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Abstract: To encourage more active activities that have the potential to significantly reduce the risk of
people’s health, we aim to develop an AI-based mobile app to identify four gym activities accurately:
ascending, cycling, elliptical, and running. To save computational cost, the present study deals with
the dilemma of the performance provided by only a phone-based accelerometer since a wide range of
activity recognition projects used more than one sensor. To attain this goal, we derived 1200 min of
on-body data from 10 subjects using their phone-based accelerometers. Subsequently, three subtasks
have been performed to optimize the performances of the K-nearest neighbors (KNN), Support Vector
Machine (SVM), Shallow Neural Network (SNN), and Deep Neural Network (DNN): (1) During the
process of the raw data converted to a 38-handcrafted feature dataset, different window sizes are
used, and a comparative analysis is conducted to identify the optimal one; (2) principal component
analysis (PCA) is adopted to extract the most dominant information from the 38-feature dataset
described to a simpler and smaller size representation providing the benefit of ease of interpreting
leading to high accuracy for the models; (3) with the optimal window size and the transformed
dataset, the hyper-parameters of each model are tuned to optimal inferring that DNN outperforms
the rest three with a testing accuracy of 0.974. This development can be further implemented in Apps
Store to enhance public usage so that active physical human activities can be promoted to enhance
good health and wellbeing in accordance with United Nation’s sustainable development goals.

Keywords: gym activity recognition; fitness; health; wellbeing; artificial intelligence; machine learning;
feature extraction

1. Introduction

One of the most important United Nations sustainable development goals (SDGs) is
‘Good health and wellbeing’. To improve healthy lifestyle and ascertain positive wellbeing,
physical, and mental activities have been promoted for all at all ages. In recent years, the
growth of the fitness industry is exponential in many countries in order to enhance healthy
lives and positive wellbeing. With the vigorous development of the fitness industry, a gym
has become one of the common facilities within a neighborhood or on a campus in order
to promote more and more people to participate in fitness activities. Physical inactivity
is the most significant public health issue in the 21st century, which leads to a growing
risk of chronic diseases such as type 2 diabetes and heart disease [1]. More importantly,
physical inactivity has been claimed as the fourth leading cause of death worldwide [2].
Therefore, regular physical activity is fast becoming an important way to reduce the risk of
chronic diseases. An artificial intelligence (AI)-based mobile phone application monitoring
gym activity is developed in this study to promote a healthier lifestyle with the potential
of remarkably reducing the investment in healthcare. The application is used to detect
the four most common aerobic exercises ascending on a treadmill, running on a treadmill,
using an elliptical machine, and cycling in gyms since we consider that gym users tend
to place their phones not on their bodies when they are weightlifting. The main obstacle
is the performance of the proposed application with only a mobile phone employed, as
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the other similar studies used a mobile phone with multiple wearable sensors to sense the
subjects’ movements.

Among the activity recognition projects, most of the interests fell into the scope of
multiple sensors used. For example, Jun et al. [3] employed 2 wearable sensors; in [4], the
authors used 11 dedicated gesture recognition sensors; and in reference [5], they employed
2 accelerometers. However, ref. [6] has surveyed a single phone-based accelerometer to
classify 26 gym excises that were all weight training. Our interest falls into aerobic activity
which remains unknown.

The handcrafted feature is widely used in activity recognition works [3–6] since raw
data collected from an accelerometer is highly variable, oscillatory, and noisy [7]. However,
there is no evidence that the handcrafted features produced manually match the aims for
different strategies. Some of the features might be irrelevant and need to be discarded.
Feature extraction techniques can be introduced to extract the most crucial information
from the original handcrafted feature dataset. The information extracted can be cast to
some fewer complexity features [8]. PCA is a representative of feature extraction, which is
extensively exploited in different domains [9–11].

The handcrafted feature is calculated based on each window generated by splitting the
continuous temporal signals to time windows. The size of the time window has long been
a question of great interest in the human activity recognition (HAR) fields. It is now well
established from [12] that thoroughly appraised the influence of the window size in 33 HAR
studies and concluded that the 2 s window offers the most accurate scenario. Although
most of the projects supported the finding of 2 s window size, there were still some rivals as
most of projects studied were not gym-based activities. Accordingly, the evaluation of the
window size is also introduced to our study for identifying and characterizing the optimal
window size fit to our aim.

