A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Defining and Characteristics VUL
3.1.1. VUL Definitions
3.1.2. VUL Characteristics
3.2. Classification of VUL
3.2.1. Prior Industrial Land
3.2.2. Derelict Land
3.2.3. Unoccupied Vegetation Sites
3.3. Stormwater Pollutants from Former Industrial Land Areas
3.4. Source of Stormwater Pollutants on Previously Developed or Used Land
3.5. Removing Stormwater Pollutants from Former Industrial Land Areas by Nature-Based Technologies
3.5.1. Heavy Metal Removal
Heavy Metal Removal Processes
Design Features That Enhanced the Heavy Metals Removal
3.5.2. Removal of Total Suspended Solids
Nitrogen Removal Processes
Design Features That Enhanced the Total Nitrogen Removal
3.5.3. Phosphorus Removal in Total Suspended Solids
3.5.4. Polycyclic Aromatic Hydrocarbons Removal
3.6. Considerations of Economic Efficiency
3.7. Other Considerations
3.8. Results Summary
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Beverley, C.W. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Li, D.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M.; Chen, Y. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city. PLoS ONE 2015, 10, e0118776. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Sharma, A.; Vezzaro, L.; Birch, H.; Arnbjerg-Nielsen, K. Effect of climate change on stormwater characteristics and treatment efficiencies of stormwater retention ponds. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brasil, 11–16 September 2011. [Google Scholar]
- Barkasi, A.M.; Dadio, S.D.; Losco, R.L.; Shuster, W.D. Urban soils and vacant land as stormwater resources. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012. [Google Scholar]
- Vahedifard, F.; Sehat, S.; James, V.A. Effects of rainfall, geomorphological and geometrical variables on vulnerability of the lower Mississippi River levee system to slump slides. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2017, 11, 257–271. [Google Scholar] [CrossRef]
- Desimini, J. Blue voids: Stormwater strategies for abandoned lands. J. Landsc. Archit. 2013, 8, 64–73. [Google Scholar] [CrossRef]
- Schulman, A. Sustainable Cities and Institutional Change: The Transformation of Urban Stormwater Management. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Tibbetts, J. Combined sewer systems: Down, dirty, and out of date. Environ. Health Perspect. 2005, 113, A464–A467. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, K.P.; Lizette, R.C. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef]
- Kirnbauer, M.C.; Baetz, B.W. Allocating Urban Agricultural Reuse Strategies to Inventoried Vacant and Underutilized Land. J. Environ. Inform. 2012, 20, 1–11. [Google Scholar] [CrossRef]
- EPA. Implementing Stormwater Infiltration Practices at Vacant Parcels and Brownfield Sites; EPA: Washington, DC, USA, 2013.
- Shuster, W.D.; Dadio, S.; Drohan, P.; Losco, R.; Shaffer, J. Residential demolition and its impact on vacant lot hydrology: Implications for the management of stormwater and sewer system overflows. Landsc. Urban Plan. 2014, 125, 48–56. [Google Scholar] [CrossRef]
- Mongeon, P.; Adèle, P.-H. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Bai, Y.; Pickett, S.T.; Han, L. The smart growth of Chinese cities: Opportunities offered by vacant land. Land Degrad. Dev. 2018, 29, 3512–3520. [Google Scholar] [CrossRef]
- Kim, G.; Miller, P.A.; Nowak, D.J. Urban vacant land typology: A tool for managing urban vacant land. Sustain. Cities Soc. 2018, 36, 144–156. [Google Scholar] [CrossRef]
- NLUD. NLUD (National Land Use Database) Land Use and Land Cover Classification (Version 4.4); Office of the Deputy Prime Minister, HMSO: London, UK, 2003. [Google Scholar]
