Impact of High-Speed Rail on Social Equity—Insights from a Stated Preference Survey in Vietnam
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Influencing Transport-Mode Choice
2.2. Social-Equity Studies
3. Methodology
3.1. Mode-Choice Model
3.2. Data Collection
4. Results and Discussions
4.1. Factors Influencing Inter-City Bus before and after Introducing HSR
4.2. Factors Influencing Conventional Train Use before and after Introducing HSR
4.3. Factors Influencing Inter-City Bus and Conventional Train Choice by Diffirent Cities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Yang, Z.; Jiao, J.; Liu, W.; Wu, W. The effects of high-speed rail development on regional equity in China. Transp. Res. Part A Policy Pract. 2020, 141, 180–202. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Yang, L. High speed rail and urban service industry agglomeration: Evidence from Chin’s Yangtze River Delta region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Ren, X.; Chen, Z.; Wang, F.; Dan, T.; Wang, W.; Guo, X.; Liu, C. Impact of high-speed rail on social equity in China: Evidence from a mode choice survey. Transp. Res. Part A Policy Pract. 2020, 138, 422–441. [Google Scholar] [CrossRef]
- Chen, Z.; Haynes, K.E. Impact of high-speed rail on regional economic disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Loo, B.P.; Vickerman, R. High-speed rail networks, economic integration and regional specialisation in China and Europe. Travel Behav. Soc. 2015, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. ‘No county left behind?’ the distributional impact of high-speed rail upgrades in China. J. Transp. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Ohashi, T.; Ando, A. High-speed rail transit impact on regional systems: Does the Shinkansen contribute to dispersion? Ann. Reg. Sci. 1997, 31, 77–98. [Google Scholar] [CrossRef]
- Hall, P. Magic carpets and seamless webs: Opportunities and constraints for high-speed trains in Europe. Built Environ. 2009, 35, 59–69. [Google Scholar] [CrossRef]
- Vickerman, R. Can high-speed rail have a transformative effect on the economy? Transp. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.Y.; Meng, X.C. “Involuntary high-speed railway travel”: A case study based on the Beijing-Shanghai high-speed railway. Prog. Geogr. 2016, 35, 496–504. [Google Scholar]
- Bills, T.S.; Walker, J.L. Looking beyond the mean for equity analysis: Examining distributional impacts of transportation improvements. Transp. Policy 2017, 54, 61–69. [Google Scholar] [CrossRef]
- Boisjoly, G.; Grisé, E.; Maguire, M.; Veillette, M.; Deboosere, R.; Berrebi, E.; El-Geneidy, A. Invest in the ride: A 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American cities. Transp. Res. Part A Policy Pract. 2018, 116, 434–445. [Google Scholar] [CrossRef]
- Lee, B.; Lee, Y. Complementary pricing and land use policies: Does it lead to higher transit use? J. Am. Plan. Assoc. 2013, 79, 314–328. [Google Scholar] [CrossRef]
- Wang, K.; Woo, M. The relationship between transit rich neighborhoods and transit ridership: Evidence from the decentralization of poverty. Appl. Geogr. 2017, 86, 183–196. [Google Scholar] [CrossRef]
- Creemers, L.; Cools, M.; Tormans, H.; Lateur, P.-J.; Janssens, D.; Wets, G. Identifying the Determinants of Light Rail Mode Choice for Medium- and Long-Distance trips: Results from a Stated Preference Study. Transp. Res. Rec. J. Transp. Res. Board 2012, 2275, 30–38. [Google Scholar] [CrossRef]
- Legrain, A.; Buliung, R.; El-Geneidy, A. Who, what, when, and where: Revisiting the influences of transit mode share? Transp. Res. Rec. J. Transp. Res. Board 2015, 2537, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.B.; Ong, P.M. Traditional neighborhoods and automobile ownership. Transp. Res. Rec. J. Transp. Res. Board 2002, 1805, 35–44. [Google Scholar] [CrossRef]
- Kim, C.; Wang, S. Empirical examination of neighborhood context of individual travel behaviors. Appl. Geogr. 2015, 60, 230–239. [Google Scholar] [CrossRef]
- Mercado, R.; Paez, A.; Farber, S.; Roorda, M.; Morency, C. Explaining transport mode use of low-income persons for journey to work in urban areas: A case study of Ontario and Quebec. Transportmetrics 2012, 8, 157–179. [Google Scholar] [CrossRef]
