Estimate Spatial Spillover of Airport Operational Efficiency in the YRD Region
Abstract
:1. Introduction
2. Literature Review
2.1. Multi-Airport Region
2.2. Airport Efficiency
3. Methodology
3.1. Data Envelopment Analysis-Slack-Based Measurement
3.2. Spatial Durbin Model
3.3. Spatial Weight Matrix
4. Data and Selection of Variables
4.1. Data
4.2. Selection of Variables
5. Empirical Study
5.1. Airport Efficiency Scores and Comparative Analysis
5.2. Spatial Autocorrelation Test
5.3. Spatial Regression Analysis
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Windle, R.; Dresner, M. Airport choice in multi-airport regions. J.Transp. Eng. 1995, 121, 332–337. [Google Scholar] [CrossRef]
- Basar, G.; Bhat, C. A parameterized consideration set model for airport choice: An application to the San Francisco Bay area. Trans. Res. Part B 2004, 38, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Pels, E.; Nijkamp, P.; Rietveld, P. Access to and competition between airports: A case study for the San Francisco Bay area. Transp. Res. Part A 2003, 37, 71–83. [Google Scholar] [CrossRef]
- Sarkis, J. Analysis of the operational efficiency of major airports in the United States. Oper. Manag. 2000, 18, 335–351. [Google Scholar] [CrossRef]
- Diana, T. Measuring performance at a large metropolitan area: The case of the DC (District of Columbia) metroplex. Transport. Res. Forum 2014, 53, 21–33. [Google Scholar] [CrossRef]
- Abbott, M.; Wu, S. Total factor productivity and efficiency of Australian airports. Aust. Econ. Rev. 2002, 35, 244–260. [Google Scholar] [CrossRef]
- Barros, C.P.; Dieke, P.U.C. Performance evaluation of Italian airports: A data envelopment analysis. J. Air Transport. Manag. 2007, 13, 184–191. [Google Scholar] [CrossRef]
- Adler, N.; Forsyth, P.; Mueller, J.; Niemeier, H.M. An economic assessment of airport incentive regulation. Transp. Policy 2015, 41, 5–15. [Google Scholar] [CrossRef]
- D’Alfonso, T.; Daraio, C.; Nastasi, A. Competition and efficiency in the Italian airport system: New insights from a conditional nonparametric frontier analysis. Transp. Res. Part E 2015, 80, 20–38. [Google Scholar] [CrossRef]
- Merkert, R.; Mangia, L. Efficiency of Italian and Norwegian airports: A matter of management or of the level of competition in remote regions? Transp. Res. Part A 2014, 62, 30–38. [Google Scholar] [CrossRef]
- Adler, N.; Liebert, V. Joint impact of competition, ownership form and economic regulation on airport performance and pricing. Transp. Res. Part A 2014, 64, 92–109. [Google Scholar] [CrossRef]
- Chi-Lok, A.Y.; Zhang, A. Effects of competition and policy changes on Chinese airport productivity: An empirical investigation. J. Air Transp. Manag. 2009, 15, 166–174. [Google Scholar] [CrossRef]
- Tsui, W.H.K.; Balli, H.O.; Gilbey, A.; Gow, H. Operational efficiency of Asia-Pacific airports. J. Air Transp. Manag. 2014, 40, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Yu, M.M.; Chen, P.C. Evaluating the performance of Chinese airports. J. Air Transp. Manag. 2013, 31, 19–21. [Google Scholar] [CrossRef]
- De Neufville, R. Amsterdam Multi-Airport Systems Policy Guideline; Massachusetts Institute of Technology: Cambridge, MA, USA, 2000. [Google Scholar]
- Atkins, S. Observation and measurement of metroplex phenomena. In Proceedings of the Digital Avionics Systems Conference (DASC), IEEE/AIAA 27th, St. Paul, MN, USA, 26–30 October 2008. [Google Scholar]
- Li, L.; Park, J.W.; Clarke, J.P.A. simulation-based method for estimating metroplex efficiency. In Proceedings of the Digital Avionics Systems Conference (DASC), IEEE/AIAA 30th, Seattle, WA, USA, 16–20 October 2011. [Google Scholar]