Using ML algorithms, researchers have been able to classify the different patterns
among the handcrafted features. Gary et al. [13] exemplified five ML algorithms Naïve
Bayes, Random Forest, IB3 instance-based learning algorithm, Decision Tree, and the multi-
layer perceptron to process the 43 high-level features computed from the raw time series
sensory data. The 5 algorithms have delivered an average accuracy of 91.9%, discriminating
18 daily activities. In [14], the analysts insinuated SVM, Random Forest, and Binary
Decision Tree to detect adolescents with cerebral palsy using features derived from the
vector magnitude of the raw acceleration information. The optimal results were 89.0%,
88.8%, and 86.2%, corresponding to SVM, Random Forest, and Binary Decision Tree. It can
be inferred that the machine learning models cooperate well with the handcrafted features.

This study builds four candidate models KNN, SVM, SNN, and DNN to quantify
four gym activities. Before the selection of the final choice of the model, we carry out an
in-depth evaluation to optimize the window size for handcrafted feature generation, the
dimensionality reduction by PCA, and the fine-tuned hyper-parameters of the models. We
benchmark the performance of the best candidate with that of the state-of-the-art model
and the proposed model surpasses the baseline model. The main contributions of this
study are presented in the following:

1. The study investigates the impact of the window sizes, showing that the optimal
window size depends on the different datasets used in various models. For example,
KNN and SVM perform better using a 2 s window size, but SNN and DNN are more
favorable to a 40 s window size.

2. Different machine models act similarly well if the handcrafted dataset is evaluated
thoroughly in terms of the optimal window size and sophisticated feature extraction.

3. The DNN presents superior performance classifying four gym aerobic excises with
only an accelerometer in terms of the overall performance and the performance
associated with each activity provided in Appendix C.
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2. Data and Methods

Figure 1 presents the whole picture of how we deliver the aim claimed. Following
the main steps (see the top of Figure 1) result in a fine-tuned model at the end. Each
step is decomposed, and the corresponding detail is shown below the step. The primary
focus is evaluating the window size, the number of most informative features, and the
hyper-parameters of each algorithm.
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2.1. Overview of the Activities Analysed

To analyze the details of the four activities, a statistical study of the whole dataset
including the maximum, mean, standard deviation, percentile of 20%, 50%, and 80% in
three directions, X, Y, Z (defined in Figure 2), are carried out. It is noted that the assessment
conducted in Table 1 is based on the whole dataset instead of a window presented in Table 2.
It is noticeable that the activities performed in a treadmill experience a more dramatic
vibration since the maximum of the ascending and running is approximately 10 m/s2

greater than cycling and elliptical in all three directions. Regarding the mean value and
the standard deviation, the cycling produces less fluctuation than the other three activities.
Considering the three percentile values, most of the four activities’ vibrations convergent
to a relatively small value compared to the maximum value.
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Table 1. Statistical analysis of the four activities.

Indicator (m/s2) Direction Ascending Cycling Elliptical Running

Maximum
X 55.6 22.9 32.6 56.1
Y 56.9 20.6 37.0 47.7
Z 42.7 33.0 47.1 45.7
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Table 1. Cont.

Indicator (m/s2) Direction Ascending Cycling Elliptical Running

Mean
X 2.3 1.6 2.5 6.2
Y 2.4 2.4 3.5 4.6
Z 2.0 1.0 2.3 4.8

Standard
deviation

X 1.9 1.4 2.2 4.9
Y 2.2 1.9 2.6 3.3
Z 2.1 0.9 1.8 4.1

P 20%
X 0.7 0.5 0.7 2.0
Y 0.6 1.0 1.2 1.5
Z 0.5 0.3 0.7 1.2

P 50%
X 1.9 1.3 1.9 5.3
Y 1.8 2.4 3.0 4.1
Z 1.4 0.7 1.9 3.7

P 80%
X 3.5 2.5 3.8 9.6
Y 3.9 4.3 5.6 7.4
Z 3.0 1.5 3.7 7.8

Table 2. Handcrafted features.