- Nolan, A. A Dynamic Analysis of Household Car Ownership. Transp. Res. Part A Policy Pract. 2010, 44, 446–455. [Google Scholar] [CrossRef]
- Giuliano, G. Low income, public transit, and mobility. Transp. Res. Rec. J. Transp. Res. Board 2005, 1927, 63–70. [Google Scholar] [CrossRef]
- Beimborn, E.; Greenwald, M.; Jin, X. Accessibility, connectivity, and captivity: Impacts on transit choice. Transp. Res. Rec. J. Transp. Res. Board 2003, 1835, 1–9. [Google Scholar] [CrossRef]
- Hensher, D.; Rose, J. Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study. Transp. Res. Part A Policy Pract. 2007, 41, 428–443. [Google Scholar] [CrossRef]
- Vasconcellos, E.A. Urban change, mobility and transport in São Paulo: Three decades, three cities. Transp. Policy 2005, 12, 91–104. [Google Scholar] [CrossRef]
- Limtanakool, N.; Dijst, M.; Schwanen, T. The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips. J. Transp. Geogr. 2006, 14, 327–341. [Google Scholar] [CrossRef]
- Cirillo, C.; Axhausen, K. Comparing urban activity travel behaviour. In Proceedings of the Transportation Research Board, 81st Annual Meeting, Washington, DC, USA, 13–17 January 2002; 27p. [Google Scholar]
- De Witte, A.; Hollevoet, J.; Dobruszkes, F.; Hubert, M.; Macharis, C. Linking modal choice to mobility: A comprehensive review. Transp. Res. Part A Policy Pract. 2013, 49, 329–341. [Google Scholar] [CrossRef]
- De Palma, A.; Rochat, D. Mode choices for trips to work in Geneva: An empirical analysis. J. Transp. Geogr. 2000, 8, 43–51. [Google Scholar] [CrossRef]
- Kim, S.; Ulfarsson, G. Curbing automobile use for sustainable transportation: Analysis of mode choice on short home-based trips. Transportation 2008, 35, 723–737. [Google Scholar] [CrossRef]
- Nurul Habib, K.M.; Day, N.; Miller, E. An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model. Transp. Res. Part A Policy Pract. 2009, 43, 639–653. [Google Scholar] [CrossRef]
- Meng, D.Y.; Li, X.J. Spatial pattern of cost accessibility of provincial capital cities by high-speed rail and consumption in China. Prog. Geogr. 2018, 37, 1055–1065. [Google Scholar]
- Hickman, R.; Chen, C.L.; Chow, A.; Saxena, S. Improving interchanges in China: The experiential phenomenon. J. Transp. Geogr. 2015, 42, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.Q.; Yan, H.; Yang, Y.; Liu, L.F. Factor analysis of the competition between high-speed railway and civil aviation from the perspective of passengers. Manag. Rev. 2018, 30, 209–222. [Google Scholar]
- Ren, X.; Chen, Z.; Wang, F.; Wang, J.; Wang, C.; Dan, T.; Du, Z. Impact of high-speed rail on intercity travel behavior change: The evidence from the chengdu-chongqing passenger dedicated line. J. Transport. Land Use 2019, 12, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Behrens, C.; Pels, E. Intermodal competition in the London-Paris passenger market: High-Speed Rail and air transport. J. Urban. Econ. 2012, 71, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Cascetta, E.; Papola, A.; Pagliara, F.; Marzano, V. Analysis of mobility impacts of the high speed Rome-Naples rail link using within day dynamic mode service choice models. J. Transp. Geogr. 2011, 19, 635–643. [Google Scholar] [CrossRef]
- Chen, C.L.; Wei, B. High-speed rail and urban transformation in China: The case of Hangzhou east rail station. Built Environ. 2013, 39, 385–398. [Google Scholar] [CrossRef]
- Pagliara, F.; Biggiero, L. Some evidence on the relationship between social exlcusion and high speed rail system. HKIE Transp. 2017, 24, 17–23. [Google Scholar] [CrossRef]
- Teng, J.; Shen, B.; Fei, X.; Zhang, J.X.; Jiang, Z.B.; Ma, C. Designing feeder bus lines for high-speed railway terminals. Syst. Eng.-Theory Pract. 2013, 33, 2937–2944. [Google Scholar]
- Wen, C.H.; Wang, W.C.; Fu, C. Latent class nested logit model for analyzing high-speed rail access mode choice. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 545–554. [Google Scholar] [CrossRef]
- Litman, T. Evaluating transportation equity. World Transp. Policy Pract. 2002, 8, 50–65. [Google Scholar]
- Di Ciommo, F.; Shiftan, Y. Transport equity analysis. Transp. Rev. 2017, 37, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Camporeale, R.; Caggiani, L.; Ottomanelli, M. Modeling horizontal and vertical equity in the public transport design problem: A case study. Transp. Res. Part A Policy Pract. 2019, 125, 184–206. [Google Scholar] [CrossRef]
