Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing and Thermal Fluid Dynamics Simulation: A Combined Study for Risk Assessment
2.2. The Case Study: Monticelli and Its Climate Scenario
2.3. Initial Data and Data Processing
- Digital AgEA (Agenzia per le Erogazioni in Agricoltura) orthophoto from 2016 with a geometric resolution of 20 cm/px (The Agea 2016 orthophotos were provided by the City of Ascoli Piceno, Sector 8—Urban Planning, TIS, and European policies, and used in compliance with the use licence);
- Digital surface model (DSM) and digital terrain model (DTM) produced using LiDAR technology, geometric resolution of 1 m/px (The data are the property of the Ministry of the Environment and Protection of the Land and Sea, in Italian, MATTM, now the Ministry of the Ecological Transition, and were used in compliance with the licence);
- Landsat 8 (bands 10 and 11, thermal infrared sensor TIRS) with a geometric resolution of 30 m/px;
- Multispectral IKONOS images with a geometric resolution of 0.8 m/px;
- Demographic census of Monticelli provided by the City of Ascoli Piceno, updated 2018;
- A thematic layer regarding the profile of the built area, acquired using Web Feature Service (WFS) (http://www.pcn.minambiente.it/mattm/servizio-di-scaricamento-wfs/ accessed on 22 July 2021);
- Shapefiles of the Monticelli area provided by the City of Ascoli Piceno;
- Weather data related to past scenarios acquired from World Weather Online.
3. Results
- Awareness of the population at risk (minors, elderly people, population density);
- Climate data (GR, DSR, LST);
- Urban morphology (SVF, Green and Surface Atlases).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santamouris, M.; Kolokotsa, D. On the Impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Beg, N.; Morlot, J.C.; Davidson, O.; Afrane-Okesse, Y.; Tyani, L.; Denton, F.; Sokona, Y.; Thomas, J.P.; Rovere, E.L.L.; Parikh, J.K.; et al. Linkages between climate change and sustainable development. Clim. Policy 2002, 2, 129–144. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A Comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnef, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable urban greening and cooling strategies for thermal comfort at pedestrian level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Talia, M. Le Nuove Comunità Urbane e Il Valore Strategico Della Conoscenza Atti Della Conferenza Internazionale UrbanPromo XVII Edizione. Available online: http://www.planum.net/atti-conferenza-urban-promo-xvii-2020 (accessed on 29 December 2021).
- Ballatore, A.; De Sabbata, S. Charting the geographies of crowdsourced information in greater London. In Geospatial Technologies for All; Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 149–168. [Google Scholar]
- Sharma, P.; Singh, R.; Srivastava, A. Analyzing the role of geospatial technology in smart city development. In Geospatial Technology and Smart Cities: ICT, Geoscience Modeling, GIS and Remote Sensing; Sharma, P., Ed.; The Urban Book Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. ISBN 978-3-030-71945-6. [Google Scholar]
- Wilson, E.O. GIS for Science, Volume 3: Maps for Saving the Planet; Wright, D.J., Harder, C., Eds.; Esri Press: Redlands, CA, USA, 2021; ISBN 978-1-58948-671-3. [Google Scholar]
- Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, B. CFD simulation of urban microclimate: Validation using high-resolution field measurements. Sci. Total Environ. 2019, 695, 133743. [Google Scholar] [CrossRef]
- Medved, S. Urban Environment and local climate. In Building Physics: Heat, Ventilation, Moisture, Light, Sound, Fire, and Urban Microclimate; Medved, S., Ed.; Springer Tracts in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 453–472. ISBN 978-3-030-74390-1. [Google Scholar]
- Belpoliti, V.; Altan, H.; Alsebai, H.; Melahfci, O. Shaping the microclimate: CFD-assisted design optimization to enhance the outdoor comfort of a recreational complex in the UAE. Procedia Manuf. 2020, 44, 84–91. [Google Scholar] [CrossRef]
- Ejiagha, I.R.; Ahmed, M.R.; Hassan, Q.K.; Dewan, A.; Gupta, A.; Rangelova, E. Use of remote sensing in comprehending the influence of urban landscape’s composition and configuration on land surface temperature at neighbourhood scale. Remote Sens. 2020, 12, 2508. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Onačillová, K.; Hofierka, J. Physically-based land surface temperature modeling in urban areas using a 3-d city model and multispectral satellite data. Urban Clim. 2020, 31, 100566. [Google Scholar] [CrossRef]