- Tsuzuki, Y.; Koyanagi, T.F.; Miyashita, T. Plant community assembly in suburban vacant lots depends on earthmoving legacy, habitat connectivity, and current mowing frequency. Ecol. Evol. 2020, 10, 1311–1323. [Google Scholar] [CrossRef]
- Bowman, A.; Pagano, M.A. Terra Incognita: Vacant Land and Urban Strategies; Georgetown University Press: Washington, DC, USA, 2004. [Google Scholar]
- Greenberg, M.R.; Popper, F.J.; West, B.M. The TOADS: A new American urban epidemic. Urban Aff. Q. 1990, 25, 435–454. [Google Scholar] [CrossRef]
- Berger, A. Drosscape: Wasting Land Urban America; Princeton Architectural Press: New York, NY, USA, 2007. [Google Scholar]
- Moser, G.; Krylov, V.; De Martino, M.; Serpico, S. The URBIS project: Vacant urban area classification and detection of changes. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Németh, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2014, 40, 143–150. [Google Scholar] [CrossRef]
- Gallagher, F.J.; Pechmann, I.; Bogden, J.D.; Grabosky, J.; Weis, P. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environ. Pollut. 2008, 153, 351–361. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Burkman, C.E.; Prajzner, S.P. The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ. Entomol. 2013, 42, 1123–1136. [Google Scholar] [CrossRef]
- Kamvasinou, K. The public value of vacant urban land. Proc. Inst. Civ. Eng.-Munic. Eng. 2011, 164, 157–166. [Google Scholar] [CrossRef]
- Kivell, P.; Hatfield, S. Derelict land-some positive perspectives. In Environment, Planning and Land Use; Routledge: Abingdon, UK, 2018; pp. 118–129. [Google Scholar]
- Capital, X.L. The XL Environmental Land Reuse Report 2002; XL Environmental, Incorporated: Exton, PA, USA, 2004. [Google Scholar]
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Mulcahy, J.P. Phosphorus Export in the Twin Cities Metropolitan Area; Metropolitan Council: St. Paul, MN, USA, 1990. [Google Scholar]
- EPA. NPDES Compliance Inspection Manual; EPA Publication Number: 305-K-17-001; EPA: Washington, DC, USA, 2017.
- Stein, E.D.; Tiefenthaler, L.L.; Schiff, K.C. Comparison of stormwater pollutant loading by land use type. In Southern California Coastal Water Research Project 2008 Annual Report; Southern California Coastal Water Research Project: Costa Mesa, CA, USA, 2008; Volume 3535, pp. 15–27. [Google Scholar]
- Hoffman, E.J.; Mills, G.L.; Latimer, J.S.; Quinn, J.G. Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters. Environ. Sci. Technol. 1984, 18, 580–587. [Google Scholar] [CrossRef]
- Shooshtarian, M.R.; Dehghani, M.; Margherita, F.; Gea, O.C.; Mortezazadeh, S. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models. Food Chem. Toxicol. 2018, 114, 204–214. [Google Scholar] [CrossRef]
- Liu, A.; Ma, Y.; Gunawardena, J.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution. Ecotoxicol. Environ. Saf. 2018, 164, 696–703. [Google Scholar] [CrossRef]
- Prabhukumar, G.; Pagilla, K. Polycyclic Aromatic Hydrocarbons in Urban Runoff–Sources, Sinks and Treatment: A Review; Department of Civil, Architectural and Environmental Engineering: Chicago, IL, USA, 2010. [Google Scholar]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Xiao, F.; Halbach, T.R.; Simcik, M.F.; Gulliver, J.S. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis. Water Res. 2012, 46, 3101–3109. [Google Scholar] [CrossRef]
- Bian, B.; Zhu, W.; Huang, F.; Bian, X.W. Characterizing nutrients of urban stromwater runoff in Zhenjiang. Huan Jing Ke Xue = Huanjing Kexue 2008, 29, 19–25. [Google Scholar]
- Christensen, E.R.; Guinn, V.P. Zinc from automobile tires in urban runoff. J. Environ. Eng. Div. 1979, 105, 165–168. [Google Scholar] [CrossRef]
- Milik, J.; Pasela, R. Analysis of concentration trends and origins of heavy metal loads in stormwater runoff in selected cities: A review. In Proceedings of the 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018, Polanica-Zdroj, Poland, 16–18 April 2018; EDP Sciences: Les Ulis, France, 2018; Volume 44. [Google Scholar]