- Welch, T.F.; Misha, S. A measure of equity for public transit connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Guo, Y.K. The role of transportation in alleviating social exclusion. Urban. Probl. 2012, 11, 77–81. [Google Scholar]
- Wang, S.J. Urban mobility and social exclusion in China. Urban. Plan. Forum 2011, 4, 87–92. [Google Scholar]
- Wang, S.J.; Zang, J. Urban transportation and social exclusion of contemporary China. Chin. Anc. City 2009, 4, 24–29. [Google Scholar]
- Golub, A.; Marcantonio, R.A.; Sanchez, T.W. Race, space, and struggles for mobility: Transportation impacts on African Americans in Oakland and the east bay. Urban. Geogr. 2013, 34, 699–728. [Google Scholar] [CrossRef]
- Blumenberg, E. En-gendering effective planning: Spatial mismatch, low-income women, and transportation policy. J. Am. Plan. Assoc. 2004, 70, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhu, Z. Social trust and emotional health in older adults in China: The mediating and moderating role of subjective well-being and subjective social status. BMC Public Health 2020, 21, 556. [Google Scholar]
- Dobruszkes, F.; Chen, C.L.; Moyano, A.; Pagliara, F.; Endemann, P. Is high-speed rail socially exclusive? An evidence-based worldwide analysis. Travel Behav. Soc. 2022, 26, 96–107. [Google Scholar] [CrossRef]
- Dargay, J.; Clark, S. The determinants of long distance travel in Great Britain. Transp. Res. Part A 2012, 46, 576–587. [Google Scholar] [CrossRef]
- Mallet, W.J. Long-distance travel by low-income households; Transportation Research Circular E-C026. In Proceedings of the Transportation Research Board Conference on Personal Travel: The Long and Short of It, Washington, DC, USA, 28 June–1 July 2001; 2001; pp. 169–177. [Google Scholar]
- Georggi, N.; Pendyaja, R. Analysis of long-distance travel behavior of the elderly and low income. Transportation Research Circular E-C026. In Proceedings of the Transportation Research Board Conference on Personal Travel: The Long and Short of It, Washington, DC, USA, 28 June–1 July 2001; pp. 121–150. [Google Scholar]
- Cascetta, E.; Cartenì, A.; Henke, I.; Pagliara, F. Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: Ten years ex post evaluation and future perspectives. Transp. Res. Part A 2020, 139, 412–428. [Google Scholar] [CrossRef]
- Chen, J.; Lu, F.; Cheng, C.X. Advance in accessibility evaluation approaches and applications. Prog. Geogr. 2007, 26, 100–110. [Google Scholar]
- He, J.F. A study on the accessibility of high-speed rail in China: A case of Yangtze River Delta. Urban. Plan. Int. 2011, 26, 55–62. [Google Scholar]
- Jiang, H.B.; Xu, J.G.; Qi, Y. The influence of Beijing-Shanghai high-speed railways on land accessibility of regional center cities. Acta Geogr. Sin. 2010, 65, 1287–1298. [Google Scholar]
- Kim, H.; Sultana, S. The impacts of high-speed rail extension on accessibility and spatial equity changes in South Korea from 2004 to 2018. J. Transp. Geogr. 2015, 45, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Kunzmann, K.R. Planning for spatial equity in Europe. Int. Plan. Stud. 1998, 3, 101–120. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mateo, H.S.M.; Givoni, M. The accessibility impact of a new high-speed rail line in the UK-a preliminary analysis of winners and losers. J. Transp. Geogr 2012, 25, 104–105. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, N. How cities influenced by high speed rail development: A case study in China. J. Transp. Technol. 2013, 3, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, F.; Bruzzone, F.; Nocera, S. Spatial and social equity implications for high-speed railway lines in Northern Italy. Transp. Res. Part A 2020, 135, 327–340. [Google Scholar] [CrossRef]
- Zhan, S.; Wong, S.C.; Lo, S.M. Social equity-based timetabling and ticket pricing for high-speed railways. Transp. Res. Part A 2020, 137, 165–186. [Google Scholar] [CrossRef]
- Pagliara, F.; Pompeis, V.D.; John, P. Travel cost: Not always the most important element of social exlusion. Open Transp. J. 2017, 11, 110–119. [Google Scholar] [CrossRef]
- Pagliara, F.; Menicocci, F.; Vassallo, J.; Gomez, J. Social exclusion and high speed rail: The case study of Spain. In Proceedings of the CIT2016: 12. Congress of Transport Engineering, Valencia, Spain, 7–9 June 2016. [Google Scholar]