- Brownlee, T.; Camaioni, C.; Pellegrino, P. Emergenza Clima e Qualità Della Vita Nelle Città; FrancoAngeli: Milan, Italy, 2021; ISBN 978-88-351-0907-5. [Google Scholar]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the urban heat island in padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Detommaso, M.; Costanzo, V.; Nocera, F. Application of weather data morphing for calibration of urban ENVI−met microclimate models. Results and critical issues. Urban Clim. 2021, 38, 100895. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R. Urban heat island in padua, italy: Simulation analysis and mitigation strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Tirabassi, T.; Nassetti, S. The representative day. Atmos. Environ. 1999, 33, 2427–2434. [Google Scholar] [CrossRef]
- Grifoni, R.C.; Pierantozzi, M.; Tascini, S.; Passerini, G. Assessing the Representativeness of Thermal Comfort in Outdoor Spaces; WIT Transactions on Ecology and the Environment; WIT Press: Ancona, Italy, 2012; pp. 835–846. [Google Scholar]
- Rosenzweig, C.; Solecki, W.D.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Ibrahim, S.A. (Eds.) Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; ISBN 978-1-316-60333-8. [Google Scholar]
- Spano, D.; Mereu, V.; Bacciu, V.; Marras, S.; Trabucco, A.; Adinolfi, M.; Barbato, G.; Bosello, F.; Breil, M.; Buonocore, M.; et al. Analisi del Rischio. I Cambiamenti Climatici in Italia; Fondazione CMCC—Centro Euro-Mediterraneo sui Cambiamenti Climatici: Lecce, Italy, 2020. [Google Scholar]
- Füssel, H.-M.; Marx, A.; Hildén, M.; Bastrup-Birk, A.; Louwagie, G.; Wugt-Larsen, F.; Suk, J. Climate Change, Impacts and Vulnerability in Europe 2016; European Environment Agency: København, Denmark, 2017; ISBN 978-92-9213-835-6. [Google Scholar]
- AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability; IPCC: Geneva, Switzerland, 2014.
- Aslam, A.; Rana, I.A.; Bhatti, S.S. The spatiotemporal dynamics of urbanisation and local climate: A case study of Islamabad, Pakistan. Environ. Impact Assess. Rev. 2021, 91, 106666. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Räsänen, A.; Juhola, S. Assessing the dynamics of urban vulnerability to climate change: Case of Helsinki, Finland. Environ. Sci. Policy 2021, 125, 32–43. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.; Rossi, F. Assessment of Urban Outdoor Thermal Comfort by the Universal Thermal Climate Index UTCI. In Proceedings of the 14th International Conference on Environmental Ergonomics, Nafplion, Greece, 10–15 July 2011. [Google Scholar]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; Fiala, D.; Blazejczyk, K.; Richards, M.; Broede, P.; Holmer, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-clothing model. Int. J. Biometeorol. 2012, 56, 461–470. [Google Scholar] [CrossRef] [Green Version]
- ENVI-Met—Decode Urban Nature with Microclimate Simulations. Available online: https://www.envi-met.com/ (accessed on 29 December 2021).
- Chatzinikolaou, E.; Chalkias, C.; Dimopoulou, E. Urban microclimate improvement using ENVI−met climate model. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 19, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Naboni, E.; Coccolo, S.; Meloni, M.; Scartezzini, J.-L. (Eds.) Outdoor comfort simulation of complex architectural designs: A review of simulation tools from the designer perspective. In Proceedings of the 2018 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA, Chicago, IL, USA, 26–28 September 2018. [Google Scholar]
- Simon, H.; Bruse, M. Modelling of microclimates. In Eco-Design of Buildings and Infrastructure; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-00-309507-1. [Google Scholar]
- D’Onofrio, R.; Trusiani, E. The ascoli piceno case: The CCUHRE project. In Urban Health: Participatory Action-Research Models Contrasting Socioeconomic Inequalities in the Urban Context; Battisti, A., Marceca, M., Iorio, S., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2020; pp. 113–146. ISBN 978-3-030-49446-9. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Coelho, A.L.N.; Correa, W.D.S.C. Temperatura de Superfície Celsius do Sensor TIRS/Landsat-8: Metodologia e aplicações. Rev. Geográfica Acadêmica 2013, 7, 31–45. [Google Scholar] [CrossRef]
- Anandababu, D.; Purushothaman, B.M.; Suresh Babu, S. Estimation of land surface temperature using LANDSAT 8 data. J. Adv. Res. 2018, 4, 177–186. [Google Scholar]
- Oke, T.R. Towards better scientific communication in urban climate. Theor. Appl. Climatol. 2006, 84, 179–190. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-0-521-84950-0. [Google Scholar]
- ASSAM Regione Marche—Centro Operativo di Agrometereologia Regione Marche. Analisi Clima 2017. 2017. Available online: http://www.meteo.marche.it/news/anno2017/clima2017.pdf (accessed on 1 November 2021).
