-and-environmental-issues-heart-covid-19-recovery-asia-pacific (accessed on 22 June 2022).
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchese, A.; Hovorka, A. Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability 2022, 14, 12806. https://doi.org/10.3390/su141912806
Marchese A, Hovorka A. Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability. 2022; 14(19):12806. https://doi.org/10.3390/su141912806
Chicago/Turabian StyleMarchese, Alyssa, and Alice Hovorka. 2022. "Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations" Sustainability 14, no. 19: 12806. https://doi.org/10.3390/su141912806
APA StyleMarchese, A., & Hovorka, A. (2022). Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability, 14(19), 12806. https://doi.org/10.3390/su141912806