- Huyen, L.T.; Ngoc, A.M. Transportation mode choice in Vietnam intercity trips. In Frontiers in High-Speed Rail Development. Hayashi, Y., Rothengatter, W., Seetha Ram, K.E., Eds.; Asian Development Bank Institute: Tokyo, Japan, 2021. [Google Scholar]
- Anastasopoulos, P.C.; Karlaftis, M.; Haddock, J.; Mannering, F.L. Household automobile and motorcycle ownership analyzed with random parameters bivariate ordered probit model. Transp. Res. Rec. J. Transp. Res. Board 2012, 2279, 12–20. [Google Scholar] [CrossRef]
- Bhat, C.R.; Sardesai, R. The impact of stop-making and travel time reliability on commute mode choice. Transp. Res. Part B Method. 2006, 40, 709–730. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morikawa, T. Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: Case study in Bangkok Metropolitan Region. J. Transp. Geogr. 2010, 18, 402–410. [Google Scholar] [CrossRef]
- Fountas, G.; Sarwar, M.T.; Anastasopoulos, P.C.; Blatt, A.; Majka, K. Analysis of stationary and dynamic factors affecting highway accident occurrence: A dynamic correlated grouped random parameters binary logit approach. Accid. Anal. Prev. 2018, 113, 330–340. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C.; Abdel-Aty, M. Analysis of accident injury-severities using a correlated random parameters ordered probit approach with time variant covariates. Anal. Methods Accid. Res. 2018, 18, 57–68. [Google Scholar] [CrossRef]
- Guo, Y.; Peeta, S.; Mannering, F. Rail-truck multimodal freight collaboration: A statistical analysis of freight-shipper perspective. Transp. Plan. Technol. 2016, 39, 484–506. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Wu, Y.; Xu, C. Evaluating factors affecting electric bike users’ registration of license plate in China using Bayesian approach. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 212–221. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, Y.; Ermagun, A.; Cao, X.; Wang, W.; Das, K. Public bicycle as a feeder mode to rail transit in China: The role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. Transp. 2017, 11, 308–317. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring spatially varying influences on metro-bikeshare transfer: A geographically weighted poisson regression approach. Sustainability 2018, 10, 1526. [Google Scholar] [CrossRef] [Green Version]
- Kamargianni, M.; Dubey, S.; Polydoropoulou, A.; Bhat, C. Investigating the subjective and objective factors influencing teenagers’ school travel mode choice: An integrated choice and latent variable model. Transp. Res. Part A Policy Pract. 2015, 78, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Fricker, J.D. Bicyclist commuters’ choice of on-street versus off-street route segments. Transportation 2013, 40, 887–902. [Google Scholar] [CrossRef]
- McMillan, T.E. The relative influence of urban form on a child’s travel mode to school. Transp. Res. Part A Policy Pract. 2007, 41, 69–79. [Google Scholar] [CrossRef]
- Qiao, Y.; Moomen, M.; Zhang, Z.; Agbelie, B.; Labi, S.; Sinha, K.C. Modeling deterioration of bridge components with binary probit techniques with random effects. Transp. Res. Rec. 2016, 2550, 96–105. [Google Scholar] [CrossRef]
- Qiao, Y.; Saeed, T.U.; Chen, S.; Nateghi, R.; Labi, S. Acquiring insights into infrastructure repair policy using discrete choice models. Transp. Res. Part A Policy Pract. 2018, 113, 491–508. [Google Scholar] [CrossRef]
- Tabacknick, B.G.; Fidell, L.S.; Osterlind, S.J. Using Multivariate Statistics; Allyn and Bacon: Boston, MA, USA, 2001. [Google Scholar]
- Bai, T.; Li, X.; Sun, Z. Effects of cost adjustment on travel mode choice: Analysis and comparison of different logit models. Transp. Res. Procedia 2017, 25, 2649–2659. [Google Scholar] [CrossRef]
- Menard, S.W. Applied Logistic Regression Analysis (Quantitative Applications in the Social Sciences), 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Washington, S.P.; Karlaftis, M.; Mannering, F.L. StatisBaitical and Econometric Methods for Transportation Data Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Theil, H. Economics and Information Theory; North Holland: Amsterdam, The Netherlands, 1967. [Google Scholar]
- General Statistics Office (GSO). Population. Available online: https://www.gso.gov.vn/en/population/ (accessed on 15 October 2021).