- Brown, J.N.; Peake, B.M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef]
- Wakida, F.T.; Martinez-Huato, S.; Garcia-Flores, E.; Piñon-Colin TD, J.; Espinoza-Gomez, H.; Ames-López, A. Pollutant association with suspended solids in stormwater in Tijuana, Mexico. Int. J. Environ. Sci. Technol. 2014, 11, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Melanen, M.; Laukkanen, R. Quantity of Storm Runoff Water in Urban Areas; Water Research Institute. National Board of Waters: Helsinki, Finland, 1982; Volume 42, pp. 3–39. [Google Scholar]
- Vedagiri, U.K.; Anderson, R.H.; Loso, H.M.; Schwach, C.M. Ambient levels of PFOS and PFOA in multiple environmental media. Remediat. J. 2018, 28, 9–51. [Google Scholar] [CrossRef]
- Hoffman, E.J.; Latimer, J.S.; Mills, G.L.; Quinn, J.G. Petroleum Hydrocarbons in Urban Runoff from a Commerical Land Use Area. J. Water Pollut. Control Fed. 1982, 54, 1517–1525. [Google Scholar]
- Hong, E.; Seagren, E.A.; Davis, A.P. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies. Water Environ. Res. 2006, 78, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Wan Yusof, K.; Takaijudin, H.; Goh, H.W.; Abdul Malek, M.; Azizan, N.A.; Ghani, A.A.; Sa’id Abdurrasheed, A. A review of nitrogen removal for urban stormwater runoff in bioretention system. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef] [Green Version]
- Schueler, T.; Youngk, A. Chesapeake Stormwater Network. Potential Benefits of Nutrient and Sediment Practices to Reduce Toxic Contaminants in the Chesapeake Bay Watershed Part 1: Removal of Urban Toxic Contaminants in Stormwater BMPs; Final Report; Chesapeake Stormwater Network: Ellicott City, MD, USA, 2015. [Google Scholar]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Pollutant removal performance of field-scale stormwater biofiltration systems. Water Sci. Technol. 2009, 59, 1567–1576. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Zong, M.; Walter, M.T. Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. Int. J. Environ. Res. Public Health 2018, 15, 775. [Google Scholar] [CrossRef] [Green Version]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and research needs of bioretention used for the treatment of urban stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Shanstrom, N. Long-Term Use of Bioretention for Heavy Metals Removal. 2019. Available online: https://www.deeproot.com/blog/blog-entries/long-term-use-of-bioretention-for-heavy-metals-removal (accessed on 30 July 2019).
- Wang, J.; Zhao, Y.; Yang, L.; Tu, N.; Xi, G.; Fang, X. Removal of heavy metals from urban stormwater runoff using bioretention media mix. Water 2017, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Blecken, G.T.; Zinger, Y.; Deletić, A.; Fletcher, T.D.; Viklander, M. Impact of a submerged zone and a carbon source on heavy metal removal in stormwater biofilters. Ecol. Eng. 2009, 35, 769–778. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Removal of heavy metals from urban stormwater runoff using different filter materials. J. Environ. Chem. Eng. 2014, 2, 282–292. [Google Scholar] [CrossRef]
- Li, H.; Davis, A.P. Heavy metal capture and accumulation in bioretention media. Environ. Sci. Technol. 2008, 42, 5247–5253. [Google Scholar] [CrossRef]
- Sari, A.Y.; Suwartha, N.; Hartono, D.M.; Gusniani, I. Enhancing Removal Efficiency of Heavy Metals and Ammonia in Bioretention System Using Quartz Sand and Zeolite as Filter Media; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 536. [Google Scholar]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef]
- Murphy, S. General Information on Solids; USGS Water Quality Monitoring: City of Boulder, CO, USA.