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Ottone, M.F.; Grifoni, R.C.; Marchesani, G.E. Mass and lightness: Urban quality along the Aurelian Walls in Rome. Walking through walls. TECHNE-J. Technol. Archit. Environ. 2020, 19, 280–289. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI−met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Buccolieri, R.; Gatto, E.; Manisco, M.; Ippolito, F.; Santiago, J.L.; Gao, Z. Characterization of urban greening in a district of lecce (southern Italy) for the analysis of CO2 storage and air pollutant dispersion. Atmosphere 2020, 11, 967. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of urban vegetation on outdoor thermal comfort: Comparison between a mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban multi-scale environmental predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
Hour | Dry Bulb Temp. (°C) | Relative Humidity (%) | Wind Speed (m/s) | Wind Direction (degrees) | Direct Normal Rad. (Wh/m2) | Diffuse Horizontal Rad. (Wh/m2) |
---|---|---|---|---|---|---|
… | ||||||
9 | 27 | 54 | 1.9 | 59 | 522 | 197 |
10 | 27 | 54 | 2.2 | 63 | 613 | 220 |
11 | 27 | 58 | 2.5 | 67 | 666 | 233 |
12 | 27 | 58 | 2.8 | 71 | 672 | 235 |
13 | 27 | 58 | 2.8 | 74 | 632 | 225 |
14 | 27 | 58 | 2.5 | 77 | 551 | 205 |
15 | 27 | 62 | 2.5 | 80 | 441 | 175 |
16 | 25 | 69 | 1.9 | 87 | 319 | 138 |
17 | 24 | 74 | 1.7 | 94 | 200 | 97 |
18 | 22 | 88 | 1.1 | 101 | 97 | 53 |
… |
Area | dx−dy-dz | x−Grid | y−Grid | z−Grid | Lat | Lon |
---|---|---|---|---|---|---|
A | 3 m | 170 | 140 | 60 | 42.51 | 13.37 |
B | 3 m | 210 | 160 | 60 | 42.51 | 13.37 |
C | 3 m | 250 | 78 | 70 | 42.51 | 13.37 |
Code | Description | Albedo | Roughness | Emissivity | LAD |
---|---|---|---|---|---|
Profile materials | |||||
0100AR | Asphalt road with red coating | 0.50 | 0.01 | 0.90 | - |
0100BA | Basalt brick road | 0.80 | 0.01 | 0.90 | - |
0100GS | Granite paving (single stones) | 0.40 | 0.01 | 0.90 | - |
0100LO | Loamy soil | - | 0.02 | 0.98 | - |
0100PG | Concrete pavement grey | 0.50 | 0.01 | 0.90 | - |
0100PL | Concrete pavement light | 0.80 | 0.01 | 0.90 | - |
0100ST | Asphalt road | 0.20 | 0.01 | 0.90 | - |
0100WW | Deep water | - | 0.01 | 0.96 | - |
3d plants | |||||
000003 | Robinia pseudoacacia | 0.18 | - | - | 2.00 |
0000A1 | Tilia cordata | 0.18 | - | - | 1.00 |
0000A5 | Gleditsia triacanthos | 0.18 | - | - | 0.50 |
0000A9 | Acer campestre | 0.18 | - | - | 2.00 |
0000B2 | Fagus sylvatica | 0.18 | - | - | 1.50 |
0000B3 | Quercus robur | 0.18 | - | - | 1.80 |
0000B4 | Carpinus betulus | 0.18 | - | - | 2.00 |
0000B5 | Fraxinus excelsior | 0.18 | - | - | 1.00 |
0000B7 | Betula pendula | 0.18 | - | - | 0.90 |
0000B8 | Platanus × acerifolia | 0.18 | - | 1.10 | |
0000C3 | Abies alba | 0.18 | - | - | 0.70 |
0000CC | Fraxinus sp. * | 0.60 | - | - | 1.00 |
0000E1 | Ulmus minor | 0.18 | - | - | 1.00 |
0000JU | Cercis siliquastrum | 0.60 | - | - | 0.60 |
0000K1 | Koelreuteria paniculata | 0.70 | - | - | 0.70 |
0000LI | Ligustrum sp. * | 0.40 | - | - | 0.70 |