Variable | Variable Type | Total | Hanoi | Vinh | Da Nang | HCMC |
---|---|---|---|---|---|---|
Gender | Male | 55.9 | 53.1 | 54.7 | 57.0 | 59.4 |
Female | 44.1 | 46.9 | 45.3 | 43.0 | 40.6 | |
Age | Under 18 years old | 0.9 | 0.4 | 2.4 | 0.9 | 0.9 |
18–24 years old | 30.2 | 24.3 | 35.6 | 35.0 | 25.4 | |
25–34 years old | 34.1 | 35.1 | 32.2 | 35.4 | 32.5 | |
35–50 years old | 24.1 | 27.5 | 20.4 | 19.8 | 28.9 | |
Above 50 years old | 10.7 | 12.6 | 9.3 | 8.9 | 12.4 | |
Education | High school and below | 49.0 | 52.3 | 51.9 | 44.5 | 52.6 |
Junior college | 16.9 | 12.1 | 12.8 | 19.8 | 16.8 | |
Bachelor’s degree | 33.1 | 34.8 | 34.6 | 34.3 | 30.3 | |
Master’s degree and above | 0.9 | 0.7 | 0.7 | 1.5 | 0.3 | |
Occupation | Office worker/gov. officer | 20.8 | 24.1 | 17.0 | 19.8 | 21.6 |
Worker | 11.3 | 10.5 | 13.5 | 14.0 | 7.4 | |
Self-employed | 28.6 | 28.1 | 28.4 | 25.4 | 33.1 | |
Student | 20.1 | 15.2 | 25.6 | 24.8 | 14.8 | |
Seasonal worker | 4.0 | 3.8 | 1.0 | 3.0 | 5.6 | |
Housewife/retired/jobless | 5.4 | 6.7 | 7.3 | 5.0 | 4.7 | |
Other | 9.9 | 11.6 | 7.3 | 7.9 | 12.8 | |
Monthly income | Without any income | 2.3 | 3.8 | 2.8 | 1.6 | 2.2 |
Less than 6 mil. VND | 22.2 | 22.3 | 32.5 | 29.1 | 16.2 | |
6–10 mil. VND | 49.4 | 45.7 | 46.0 | 45.5 | 51.3 | |
10–20 mil. VND | 19.7 | 21.0 | 11.1 | 18.2 | 23.3 | |
20–30 mil. VND | 5.3 | 5.4 | 6.2 | 4.5 | 5.9 | |
More than 30 mil. VND | 1.2 | 1.8 | 1.2 | 1.1 | 1.0 | |
Less than 300 km | 21.4 | 21.4 | 22.8 | 22.5 | 19.5 | |
Distance | 300–500 km | 21.1 | 24.5 | 22.1 | 22.4 | 17.3 |
500–700 km | 12.9 | 11.6 | 14.5 | 13.5 | 12.3 | |
700–1000 km | 12.4 | 13.6 | 11.1 | 12.6 | 11.9 | |
1000–1500 km | 25.1 | 20.8 | 22.8 | 23.2 | 30.7 | |
From 1500 km | 7.1 | 8.2 | 6.6 | 5.9 | 8.3 | |
Reason for choosing conventional rail | OD time | 2.1 | 1.1 | 7.3 | 2.0 | 1.2 |
Affordable fare | 12.3 | 9.4 | 18.7 | 12.4 | 12.1 | |
Flexibility | 2.2 | 2.5 | 4.8 | 2.0 | 1.6 | |
Comfort | 3.2 | 2.9 | 5.2 | 2.9 | 3.1 | |
Reliability | 3.3 | 2.0 | 5.2 | 3.9 | 2.7 | |
Safety | 9.9 | 9.1 | 10.4 | 9.4 | 11.0 | |
Security | 0.6 | 0.2 | 1.4 | 0.6 | 0.6 | |
Punctuality | 0.6 | 0.9 | 1.4 | 0.4 | 0.4 | |
Frequency | 2.8 | 4.0 | 4.5 | 1.8 | 2.9 | |
Directness | 7.1 | 6.0 | 15.9 | 9.6 | 7.0 | |
Reason for choosing inter-city bus | OD time | 60.4 | 57.4 | 61.9 | 62.2 | 59.3 |
Affordable fare | 10.6 | 10.3 | 21.1 | 11.7 | 6.3 | |
Flexibility | 59.9 | 56.9 | 47.8 | 61.9 | 62.3 | |
Comfort | 21.7 | 11.2 | 26.3 | 27.4 | 18.3 | |
Reliability | 12.6 | 11.2 | 13.1 | 16.1 | 8.6 | |
Safety | 6.9 | 6.9 | 9.0 | 8.6 | 4.0 | |
Security | 1.1 | 1.4 | 2.4 | 0.9 | 0.8 | |
Punctuality | 19.5 | 28.3 | 18.7 | 21.1 | 12.8 | |
Frequency | 12.7 | 18.7 | 23.9 | 12.4 | 6.7 | |
Directness | 7.2 | 6.9 | 8.7 | 8.1 | 5.9 | |
Conditions for choosing HSR | Short journey time | 70.3 | 71.6 | 72.0 | 67.1 | 73.5 |
High fare | 74.9 | 74.8 | 81.0 | 74.1 | 74.3 | |
High frequency | 55.8 | 62.9 | 51.6 | 54.0 | 55.6 | |
High span of service | 69.9 | 72.5 | 74.7 | 68.8 | 68.6 | |
Reduce frequency of inter-city bus | 36.9 | 39.9 | 43.6 | 36.3 | 34.2 | |
Reduce frequency of conventional trains | 46.0 | 46.4 | 52.9 | 46.0 | 43.7 | |
Installation of amenities (PIS, Wi-Fi, etc.) | 57.9 | 59.4 | 60.6 | 61.0 | 52.2 | |
Convenience in ticket purchasing | 66.7 | 72.5 | 61.9 | 69.4 | 61.3 | |