- Peavy, H.S.; Rowe, D.R.; Tchobanoglous, G. Environmental Engineering; McGraw-Hill: New York, NY, USA, 1985; Volume 2985. [Google Scholar]
- Chen, G. Introduction of HK university of science & technology. Environ. Sanit. Eng. Res. (Kyoto Univ.) 1996, 10, 43–46. [Google Scholar]
- Guan, X.-H.; Chen, G.-H.; Shang, C. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 2005, 39, 3433–3440. [Google Scholar] [CrossRef]
- Stone, R.M. Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal. Master’s Thesis, University of New Hampshire, Durham, UK, 2013. [Google Scholar]
- Chen, X.C.; Huang, L.; Ong, B.L. The phytoremediation potential of a Singapore forest tree for bioretention systems. J. Mater. Sci. Eng. 2014, A, 4.7A. [Google Scholar]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The role of plants in bioretention systems; does the science underpin current guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- O’Reilly, A.M.; Wanielista, M.P.; Chang, N.B.; Xuan, Z.; Harris, W.G. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin. Sci. Total Environ. 2012, 432, 227–242. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, P.; Cao, X.; Zhou, Y.; Song, C. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters. Bioresour. Technol. 2016, 218, 842–849. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, D.; Wang, Z.-W. The potential of using biological nitrogen removal technique for stormwater treatment. Ecol. Eng. 2017, 106, 482–495. [Google Scholar] [CrossRef]
- Brown, R.A. Evaluation of Bioretention Hydrology and Pollutant Removal in the Upper Coastal Plain of North Carolina with Development of a Bioretention Modeling Application in DRAINMOD. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2011. [Google Scholar]
- Goh, H.W.; Zakaria, N.A.; Lau, T.L.; Foo, K.Y.; Chang, C.K.; Leow, C.S. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area. Urban Water J. 2017, 14, 134–142. [Google Scholar] [CrossRef]
- Messer, T.L.; Burchell, M.R., II; Birgand, F.; Broome, S.W.; Chescheir, G. Nitrate removal potential of restored wetlands loaded with agricultural drainage water: A mesocosm scale experimental approach. Ecol. Eng. 2017, 106, 541–554. [Google Scholar] [CrossRef]
- Tang, N.-Y.; Li, L. Nitrogen removal by three types of bioretention columns under wetting and drying regimes. J. Cent. South Univ. 2016, 23, 324–332. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Qin, H.; Zeng, X.; Li, X.; Yu, S.L. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems. Water 2018, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Afrooz, A.N.; Boehm, A.B. Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecol. Eng. 2017, 102, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Li, T.; Shi, Z. A layered bioretention system for inhibiting nitrate and organic matters leaching. Ecol. Eng. 2017, 107, 233–238. [Google Scholar] [CrossRef]
- Peterson, I.J.; Igielski, S.; Davis, A.P. Enhanced denitrification in bioretention using woodchips as an organic carbon source. J. Sustain. Water Built Environ. 2015, 1, 04015004. [Google Scholar] [CrossRef]
- Tian, J.; Jin, J.; Chiu, P.C.; Cha, D.K.; Guo, M.; Imhoff, P.T. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res. 2019, 148, 378–387. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Experimental study of nitrogen removal efficiency of layered bioretention under intermittent or continuous operation. Pol. J. Environ. Stud. 2017, 26, 1121–1130. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Davis, A.P.; Needelman, B.A. Bioretention column studies of phosphorus removal from urban stormwater runoff. Water Environ. Res. 2007, 79, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Henderson, C.; Greenway, M.; Phillips, I. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms. Water Sci. Technol. 2007, 55, 183–191. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Davis, A.P. Field performance of bioretention: Water quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Sharkey, L.J. The Performance of Bioretention Areas in North Carolina: A Study of Water Quality, Water Quantity, and Soil Media. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2006. [Google Scholar]
