Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective
Abstract
:1. Introduction
2. Literature Review and Hypothesis
2.1. Artificial Intelligence
2.2. Artificial Intelligence in Smart Cities and Decision-Making
2.3. Artificial Intelligence, Social Innovation, and Smart Decision-Making
3. Research Methodology
3.1. Sample and Data Collection
3.2. Measures
3.3. Data Analysis
4. Results
5. Discussions and Implications
5.1. Discussions
5.2. Implications
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- In my opinion, Information from artificial intelligence science community is trustworthy;
- In my opinion, artificial intelligence science community has much influence on society;
- I have very much confidence in the artificial intelligence science community;
- In my opinion, artificial intelligence is contributing to unemployment in my country;
- In my opinion, government should utilize artificial intelligence for public services.
- In my opinion, social entrepreneurship works for betterment of the community and not to make profits;
- In my opinion, social Economy has primacy of the individuals and the social objective over capital;
- In my opinion, local and regional development helps to raise living standard of the people in urban area;
- In my opinion, design thinking guides the decision/policy makers to plan the city better.
- In my opinion, local government uses new technologies rather than using old methods for decision-making;
- In my opinion, local government gathers lot of data on any opportunity that arises to decide better for public;
- In my opinion, whenever local government face a difficult situation, its optimistic about finding a good solution for public;
- In my opinion, my local government doesn’t delay decision-making for public whenever it needed before it’s too late;
- In my opinion, local government considers all the available alternatives for decision-making.
References
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Batty, M. Artificial Intelligence and Smart Cities; SAGE Publications Sage: London, UK, 2018. [Google Scholar]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial intelligence in information systems research: A systematic literature review and research agenda. Int. J. Inf. Manag. 2021, 60, 102383. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Mikalef, P.; Lemmer, K.; Schaefer, C.; Ylinen, M.; Fjørtoft, S.O.; Torvatn, H.Y.; Gupta, M.; Niehaves, B. Enabling AI capabilities in government agencies: A study of determinants for European municipalities. Gov. Inf. Q. 2021, 101596. [Google Scholar] [CrossRef]
- Myeong, S.; Jung, Y.; Lee, E. A study on determinant factors in smart city development: An analytic hierarchy process analysis. Sustainability 2018, 10, 2606. [Google Scholar] [CrossRef] [Green Version]
- Alam, J.R.; Sajid, A.; Talib, R.; Niaz, M. A review on the role of big data in business. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 446–453. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Pomerol, J.-C. Artificial intelligence and human decision making. Eur. J. Oper. Res. 1997, 99, 3–25. [Google Scholar] [CrossRef]
- Raisch, S.; Krakowski, S. Artificial intelligence and management: The automation–augmentation paradox. Acad. Manag. Rev. 2021, 46, 192–210. [Google Scholar] [CrossRef]
- Berntzen, L.; Johannessen, M.R.; El-Gazzar, R. Smart Cities, Big Data and Smart Decision-making-Understanding “Big Data” in Smart City Applications. In Proceedings of the ICDS 2018, The Twelfth International Conference on Digital Society and eGovernments, Rome, Italy, 25–29 March 2018. [Google Scholar]
- Vesco, A. Handbook of Research on Social, Economic, and Environmental Sustainability in the Development of Smart Cities; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Atlam, H.F.; Walters, R.J.; Wills, G.B. Fog computing and the internet of things: A review. Big Data Cogn. Comput. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, N. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 2020, 61, 102301. [Google Scholar] [CrossRef]
- Ben Rjab, A.; Mellouli, S. Artificial Intelligence in Smart Cities: Systematic Literature Network Analysis. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance, Melbourne, Australia, 3–5 April 2019. [Google Scholar]
- Thakker, D.; Mishra, B.K.; Abdullatif, A.; Mazumdar, S.; Simpson, S. Explainable Artificial Intelligence for Developing Smart Cities Solutions. Smart Cities 2020, 3, 65. [Google Scholar] [CrossRef]
- Voda, A.I.; Radu, L.D. Artificial intelligence and the future of smart cities. Broad Res. Artif. Intell. Neurosci. 2018, 9, 110–127. [Google Scholar]
- Lopes, N.V. Smart governance: A key factor for smart cities implementation. In Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017. [Google Scholar]
- Vrabie, C.; Tirziu, A. E-Participation–A Key Factor in Developing Smart Cities. Available online: https://ideas.repec.org/p/pra/mprapa/77707.html (accessed on 13 October 2021).