Providing facilities for handicapped people | 89.1 | 92.2 | 79.9 | 90.6 | 88.0 |
Dependent Variable | Frequency | Percent | |
---|---|---|---|
Before HSR | Inter-city bus | 2344 | 86.39 |
Conventional train | 344 | 12.67 | |
Airplane | 26 | 0.96 | |
After HSR | Inter-city bus | 1106 | 40.76 |
Conventional train | 222 | 8.18 | |
Airplane | 13 | 0.48 | |
HSR | 1372 | 50.57 |
Variables | Without HSR (BNL Model) | Within HSR (MNL Model) | ||
---|---|---|---|---|
Coef. | S.E. | Coef. | S.E. | |
Gender (male) | 0.368 ** | 0.154 | 0.203 *** | 0.079 |
Age | 0.255 *** | 0.083 | 0.012 | 0.043 |
Education | −0.438 *** | 0.097 | −0.065 | 0.048 |
Occupation | −0.205 *** | 0.045 | −0.028 | 0.022 |
Income | −0.159 | 0.127 | 0.184 *** | 0.060 |
OD time | 2.917 *** | 0.222 | 0.369 *** | 0.083 |
Affordable fare | 1.537 *** | 0.406 | 0.429 *** | 0.123 |
Flexibility | 2.763 *** | 0.201 | 0.415 *** | 0.083 |
Comfort | 1.155 *** | 0.269 | 0.488 *** | 0.092 |
Reliability | 1.068 *** | 0.362 | 0.130 | 0.115 |
Safety | −0.672 ** | 0.339 | −0.169 | 0.155 |
Security | −0.038 | 0.692 | 0.447 | 0.353 |
Punctuality | 0.872 *** | 0.319 | 0.256 *** | 0.094 |
Frequency | 1.560 *** | 0.399 | 0.288 *** | 0.111 |
Directness | 0.985 *** | 0.371 | −0.112 | 0.150 |
High fare of HSR | 0.086 | 0.050 | ||
Short journey time of HSR | −0.056 | 0.050 | ||
High frequency of HSR | −0.089 * | 0.046 | ||
High span of service of HSR | −0.002 | 0.048 | ||
Reduce inter-city buses frequency | 0.042 | 0.044 | ||
Reduce conventional trains frequency | 0.063 | 0.045 | ||
Installation of amenities (PIS, WiFi, etc.) | 0.044 | 0.039 | ||
Convenience in ticket purchasing | −0.088 * | 0.048 | ||
Providing facilities for handicapped people | 0.047 | 0.052 | ||
Constant | 0.438 | 0.469 | −2.081 | 0.421 |
Model assessment | ||||
-2LL | 1213.017 | 3435.201 | ||
Cox and Snell R2 | 0.344 | 0.297 | ||
Nagelkerke R2 | 0.628 | 0.353 | ||
Chi-square | 237.5 | 1168.6 | ||
p-value | 0.000 | 0.000 |
Variables | Without HSR (BNL Model) | Within HSR (MNL Model) | ||
---|---|---|---|---|
Coef. | S.E. | Coef. | S.E. | |
Gender (male) | −0.666 *** | 0.172 | −0.390 ** | 0.174 |
Age | −0.365 *** | 0.099 | −0.252 ** | 0.099 |
Education | 0.410 *** | 0.109 | 0.238 ** | 0.109 |
Occupation | 0.352 *** | 0.051 | 0.215 *** | 0.054 |
Income | −0.263 | 0.176 | −0.182 * | 0.168 |
Distance | −0.046 | 0.049 | −0.051 | 0.050 |
OD time | 1.614 *** | 0.361 | 0.891 *** | 0.312 |
Affordable fare | 2.203 *** | 0.197 | 1.419 *** | 0.200 |
Flexibility | 1.296 *** | 0.368 | 0.726 ** | 0.307 |
Comfort | 1.837 *** | 0.293 | 1.326 *** | 0.249 |
Reliability | 0.685 ** | 0.284 | 1.028 *** | 0.245 |
Safety | 1.695 *** | 0.200 | 1.181 *** | 0.187 |
Security | 0.122 | 0.673 | 0.457 | 0.557 |
Punctuality | 1.141 | 0.742 | 0.048 | 0.618 |
Frequency | 1.060 *** | 0.321 | 0.198 | 0.266 |
Directness | 1.273 *** | 0.214 | 0.920 *** | 0.193 |
High fare of HSR | 0.174 * | 0.102 | ||
Short journey time of HSR | 0.068 | 0.109 | ||
High frequency of HSR | −0.030 | 0.095 | ||
High span of service of HSR | −0.090 | 0.100 | ||
Reduce inter-city buses frequency | 0.057 | 0.092 | ||
Reduce frequency of conventional trains | 0.013 * | 0.098 | ||
Installation of amenities (PIS, WiFi, etc.) | 0.024 | 0.082 | ||
Convenience in ticket purchasing | 0.054 | 0.101 | ||