- Stavros, S.; Arnab, M.; Ke, H. A framework for the optimization of terminal airspace operations in Multi-Airport Systems. Trans. Res. Part B 2018, 110, 160–187. [Google Scholar]
- Manuel, A.A.C.; Francisco, S.N.; Christian, E.V.G. A data-driven methodology for characterization of a terminal manoeuvring area in multi-airport systems. Transport. Res. Part C 2020, 111, 185–209. [Google Scholar]
- Yuan, W.; Yu, Z. Prediction of runway configurations and airport acceptance rates for multi-airport system using gridded weather forecast. Transport. Res. Part C 2021, 125, 103–128. [Google Scholar]
- Li, M.Z.; Ryerson, M.S. A data-driven approach to modeling high-density terminal areas: A scenario analysis of the new Beijing, China airspace. Chin. J. Aeronaut. 2017, 30, 538–553. [Google Scholar] [CrossRef]
- Pitfield, D.E. The Southwest effect: A time-series analysis on passengers carried by selected routes and a market share comparison. J. Air Transp. Manag. 2008, 14, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Fuellhart, K.; O’Connor, K.; Woltemade, C. Route-level passenger variation within three multi-airport regions in the USA. J. Transp. Geogr. 2013, 31, 171–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y. Small community airport choice behavior analysis: A case study of GTR. J. Air Transp. Manag. 2005, 11, 442–447. [Google Scholar] [CrossRef]
- Suzuki, Y.; Audino, M.J. The effect of airfares on airport leakage in single-airport regions. Transp. J. 2003, 42, 31–41. [Google Scholar]
- Grubesic, T.H.; Matisziw, T.C. A spatial analysis of air transport access and the essential air service program in the United States. J. Transp. Geogr. 2011, 19, 93–105. [Google Scholar] [CrossRef]
- Park, Y.; O’Kelly, M.E. Origin–destination synthesis for aviation network data: Examining hub operations in the domestic and international US markets. J. Adv. Transp. 2016, 50, 2288–2305. [Google Scholar] [CrossRef]
- Filipe, M.T.; Ben, D. Spatio-temporal dynamics in airport catchment areas: The case of the New York Multi Airport Region. J. Transp. Geogr. 2021, 90, 102–115. [Google Scholar]
- Gillen, D.; Lall, A. Developing measures of airport productivity and performance: An application of data envelopment analysis. Transp. Res. Part E 1997, 33, 261–273. [Google Scholar] [CrossRef]
- Abbott, M. Reform and efficiency of New Zealand’s airports. Util. Policy 2015, 36, 1–9. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Min, H. Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index. J. Air Transp. Manag. 2014, 39, 12–22. [Google Scholar] [CrossRef]
- Örkcü, H.H.; Balikçi, C.; Dogan, M.I.; Genç, A. An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case. Transp. Policy 2016, 48, 92–104. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.W.; Low, J.M.W.; Tang, L.C. Operational efficiencies of Asia Pacific airports. Transp. Res. Part E. 2009, 45, 654–665. [Google Scholar] [CrossRef]
- Yu, M.M. Assessment of airport performance using the SBM-NDEA model. Omega 2010, 38, 440–452. [Google Scholar] [CrossRef]
- Lozano, S.; Gutierrez, E. Slacks-based measure of efficiency of airports with airplanes delays as undesirable outputs. Comput. Oper. Res. 2011, 38, 131–139. [Google Scholar] [CrossRef]
- Tsui, W.H.K.; Gilbey, A.; Balli, H.O. Estimating airport efficiency of New Zealand airports. J. Air Transp. Manag. 2014, 35, 78–86. [Google Scholar] [CrossRef]