- Brown, R.A.; Hunt, W.F.; Davis, A.P.; Traver, R.G.; Olszewski, J.M. Bioretention/bioinfiltration performance in the mid-atlantic. In Proceedings of the World Environmental and Water Resources Congress 2009, Kansas City, MO, USA, 17–21 May 2009. [Google Scholar]
- Passeport, E.; Hunt, W.F.; Line, D.E.; Smith, R.A.; Brown, R.A. Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution. J. Irrig. Drain. Eng. 2009, 135, 505–510. [Google Scholar] [CrossRef]
- Li, L.Q.; Liu, Y.Q.; Yang, J.M.; Wang, J. Urban Runoff Phosphorus Removal Pathways in Bioretention Systems. Huan Jing Ke Xue= Huanjing Kexue 2018, 39, 3150–3157. [Google Scholar]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Lucas, W.C.; Greenway, M. Phosphorus retention by bioretention mesocosms using media formulated for phosphorus sorption: Response to accelerated loads. J. Irrig. Drain. Eng. 2011, 137, 144–153. [Google Scholar] [CrossRef]
- Qiao, M.; Bai, Y.; Cao, W.; Huo, Y.; Zhao, X.; Liu, D.; Li, Z. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives. Chemosphere 2018, 211, 185–191. [Google Scholar] [CrossRef]
- Zambianchi, M.; Durso, M.; Liscio, A.; Treossi, E.; Bettini, C.; Capobianco, M.L.; Aluigi, A.; Kovtun, A.; Ruani, G.; Corticelli, F.; et al. Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water. Chem. Eng. J. 2017, 326, 130–140. [Google Scholar] [CrossRef]
- DiBlasi, C.J.; Li, H.; Davis, A.P.; Ghosh, U. Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility. Environ. Sci. Technol. 2009, 43, 494–502. [Google Scholar] [CrossRef]
- David, N.; Leatherbarrow, J.E.; Yee, D.; McKee, L.J. Removal efficiencies of a bioretention system for trace metals, PCBs, PAHs, and dioxins in a semiarid environment. J. Environ. Eng. 2015, 141, 04014092. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. PAHs removal from urban storm water runoff by different filter materials. J. Hazard. Toxic Radioact. Waste 2014, 18, 04014008. [Google Scholar] [CrossRef]
- Jay, J.G.; Tyler-Plog, M.; Brown, S.L.; Grothkopp, F. Nutrient, metal, and organics removal from stormwater using a range of bioretention soil mixtures. J. Environ. Qual. 2019, 48, 493–501. [Google Scholar] [CrossRef]
- Weerasundara, L.; Vithanage, M. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric deposition using bio-retention systems. In Phytoremediation; Springer: Cham, Switzerland, 2016; pp. 91–115. [Google Scholar]
- Crabtree, B.; Moy, F.; Whitehead, M.; Roe, A. Monitoring pollutants in highway runoff. Water Environ. J. 2006, 20, 287–294. [Google Scholar] [CrossRef]
- Sébastian, C.; Barraud, S.; Gonzalez-Merchan, C.; Perrodin, Y.; Visiedo, R. Stormwater retention basin efficiency regarding micropollutant loads and ecotoxicity. Water Sci. Technol. 2014, 69, 974–981. [Google Scholar] [CrossRef]
- Golberg, S. Repurposing Vacant Lots for Stormwater Runoff Mitigation in Rochester, New York; Rochester Institute of Technology: Rochester, NY, USA, 2015. [Google Scholar]
- Xu, C.; Hong, J.; Jia, H.; Liang, S.; Xu, T. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. J. Clean. Prod. 2017, 149, 227–237. [Google Scholar] [CrossRef]
- Mateleska, K.; Environmental Protection Agency. Methodology for Developing Cost Estimates for Opti-Tool. 2016. Available online: https://www3.epa.gov/region1/npdes/stormwater/ma/greeninfrastructure-stormwater-bmp-cost-estimation.pdf (accessed on 9 August 2022).