- Deakin, M.; Al Waer, H. From intelligent to smart cities. Intell. Build. Int. 2011, 3, 140–152. [Google Scholar] [CrossRef]
- Diakaki, C.; Grigoroudis, E.; Kabelis, N.; Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G. A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 2010, 35, 5483–5496. [Google Scholar] [CrossRef]
- de Fine Licht, K.; de Fine Licht, J. Artificial intelligence, transparency, and public decision-making. AI Soc. 2020, 35, 917–926. [Google Scholar] [CrossRef] [Green Version]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Morrar, R.; Arman, H.; Mousa, S. The fourth industrial revolution (Industry 4.0): A social innovation perspective. Technol. Innov. Manag. Rev. 2017, 7, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Gibson-Graham, J.; Roelvink, G. Social innovation for community economies. In Social Innovation and Territorial Development; Routledge: Oxfordshire, UK, 2016; pp. 41–54. [Google Scholar]
- Kankanhalli, A.; Charalabidis, Y.; Mellouli, S. IoT and AI for Smart Government: A Research Agenda; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Scholl, H.J.; AlAwadhi, S. Creating Smart Governance: The key to radical ICT overhaul at the City of Munich. Inf. Polity 2016, 21, 21–42. [Google Scholar] [CrossRef]
- Surya, L. Artificial Intelligence in Public Sector. Int. J. Innov. Eng. Res. Technol. 2019, 6, 2394–3696. [Google Scholar]
- Young, M.M.; Bullock, J.B.; Lecy, J.D. Artificial discretion as a tool of governance: A framework for understanding the impact of artificial intelligence on public administration. Perspect. Public Manag. Gov. 2019, 2, 301–313. [Google Scholar] [CrossRef]
- Meijer, A.; Thaens, M. Quantified street: Smart governance of urban safety. Inf. Polity 2018, 23, 29–41. [Google Scholar] [CrossRef]
- Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.-M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; et al. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg. Infect. Dis. 2020, 26, 2465. [Google Scholar] [CrossRef] [PubMed]
- Giffinger, R.; Kramar, H. Benchmarking, profiling and ranking of cities: The ‘European Smart Cities’ approach. In Place-Based Performance Metrics in Building Sustainable Cities; Routledge: Oxfordshire, UK, 2021. [Google Scholar]
- Gil-Garcia, J.R.; Pardo, T.A.; Nam, T. What makes a city smart? Identifying core components and proposing an integrative and comprehensive conceptualization. Inf. Polity 2015, 20, 61–87. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Jain, L. Artificial intelligence for decision making. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Bournemouth, UK, 9–11 October 2006. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yan, F.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131.e1129. [Google Scholar] [CrossRef]
- Bennett, C.C.; Hauser, K. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artif. Intell. Med. 2013, 57, 9–19. [Google Scholar] [CrossRef] [Green Version]
- McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The Vision of a Smart City; Brookhaven National Lab.: Upton, NY, USA, 2000. [Google Scholar]
- Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016. [Google Scholar]
- Cardullo, P.; Kitchin, R. Smart urbanism and smart citizenship: The neoliberal logic of ‘citizen-focused’smart cities in Europe. Environ. Plan. C Politics Space 2019, 37, 813–830. [Google Scholar] [CrossRef] [Green Version]