- Ngo, T.; Tsui, K.W.H. A data-driven approach for estimating airport efficiency under endogeneity: An application to New Zealand airports. Res. Transp. Bus. Manag. 2020, 34, 104–114. [Google Scholar] [CrossRef]
- Storto, C. The analysis of the cost-revenue production cycle efficiency of the Italian airports: A NSBM DEA approach. J. Air Transport. Manag. 2018, 72, 77–85. [Google Scholar] [CrossRef]
- Huynh, T.M.; Kim, G.; Ha, H.-K. Comparative analysis of efficiency for major Southeast Asia airports: A two-stage approach. J. Air Transp. Manag. 2020, 89, 101–110. [Google Scholar] [CrossRef]
- Liu, D. Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of Network Data Envelopment Analysis. J. Air Transp. Manag. 2016, 52, 11–22. [Google Scholar] [CrossRef]
- Chang, Y.T.; Kevin Park, H.; Zou, B.; Kafle, N. Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing. Transp. Res. Part E Logist. Transp. Rev. 2016, 88, 76–93. [Google Scholar] [CrossRef]
- Coto-Millán, P.; Inglada, V.; Fernandez, X.L.; Inglada-Pérez, L.; Pesquera, M.A. The “effect procargo” on technical and scale efficiency at airports: The case of Spanish airports (2009–2011). Util. Policy. 2016, 39, 29–35. [Google Scholar] [CrossRef]
- Wanke, P.; Barros, C.P. Efficiency thresholds and cost structure in Senegal airports. J. Air Transp. Manag. 2017, 58, 100–112. [Google Scholar] [CrossRef]
- Adler, N.; Ülkü, T.; Yazhemsky, E. Small regional airport sustainability: Lessons from benchmarking. J. Air Transp. Manag. 2013, 33, 22–31. [Google Scholar] [CrossRef]
- Fragoudaki, A.; Giokas, D. Airport performance in a tourism receiving country: Evidence from Greece. J. Air Transp. Manag. 2016, 52, 80–89. [Google Scholar] [CrossRef]
- Červinka, M. Small regional airport performance and Low cost carrier operations. Trans. Res. Proce. 2017, 28, 51–58. [Google Scholar] [CrossRef]
- Ha, H.K.; Wan, Y.; Yoshida, Y.; Zhang, A. Airline market structure and airport efficiency: Evidence from major Northeast Asian airports. J. Air Transp. Manag. 2016, 33, 32–42. [Google Scholar] [CrossRef]
- Fragoudaki, A.; Giokas, D.; Glyptou, K. Efficiency and productivity changes in Greek airports during the crisis years 2010–2014. J. Air Transp. Manag. 2016, 57, 306–315. [Google Scholar] [CrossRef]
- Fernández, X.L.; Coto-Millán, P.; Díaz-Medina, B. The impact of tourism on airport efficiency: The Spanish case. Util. Policy 2018, 55, 52–58. [Google Scholar] [CrossRef]
- Cheung, K.Y.; Wong, W.H.; Zhang, A.; Wu, Y. Spatial panel model for examining airport relationships within multi-airport regions. Transp. Res. Part A Policy Pract. 2020, 133, 148–163. [Google Scholar] [CrossRef]
- Iyer, K.C.; Jain, S. Performance measurement of airports using data envelopment analysis: A review of methods and findings. J. Air Transport. Manag. 2019, 81, 101707. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Boston, MA, USA, 1988. [Google Scholar]
- Elhorst, J.P. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press Taylor&Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Xueliang, Z. Has transport infrastructure promoted regional economic growth? With an analysis of the spatial spillover effects of transport infrastructure. Soc. Sci. China 2013, 34, 24–47. [Google Scholar] [CrossRef]
- O’Connor, K.; Fuellhart, K. Airports and regional air transport markets: A new perspective. J. Transp. Geogr. 2016, 53, 78–82. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Heidelberg/Berlin, Germany, 2014. [Google Scholar]
- Ablanedo-Rosas, J.H.; Gemoets, L.A. Measuring the efficiency of Mexican airports. J. Air Transp. Manag. 2010, 16, 343–345. [Google Scholar] [CrossRef]