Providing facilities for handicapped people | −0.082 | 0.107 | ||
Constant | −3.619 | 0.606 | −3.240 | 0.925 |
Model assessment | ||||
-2LL | 1083.307 | 4708.643 | ||
Cox and Snell R2 | 0.347 | 0.315 | ||
Nagelkerke R2 | 0.652 | 0.375 | ||
Chi-square | 46.26 | 1238.6 | ||
p-value | 0.000 | 0.000 |
GDP (bil. VND) | Population (Mil. Persons) | Theil Index | |
---|---|---|---|
Hanoi | 1,020,000 | 8246.5 | |
Vinh | 22,194 | 344.5 | |
Nha Trang | 41,301 | 426.2 | 0.009 |
Ho Chi Minh City | 1,371,716 | 9224.8 | |
Total | 2,455,211 | 18,242 |
Variables | Hanoi | Vinh | Nha Trang | HCMC | ||||
---|---|---|---|---|---|---|---|---|
Without | Within | Without | Within | Without | Within | Without | Within | |
Gender (male) | 0.487 | 0.075 | 0.119 | 0.159 | 0.323 | 0.376 *** | 0.593 ** | 0.136 |
Age | −0.038 | −0.043 | 0.630 * | −0.043 | 0.399 *** | 0.048 | 0.122 | 0.059 |
Education | −0.593 *** | −0.004 | −0.665 * | −0.212 | −0.403 ** | −0.097 | −0.237 | −0.014 |
Occupation | −0.112 | 0.046 | −0.168 | −0.204 ** | −0.190 ** | −0.034 | −0.299 *** | −0.009 |
Income | −0.314 | 0.084 | −0.501 | −0.454 ** | −0.321 | −0.186 * | 0.222 | 0.139 |
Distance | 0.131 | 0.006 | −0.225 | 0.140 | 0.057 | −0.068 * | −0.032 | 0.067 * |
OD time | 3.143 *** | 0.612 *** | 2.863 ** | 0.635 | 2.954 *** | 0.126 | 3.230 *** | 0.728 *** |
Affordable fare | 2.973 *** | −0.270 | 1.712 | 0.543 | 0.243 | −0.957 *** | 2.413 ** | 0.113 |
Flexibility | 1.816 *** | 0.091 | 3.709 ** | −0.224 | 2.935 *** | 0.502 *** | 3.868 *** | 0.648 *** |
Comfort | 1.521 ** | 0.455 | 1.423 | 0.598 | 1.482 *** | 0.441 *** | −0.211 | 0.477 *** |
Reliability | 0.099 | 0.106 | 17.717 | −0.236 | 0.800 | 0.191 | 1.446 * | 0.429 * |
Safety | −2.032 *** | 0.229 | 0.777 | −0.383 | 1.716 * | −0.636 *** | −1.505 ** | 0.503 |
Security | −3.173 *** | 0.385 | 19.888 | 0.183 | −1.158 | 0.129 | 19.893 | 1.418 * |
Punctuality | 3.137 *** | 0.568 ** | 0.227 | 0.412 | 1.072 ** | 0.313 ** | −0.366 | 0.073 |
Frequency | 1.938 *** | 1.030 *** | 0.611 | 0.068 | 1.598 ** | −0.007 | 18.775 | 0.395 |
Directness | 0.481 | 0.173 | 18.689 | −0.413 | 0.590 | 0.297 | 1.923 ** | −0.430 |
High fare of HSR | 0.384 | 0.756 * | 0.195 | 0.297 * | ||||
Short journey time of HSR | −0.204 | 0.451 | 0.104 | −0.029 | ||||
High frequency of HSR | −0.244 | 0.174 | −0.216 * | −0.048 | ||||
High span of service of HSR | 0.075 | 0.575 | 0.044 | 0.033 | ||||
Reduce frequency of inter-city buses | −0.146 | 0.454 | −0.018 | 0.203 | ||||
Reduce frequency of conventional trains | −0.276 | -0.384 | 0.284 ** | 0.017 | ||||
Installation of amenities (PIS, WiFi, etc.) | 0.133 | 0.706** | 0.073 | 0.098 | ||||
Convenience in ticket purchasing | −0.341 | 0.615* | 0.229 | 0.092 | ||||
Providing facilities for handicapped people | −0.508 | 0.534 | 0.176 | −0.160 | ||||
Constant | 1.325 | 0.033 | 0.582 | −3.39 *** | −0.259 | −1.723 *** | 0.311 | −2.410 |
Model assessment | ||||||||
-2LL | 229.384 | 765.084 | 81.626 | 343.4 | 459.089 | 1881.356 | 328.453 | 1457.549 |
Cox and Snell R2 | 0.306 | 0.313 | 0.518 | 0.501 | 0.397 | 0.419 | 0.291 | 0.217 |
Nagelkerke R2 | 0.565 | 0.318 | 0.814 | 0.591 | 0.699 | 0.491 | 0.600 | 0.147 |
Variables | Hanoi | Vinh | Nha Trang | HCMC | ||||
---|---|---|---|---|---|---|---|---|
Without | Within | Without | Within | Without | Within | Without | Within | |