- Dameri, R.P. Searching for smart city definition: A comprehensive proposal. Int. J. Comput. Technol. 2013, 11, 2544–2551. [Google Scholar] [CrossRef]
- Gaur, A.; Scotney, B.; Parr, G.; McClean, S. Smart city architecture and its applications based on IoT. Procedia Comput. Sci. 2015, 52, 1089–1094. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Batty, M.; Yeh, T. The Promise of Expert Systems for Urban Planning; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Alvarez, R. The relevance of informational infrastructures in future cities. Field Actions Sci. Rep. J. Field Actions 2017, 17, 12–15. [Google Scholar]
- Conway, S. Interactive governance: Advancing the paradigm. Administration 2020, 68, 63–68. [Google Scholar] [CrossRef]
- Torfing, J.; Peters, B.G.; Pierre, J.; Sørensen, E. Interactive Governance: Advancing the Paradigm; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Kundu, D. Urban development programmes in India: A critique of JNNURM. Soc. Chang. 2014, 44, 615–632. [Google Scholar] [CrossRef]
- Capra, C.F. The Smart City and its citizens: Governance and citizen participation in Amsterdam Smart City. Int. J. E-Plan. Res. (IJEPR) 2016, 5, 20–38. [Google Scholar] [CrossRef]
- Mora, L.; Bolici, R. How to become a smart city: Learning from Amsterdam. In Proceedings of the International conference on Smart and Sustainable Planning for Cities and Regions, Bolzano, Italy, 22–24 March 2015. [Google Scholar]
- Capra, C.F. The smart city and its citizens: Governance and citizen participation in Amsterdam Smart City. In Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 1407–1427. [Google Scholar]
- Somayya, M.; Ramaswamy, R. Amsterdam Smart City (ASC): Fishing village to sustainable city. WIT Trans. Ecol. Environ. 2016, 204, 831–842. [Google Scholar]
- Phills, J.A.; Deiglmeier, K.; Miller, D.T. Rediscovering social innovation. Stanf. Soc. Innov. Rev. 2008, 6, 34–43. [Google Scholar]
- Mehr, H.; Ash, H.; Fellow, D. Artificial intelligence for citizen services and government. Ash Cent. Democr. Gov. Innov. Harv. Kennedy Sch. 2017, 1–12. Available online: https://ash.harvard.edu/files/ash/files/artificial_intelligence_for_citizen_services.pdf (accessed on 18 October 2021).
- Dargham, M.; Hachimi, H. Artificial Intelligence & the emergence of social innovation Case of the Group” Crédit Agricole” in Morocco. In Proceedings of the 2021 7th International Conference on Optimization and Applications (ICOA), Wolfenbüttel, Germany, 19–20 May 2021. [Google Scholar]
- Little, T.D.; Card, N.A.; Bovaird, J.A.; Preacher, K.J.; Crandall, C.S. Structural equation modeling of mediation and moderation with contextual factors. Modeling Contextual Eff. Longitud. Stud. 2007, 1, 207–230. [Google Scholar]
- Ma, S.-J.; Wang, W.-J.; Tang, M.; Chen, H.; Ding, F. Evaluation of the construct reliability and validity of the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure-Chinese version in maintenance hemodialysis patients. J. Int. Med. Res. 2021, 49, 3000605211012661. [Google Scholar] [CrossRef]
- Kim, H.-S. Decision-making in artificial intelligence: Is it always correct? J. Korean Med. Sci. 2020, 35, e1. [Google Scholar] [CrossRef]
- Osburg, T.; Schmidpeter, R. Social innovation. In Solutions for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Müller, V.C.; Bostrom, N. Future progress in artificial intelligence: A survey of expert opinion. In Fundamental Issues of Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2016; pp. 555–572. [Google Scholar]