- Ülkü, T. A comparative efficiency analysis of Spanish and Turkish airports. J. Air Transp. Manag. 2015, 46, 56–68. [Google Scholar] [CrossRef]
Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
Terminal Area (‘000) | 32.4188 | 20.09249 | 4.35 | 62.2 |
Runway Area (‘000) | 37.08 | 21.86176 | 15.3 | 90 |
Passenger (‘000) | 2782.28 | 1788.292 | 403.1 | 7405.4 |
Cargo (‘000) | 88.5808 | 119.9764 | 4.7 | 382.4 |
Flight (‘000) | 21.13 | 12.43348 | 3.8 | 50.4 |
Independent Variables | Definition | |
---|---|---|
operational characteristics | ln(Fli) | Number of regular flights |
ln(Cap) | Number of seats on scheduled flights | |
ln(Des) | Number of air destination | |
regional characteristics | ln(GDP) | Gross domestic production |
ln(Pop) | Number of hinterland population | |
ln(Inc) | Per capita income |
Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
ln(Fli) | 5.9532 | 0.8535 | 4.4886 | 7.4776 |
ln(Cap) | 11.0517 | 0.9295 | 9.4042 | 12.7375 |
ln(Des) | 4.7596 | 0.7172 | 3.4657 | 5.9889 |
ln(GDP) | 9.2485 | 0.5544 | 8.3634 | 10.3945 |
ln(Pop) | 6.8828 | 0.5376 | 6.3474 | 7.7938 |
ln(Inc) | 10.6049 | 0.2747 | 10.1253 | 11.0694 |
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 1.60 | 1.90 | 1.86 | 1.94 | 1.92 | 2.00 | 1.98 | 1.96 | 2.04 | 2.12 |
Hangzhou | 0.77 | 0.84 | 0.93 | 1.03 | 1.00 | 1.00 | 1.02 | 1.05 | 1.23 | 1.34 |
Nanjing | 0.85 | 0.92 | 1.00 | 1.03 | 1.07 | 1.03 | 1.17 | 1.21 | 1.36 | 1.45 |
Ningbo | 1.07 | 1.07 | 1.10 | 1.07 | 1.11 | 1.19 | 1.24 | 1.27 | 1.33 | 1.37 |
Year | Moran′s | p | Year | Moran′s | p |
---|---|---|---|---|---|
2009 | −0.213 | 0.005 | 2014 | −0.200 | 0.007 |
2010 | −0.225 | 0.003 | 2015 | −0.189 | 0.001 |
2011 | −0.306 | 0.000 | 2016 | −0.213 | 0.000 |
2012 | −0.393 | 0.000 | 2017 | −0.145 | 0.000 |
2013 | −0.232 | 0.010 | 2018 | −0.100 | 0.000 |
Coefficients | Estimated Value | Standard Error | p-Value | |
---|---|---|---|---|
ln(GDP) | 0.1450 | 0.0502 | 0.060 | * |
ln(Pop) | 0.0490 | 0.0313 | 0.214 | |
ln(Inc) | 0.0169 | 0.0167 | 0.296 | |
ln(Fli) | 0.2996 | 0.0430 | 0.002 | *** |
ln(Des) | 0.0869 | 0.0181 | 0.038 | ** |
ln(Cap) | 0.3975 | 0.0320 | 0.000 | *** |
0.0532 | 0.0154 | 0.304 | ||
0.0657 | 0.0304 | 0.007 | *** | |
0.0234 | 0.0163 | 0.092 | * | |
−0.1574 | 0.0269 | 0.05 | * | |
−0.0505 | 0.0308 | 0.450 | ||
−0.2536 | 0.0188 | 0.016 | ** | |
−0.1667 | 0.0549 | 0.009 | *** | |
0.1458 | ||||
268 |
Direct Effects | Spillover Effects | Total Effects | |
---|---|---|---|
ln(GDP) | 0.1433 | 0.0746 | 0.2179 |
ln(Pop) | 0.0458 | 0.0881 | 0.1339 |
ln(Inc) | 0.0186 | 0.0457 | 0.0643 |
ln(Fli) | 0.2992 | −0.1367 | 0.1625 |
ln(Des) | 0.0918 | −0.0631 | 0.0287 |
ln(Cap) | 0.3830 | −0.2632 | 0.1198 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, B.; Zhang, N.; Wu, C. Estimate Spatial Spillover of Airport Operational Efficiency in the YRD Region. Sustainability 2022, 14, 1019. https://doi.org/10.3390/su14021019
Qian B, Zhang N, Wu C. Estimate Spatial Spillover of Airport Operational Efficiency in the YRD Region. Sustainability. 2022; 14(2):1019. https://doi.org/10.3390/su14021019
Chicago/Turabian StyleQian, Bingxue, Ning Zhang, and Congliang Wu. 2022. "Estimate Spatial Spillover of Airport Operational Efficiency in the YRD Region" Sustainability 14, no. 2: 1019. https://doi.org/10.3390/su14021019
APA StyleQian, B., Zhang, N., & Wu, C. (2022). Estimate Spatial Spillover of Airport Operational Efficiency in the YRD Region. Sustainability, 14(2), 1019. https://doi.org/10.3390/su14021019