Gender (male) | −0.298 | −0.360 | −0.450 | −0.788 | −0.726 ** | −0.180 | −0.851 ** | −0.435 |
Age | −0.099 | −0.385 | −1.371 ** | −0.968 ** | −0.438 *** | −0.121 | −0.127 | 0.060 |
Education | 0.528 ** | 0.164 | 1.343** | −0.867 ** | 0.323 * | 0.496 *** | 0.256 | −0.209 |
Occupation | 0.276 ** | 0.143 | 0.166 | 0.316 | 0.259 *** | 0.042 | 0.508 *** | 0.260 ** |
Income | −0.675 | 0.086 | −0.180 | 1.011 | −0.214 | 0.010 | −0.443 | 0.136 |
Distance | 0.026 | 0.211 | 0.116 | −0.054 | −0.033 | −0.151 * | −0.100 | −0.001 |
OD time | −0.966 | −1.893 | 2.608 ** | 1.906 * | 1.354 ** | 1.257 ** | 3.591 *** | −0.653 |
Affordable fare | 0.560 | −0.459 | 5.049 *** | 2.978 *** | 2.383 *** | 1.453 *** | 2.802 *** | 2.338 *** |
Flexibility | 3.229 ** | −1.199 | 1.439 | 2.358 * | 2.222 *** | 0.852 | 0.906 | −19.523 |
Comfort | 2.283 *** | 1.843 * | −1.493 | 0.414 | 1.127 ** | 2.063 *** | 3.750 *** | 1.216 ** |
Reliability | 0.058 | 3.259 ** | −0.626 | 1.748 * | 1.234 *** | 1.391 *** | 0.023 | 0.434 |
Safety | 2.951 *** | 2.599 *** | 1.688 | 1.561 ** | 2.008 *** | 1.893 *** | 1.576 *** | 0.485 |
Security | −20.750 | −0.051 | 21.989 | 1.164 | 1.907 | 0.167 | −0.098 | 1.281 |
Punctuality | 0.191 | −0.918 | 21.313 | 0.409 | 20.247 | −0.453 | 0.945 | −0.125 |
Frequency | 2.947 *** | −10.149 | 1.652 | 0.170 | −0.317 | −0.730 | 1.191 ** | −0.437 |
Directness | 0.706 | 0.580 | 1.323 | 1.015 | 1.903 *** | 1.494 *** | −0.186 | 0.288 |
High fare of HSR | −0.338 | 0.149 | −0.185 | 0.075 | ||||
Short journey time of HSR | 0.164 | −0.845 | −0.028 | 0.110 | ||||
High frequency of HSR | 0.027 | 1.031 | 0.404 | 0.039 | ||||
High span of service of HSR | −0.815 * | −0.520 | −0.159 | −0.219 | ||||
Reduce frequency of inter-city buses | 0.270 | −1.104 | −0.342 | −0.008 | ||||
Reduce frequency of conventional trains | −0.104 | 0.874 | 0.718 ** | −0.323 | ||||
Installation of amenities (PIS, WiFi, etc.) | −0.123 | −1.377 * | −0.547 * | 0.289 | ||||
Convenience in ticket purchasing | 0.337 | 1.593 ** | −0.072 | −0.635 | ||||
Providing facilities for handicapped people | −0.285 | 0.769 | 0.144 | −0.140 | ||||
Constant | −3.680 | −2.250 | −4.278 | −4.06 | −2.989 | 3.629 *** | −4.617 *** | −4.35 *** |
Model assessment | ||||||||
-2LL | 191.226 | 56.85 | 343.8 | 427.776 | 1900 | 272.208 | 1.411 | |
Cox and Snell R2 | 0.300 | 0.549 | 0.503 | 0.393 | 0.399 | 0.308 | 0.247 | |
Nagelkerke R2 | 0.594 | 0.872 | 0.593 | 0.708 | 0.468 | 0.657 | 0.304 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoc, A.M.; Nishiuchi, H. Impact of High-Speed Rail on Social Equity—Insights from a Stated Preference Survey in Vietnam. Sustainability 2022, 14, 602. https://doi.org/10.3390/su14020602
Ngoc AM, Nishiuchi H. Impact of High-Speed Rail on Social Equity—Insights from a Stated Preference Survey in Vietnam. Sustainability. 2022; 14(2):602. https://doi.org/10.3390/su14020602
Chicago/Turabian StyleNgoc, An Minh, and Hiroaki Nishiuchi. 2022. "Impact of High-Speed Rail on Social Equity—Insights from a Stated Preference Survey in Vietnam" Sustainability 14, no. 2: 602. https://doi.org/10.3390/su14020602
APA StyleNgoc, A. M., & Nishiuchi, H. (2022). Impact of High-Speed Rail on Social Equity—Insights from a Stated Preference Survey in Vietnam. Sustainability, 14(2), 602. https://doi.org/10.3390/su14020602