- Ongena, Y.P.; Haan, M.; Yakar, D.; Kwee, T.C. Patients’ views on the implementation of artificial intelligence in radiology: Development and validation of a standardized questionnaire. Eur. Radiol. 2020, 30, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Kleverbeck, M.; Krlev, G.; Mildenberger, G.; Strambach, S.; Thurmann, J.-F.; Terstriep, J.; Wloka, L. Indicators for measuring social innovation. Atlas Soc. Innov. 2019, 2, 98–101. [Google Scholar]
- Mulgan, G.; Joseph, K.; Norman, W. Indicators for social innovation. In Handbook of Innovation Indicators and Measurement; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar]
- Klug, H.; Kmoch, A. Operationalizing environmental indicators for real time multi-purpose decision making and action support. Ecol. Model. 2015, 295, 66–74. [Google Scholar] [CrossRef]
- Teeratansirikool, L.; Siengthai, S.; Badir, Y.; Charoenngam, C. Competitive strategies and firm performance: The mediating role of performance measurement. Int. J. Product. Perform. Manag. 2013, 62, 168–184. [Google Scholar] [CrossRef]
- Wunder, S.; Engel, S.; Pagiola, S. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecol. Econ. 2008, 65, 834–852. [Google Scholar] [CrossRef]
- Pandya, V.M. Comparative analysis of development of SMEs in developed and developing countries. In Proceedings of the 2012 International Conference on Business and Management, Tallinn, Estonia, 3–6 September 2012. [Google Scholar]
- Jobling, A.; Jamasb, T. Price volatility and demand for oil: A comparative analysis of developed and developing countries. Econ. Anal. Policy 2017, 53, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Choong, C.-K.; Baharumshah, A.Z.; Yusop, Z.; Habibullah, M.S. Private capital flows, stock market and economic growth in developed and developing countries: A comparative analysis. Jpn. World Econ. 2010, 22, 107–117. [Google Scholar] [CrossRef]
- Wardana, L.W.; Narmaditya, B.S.; Wibowo, A.; Mahendra, A.M.; Wibowo, N.A.; Harwida, G.; Rohman, A.N. The impact of entrepreneurship education and students’ entrepreneurial mindset: The mediating role of attitude and self-efficacy. Heliyon 2020, 6, e04922. [Google Scholar] [CrossRef] [PubMed]
- Nikpour, A. The impact of organizational culture on organizational performance: The mediating role of employee’s organizational commitment. Int. J. Organ. Leadersh. 2017, 6, 65–72. [Google Scholar] [CrossRef]
- Albright, J.J.; Marinova, D.M. Estimating Multilevel Models Using SPSS, Stata, SAS and R; Indiana University: Bloomington, IN, USA, 2015. [Google Scholar]
- Rosopa, P.J.; Stone-Romero, E.F. Problems with detecting assumed mediation using the hierarchical multiple regression strategy. Hum. Resour. Manag. Rev. 2008, 18, 294–310. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.D. Testing mediation using multiple regression and structural equation modeling analyses in secondary data. Eval. Rev. 2011, 35, 240–268. [Google Scholar] [CrossRef]
- Gunzler, D.; Chen, T.; Wu, P.; Zhang, H. Introduction to mediation analysis with structural equation modeling. Shanghai Arch. Psychiatry 2013, 25, 390. [Google Scholar]
- Wan Omar, W.; Hussin, F. Transformational leadership style and job satisfaction relationship: A study of structural equation modeling (SEM). Int. J. Acad. Res. Bus. Soc. Sci. 2013, 3, 346–365. [Google Scholar]