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P. Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Newman, G.; Hollander, J.B.; Lee, J.; Gu, D.; Kim, B.; Lee, R.J.; Horney, J.A.; Bearfield, D.; Li, Y. Smarter shrinkage: A neighborhood-scaled rightsizing strategy based on land use dynamics. J. Geovisualization Spat. Anal. 2018, 2, 1–20. [Google Scholar] [CrossRef]
- Kim, G. Assessing urban forest structure, ecosystem services, and economic benefits on vacant land. Sustainability 2016, 8, 679. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Park, Y. Urban green infrastructure and local flooding: The impact of landscape patterns on peak runoff in four Texas MSAs. Appl. Geogr. 2016, 77, 72–81. [Google Scholar] [CrossRef]
- Kang, J.H.; Weiss, P.T.; Wilson, C.B.; Gulliver, J.S. Maintenance of stormwater BMPs, frequency, effort and cost. Stormwater 2008, 9, 18–28. [Google Scholar]
- Goldstein, J.; Jensen, M.; Reiskin, E. Urban Vacant Land Redevelopment: Challenges and Progress; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2001; Volume 37. [Google Scholar]
- McClintock, N.; Cooper, J.; Khandeshi, S. Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc. Urban Plan. 2013, 111, 46–58. [Google Scholar] [CrossRef]
- Alice, C. Dead space in the dying inner city. Int. J. Environ. Stud. 1982, 19, 103–107. [Google Scholar]
- Ross, D.; Lord, R. Can brownfield land be reused for ground source heating to alleviate fuel poverty? Renew. Energy 2018, 116, 344–355. [Google Scholar]
- Daniel Iozzi, S.; Antônio Dupas, F.; Dias Pons, N.A. Dynamics of urban sprawl, vacant land, and green spaces on the metropolitan fringe of São Paulo, Brazil. J. Urban Plan. Dev. 2013, 139, 274–279. [Google Scholar]
- Jakle, J.A.; Wilson, D. Derelict Landscapes: The Wasting of America’s Built Environment; Rowman & Littlefield: Lanham, MD, USA, 1992. [Google Scholar]
Bioretention System Characteristics | Heavy Metal Removal (%) | |||||||
---|---|---|---|---|---|---|---|---|
Location | Media Composition | Media Depth (cm) | Bioretention Surface Area (m²) | Ponding Depth (cm) | Zn | Cu | Pb | Reference(s) |
Greensboro, NC | Organic sand | 120 | 10 | NA | >98 | >98 | >80 | [64] |
Charlotte, NC | 6% fines and loamy sand | 120 | 229 | NA | 60 | 77 | 32 | [64] |
College Park, MD | 80% sand, 20% fines, and sandy loam | 50–80 | 181 | 15 | 92 | 65 | 83 | [62] |
Silver Spring, MD | 54% sand, 46% fines, and sandy clay loam | 90 | 102 | 30 | 99 | 96 | 100 | [62] |
N/A | N/A | N/A | N/A | >30 | 98 | 98 | 80 | [65] |
N/A | Four media mixes, sand, zeolite, sandy loam, and quartz-sand | N/A | N/A | N/A | >97 | >97 | >97 | [59] |
Different Design to Improve Nitrogen Removal | NO3-N (%) | Ranking | Reference(s) |
---|---|---|---|
Designed of bioretention columns with lower-permeability soil layers | 84 | High | [79] |
Design of saturation zones with different depths | 62 | Medium–high | [80] |
Designed for plant bioretention with saturated areas | 67 | High | [81] |
Designed with a two-layer biological retention system, modified with wood chips | 80 | High | [82] |
Design of a saturated zone with wood chips | 82.4 | Medium–high | [83] |
Design for the use of biochar to correct bioretention | 30.6–95.7 | Low–high | [84] |
Design of the treatment method for combining carbon sources in saturated zones | 85–94 | High | [85] |