0000OT | Olea europaea | 0.50 | - | - | 0.50 |
0000PP | Pinus pinea | 0.60 | - | - | 1.50 |
0000PW | Washingtonia sp. * | 0.60 | - | - | 0.50 |
0000S2 | Sophora japonica | 0.60 | - | - | 0.40 |
0000ZI | Citrus x aurantium | 0.40 | - | - | 0.70 |
0000ZY | Cupressus sp. * | 0.30 | - | - | 0.40 |
01ALDL | Conic, large trunk, dense, large (25 m) | 0.12 | - | - | 2.30 |
01ASDS | Conic, small trunk, dense, small (5 m) | 0.12 | - | - | 2.30 |
01CMDS | Cylindric, medium trunk, dense, small (5 m) | 0.12 | - | - | 2.30 |
01HMSS | Heart-shaped, medium trunk, sparse, small (5 m) | 0.18 | - | - | 0.30 |
01OLDL | Cylindric, large trunk, dense, large (25 m) | 0.18 | - | - | 1.10 |
01OMDM | Cylindric, medium trunk, dense, medium (15 m) | 0.18 | - | - | 1.10 |
01PMDS | Palm, medium trunk, dense, small (5 m) | 0.60 | - | - | 0.60 |
01SMDM | Spherical, medium trunk, dense, medium (15 m) | 0.18 | - | - | 1.10 |
01SMDS | Spherical, medium trunk, dense, small (5 m) | 0.18 | - | - | 1.10 |
01SSDS | Spherical, small trunk, dense, small (5 m) | 0.18 | - | - | 1.10 |
01SSDS | Spherical, small trunk, dense, small (5 m) | 0.18 | - | - | 1.10 |
Simple plants | |||||
0100XX | Grass 25 cm aver. dense | 0.20 | - | - | 0.30 |
Id_esag | no. Resid. | Under < 18 | Over >= 65 | Perm. m2 | Imper. m2 | Tree h.mean | Canopy m2 | SVF | GR * kWh/m2 | LST ** T °C |
---|---|---|---|---|---|---|---|---|---|---|
565 | 42 | 5 | 18 | 37.01 | 309.56 | 10.73 | 17.25 | 0.72 | 340.62 | 33.8 |
1077 | 66 | 7 | 16 | 83.05 | 263.52 | 3 | 8.81 | 0.74 | 295.05 | 33.8 |
3651 | 33 | 5 | 10 | 13.64 | 329.80 | 10.66 | 10.08 | 0.66 | 261.59 | 33.3 |
3737 | 37 | 5 | 10 | 45.66 | 300.91 | 11.89 | 16.86 | 0.75 | 342.92 | 33.1 |
4012 | 42 | 7 | 10 | 76.66 | 260.95 | 14.25 | 9.38 | 0.68 | 282.38 | 33.4 |
Area A Min | Area A Max | Area B Min | Area B Max | Area C Min | Area C Max | |
---|---|---|---|---|---|---|
Potential air temp. (°C) | 20.2 | 28.6 | 20.1 | 26.9 | 26 | 28 |
Mean radiant temp. (°C) | 35.4 | 62.9 | 33.9 | 61.9 | 33.1 | 63.9 |
Relative humidity (%) | 46.6 | 65.9 | 49.7 | 62.9 | 46.6 | 64.9 |
Wind speed (m/s) | 0 | 2.2 | 0 | 3.2 | 0 | 2.8 |
Surface temperature (°C) | 19.6 | 50.4 | 19.9 | 35.3 | 19.8 | 37.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocci Grifoni, R.; Caprari, G.; Marchesani, G.E. Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project. Sustainability 2022, 14, 688. https://doi.org/10.3390/su14020688
Cocci Grifoni R, Caprari G, Marchesani GE. Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project. Sustainability. 2022; 14(2):688. https://doi.org/10.3390/su14020688
Chicago/Turabian StyleCocci Grifoni, Roberta, Giorgio Caprari, and Graziano Enzo Marchesani. 2022. "Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project" Sustainability 14, no. 2: 688. https://doi.org/10.3390/su14020688
APA StyleCocci Grifoni, R., Caprari, G., & Marchesani, G. E. (2022). Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project. Sustainability, 14(2), 688. https://doi.org/10.3390/su14020688