- Gill, S.; Khurshid, M.K.; Mahmood, S.; Ali, A. Factors effecting investment decision making behavior: The mediating role of information searches. Eur. Online J. Nat. Soc. Sci. 2018, 7, 758–767. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef]
- Howell, D.C. Statistical Methods for Psychology; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Chinchanachokchai, S.; Thontirawong, P.; Chinchanachokchai, P. A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 2021, 61, 102528. [Google Scholar] [CrossRef]
- Panichayakorn, T.; Jermsittiparsert, K. Mobilizing Organizational Performance through Robotic and Artificial Intelligence Awareness in Mediating Role of Supply Chain Agility. Int. J. Supply Chain. Manag. 2019, 8, 757–768. [Google Scholar]
Group | N | % |
---|---|---|
Countries | ||
Korea | 210 | 48 |
Pakistan | 227 | 52 |
Total | 437 | 100 |
Gender | ||
Korea Male | 128 | 29 |
Korea Female | 82 | 19 |
Pakistan Male | 157 | 36 |
Pakistan Female | 70 | 16 |
Total | 437 | 100 |
Age | ||
20–35 | 160 | 37 |
36–50 | 198 | 45 |
51–65 | 79 | 18 |
Education | ||
High School | 47 | 11 |
University | 252 | 58 |
Master’s Degree | 120 | 27 |
Ph.D. | 18 | 04 |
Factors | No of Items | Component | N | KMO | Bartlett Test | |
---|---|---|---|---|---|---|
Chi-Square | Sig | |||||
Artificial Intelligence | 3 | 0.960 | 437 | 0.531 | 777.933 | 0.000 |
Social Innovation | 4 | 0.786 | 437 | |||
Smart Decision-Making | 4 | 0.861 | 437 |
Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | N of Items | ||
---|---|---|---|---|
0.914 | 0.916 | 11 | ||
Component | ||||
1 | 2 | 3 | ||
AI1 | 0.945 | |||
AI2 | 0.584 | |||
AI3 | 0.812 | |||
SI1 | 0.771 | |||
SI2 | 0.701 | |||
SI3 | 0.724 | |||
SI4 | 0.754 | |||
SDM1 | 0.833 | |||
SDM2 | 0.857 | |||
SDM3 | 0.850 | |||
SDM4 | 0.860 |
Variable | Mean | SD | AI | SI | SDM | GEN | AGE | EDU |
---|---|---|---|---|---|---|---|---|
AI | 3.855 | 0.804 | 0.794 | |||||
SI | 3.872 | 0.754 | 0.679 ** | 0.812 | ||||
SDM | 3.302 | 1.266 | 0.811 ** | 0.414 ** | 0.931 | |||
GEN | 0.61 | 0.488 | −0.487 ** | −0.165 ** | −0.480 ** | 1 | ||
AGE | 1.84 | 0.693 | 0.088 | 0.331 ** | −0.067 | 0.303 ** | 1 | |
EDU | 2.71 | 0.863 | −0.083 | −0.034 | −0.103 * | 0.101 * | 0.050 | 1 |
Coefficients a | ||||||
---|---|---|---|---|---|---|
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | ||||
1 | (Constant) | 1.619 | 0.174 | 9.298 | 0.000 | |
AI | 1.276 | 0.044 | 0.811 | 28.861 | 0.000 | |
2 | (Constant) | 1.021 | 0.187 | 5.470 | 0.000 | |
AI | 1.545 | 0.057 | 0.981 | 27.018 | 0.000 | |
SI | 0.422 | 0.061 | 0.252 | 6.929 | 0.000 |
Input | Test | Test Statistic: | Std. Error: | p-Value: | |
---|---|---|---|---|---|
a | 1.545 | Sobel test: | 6.70315028 | 0.09726621 | 0.000 |
b | 0.422 | Aroian test: | 6.69887152 | 0.09732833 | 0.000 |
Sa | 0.057 | Goodman test: | 6.70743726 | 0.09720404 | 0.000 |
Sb | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokhari, S.A.A.; Myeong, S. Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability 2022, 14, 620. https://doi.org/10.3390/su14020620
Bokhari SAA, Myeong S. Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability. 2022; 14(2):620. https://doi.org/10.3390/su14020620
Chicago/Turabian StyleBokhari, Syed Asad A., and Seunghwan Myeong. 2022. "Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective" Sustainability 14, no. 2: 620. https://doi.org/10.3390/su14020620
APA StyleBokhari, S. A. A., & Myeong, S. (2022). Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability, 14(2), 620. https://doi.org/10.3390/su14020620