The use of different plant species and increased depth of the filter media | 93 | High | [65] |
Design to revise the saturated zone where bioretention and biochar are combined | 50–60 | Low–medium | [81] |
Location | Different Design Features | P or NH4-N Reduction (%) | Reference(s) |
---|---|---|---|
Garden, Haddam, CT | Bioretention system enclosed in an impermeable membrane lining. | −117 | [88] |
Cell, College Park, MD | Setting up a saturation zone under the drain to promote the anaerobic process. | 79 | [89] |
Cell, Louisburg, NC | Bioretention system enclosed in an impermeable membrane lining. | 10 | [90] |
Rocky Mount, NC | Planting grass. Setting up a saturation zone under the drain to promote the anaerobic process. | 67 | [91] |
North Cell, Graham, NC | Planting grass. | 53 | [92] |
South Cell, Graham, NC | Planting grass. | 68 | [92] |
N/A | A hydraulic conductivity media. | 85 | [86] |
N/A | The mixed filter media of sand and local soil, with or without vegetation. | >90 | [93] |
N/A | Bioretention depth range: 60 to 80 cm. | 70–85 | [94] |
N/A | Constructed biofiltration mesocosms (vegetated sand and vegetated sandy loam). | 85–94 | [87] |
N/A | Sandy media. | <20 | [95] |
N/A | Landscaped bioretention. | 60 | [57] |
Location | Different Design Features | PAHs Reduction (%) | Reference(s) |
---|---|---|---|
College Park, MD | 90 cm of soil, sand, and organic matter, and plant appropriate vegetation. | 31–99 | [98] |
N/A | The construction of a bioretention system consisting of rain gardens and a bioswale. | 97 | [99] |
N/A | Combination of phytoremediation and bioretention system. | Enhanced by 18–115 | [102] |
N/A | Different permeable inorganic materials as filter medium (sand, calcite, zeolite, and iron filings). | 90 | [100] |
N/A | Bioretention soil mixtures. | 84–100 | [101] |
SCM (From Opti-Tool) | Cost (USD/ft3) 1 | Cost (USD/ft3)—2016 Dollars 6 |
---|---|---|
Bioretention (includes rain garden) | 13.37 2,4 | 15.46 |
Dry pond or detention basin | 5.88 2,4 | 6.80 |
Enhanced bioretention (biofiltration practice) | 13.5 2,3 | 15.61 |
Infiltration basin (or other surface infiltration practice) | 5.4 2,3 | 6.24 |
Infiltration trench | 10.8 2,3 | 12.49 |
Porous pavement—Porous asphalt pavement | 4.60 2,4 | 5.32 |
Porous pavement—Pervious concrete | 15.63 2,4 | 18.07 |
Sand filter | 15.51 2,4 | 17.94 |
Gravel wetland system (subsurface gravel wetland) | 7.59 2,4 | 8.78 |
Wet pond or wet detention basin | 5.88 2,4 | 6.80 |
Subsurface infiltration/Detention system (infiltration chamber) | 54.54 5 | 67.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yin, H.; Liu, Z.; Wang, X. A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands. Sustainability 2022, 14, 12906. https://doi.org/10.3390/su141912906
Wang Y, Yin H, Liu Z, Wang X. A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands. Sustainability. 2022; 14(19):12906. https://doi.org/10.3390/su141912906
Chicago/Turabian StyleWang, Yang, Hao Yin, Zhiruo Liu, and Xinyu Wang. 2022. "A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands" Sustainability 14, no. 19: 12906. https://doi.org/10.3390/su141912906
APA StyleWang, Y., Yin, H., Liu, Z., & Wang, X. (2022). A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands. Sustainability, 14(19), 12906. https://doi.org/10.3390/su141912906