Category Extracted Features

Frequency domain Spectral energy

Time-domain

Max, min, average, standard deviation, percentile 20, percentile 50,
percentile 80, interquartile, skewness, kurtosis, correlation, the standard

deviation of SMV, an average of SMV, maximum of SMV, and a minimum
of SMV.

2.2. Raw Data Collection

In this paper, we collect the dataset in a gym out of the lab using the phone-based
accelerometer. Ten subjects are suggested to perform four activities ascending on a treadmill,
cycling, elliptical, and running on a treadmill. To include the body location placement,
the 10 participants place their phones (6 of them are iPhones, 2 are Samsung phones, and
the remaining 2 are Huawei phones) in the pocket of the sweatpants, holding in one of
their hands, or in their holsters attached on upper arm when they are performing the
four activities. In particular, the phone is stored in the subject’s pocket instead of a hand
when the subjects are cycling as hands induce no movement. There are diverse models of
phones used, which can improve the robustness and the generalization of the model if the
model can cope with the data from different phones. An app “Vibsensor”, available on
the App Store for Apple phones and Google Play for Android phones, is used. The app
casts the phone to a vibration meter with live displaying the data in real-time, collecting
the vibration data, storing the data on the device, and exporting the data via email. All
the volunteers are performing 30 min of each activity, leading to a total of 1200 min for
4 moves. The sample rate is 100 Hz, which is larger than 20 Hz as Maurer et al. assessed
the impact of sampling rate on the accuracy of the HAR model and claimed that there was
no noticeable enhancement when the sample rate increased from 20 Hz to 100 Hz [15].
With the sample rate 100 Hz and the 1200 min dataset, the complete picture of the dataset
is that there are four Excel files ascending, cycling, elliptical, running) saving the vibrations
in three directions. In each Excel file, it shapes as 300 min × 60 s × 100 Hz rows and
four columns—timesteps and vibrations in x, y, and z directions defined by the phone
coordinate system in Figure 2.
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2.3. Handcrafted Features

To extract the 38 features in Table 2, Figure 3 takes the ascending as an example to
illustrate the procedure generating the handcrafted feature dataset from the raw sensory
dataset. The remaining three activities follow the same techniques. Eight window sizes
are employed in our work, and the raw data are sliced to the corresponding windows
and converted to the 38 features using MATLAB. The eight post-processed datasets are
run by the four algorithms defined in Section 2.5. The Excel sheet of the raw dataset is
now transformed to 38 columns representing 38 features and an additional column to
show the type of activity. Regarding the row of the transformed dataset, the number of
the rows can be calculated from the equation in Figure 3. Table 2 summarizes the features
used in this study, and the detail of each attribute is reviewed. Extensive evaluation on a
wide range of handcrafted feature types has been conducted in [16]. Most of the features
from [16] are also available in our research. From Table 2, the features are computed in
three directions except for the spectral energy, the standard deviation of signal magnitude
vector (SMV), an average of SMV, a maximum of SMV, and a minimum of SMV. The
correlation feature is calculated between two directions, which results in correlation (x, y),
correlation (x, z), and correlation (y, z). Therefore, once every feature has been computed
and stacked in a row, there are 38 features for each sample. Figure 4 presents a detailed
view of a 2 s window. With the 100 Hz sample rate, each time step stands for 1 millisecond.
The dataset’s representation is now transformed based on the window sizes of 2 s and 40 s
to the description shown in Table 3.
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Table 3. The overview of the dataset extracted from the raw data with window sizes of 2 s and 40 s.

Window Size 2 s 40 s

Type of Activity No.
Samples

No.
Features

Total
Subjects

No.
Samples

No.
Features

Total
Subjects

Ascending on a treadmill 9000 38 10 450 38 10
Cycling 9000 38 10 450 38 10

Elliptical 9000 38 10 450 38 10
Running on a treadmill 9000 38 10 450 38 10

After the handcrafted features are extracted, the dataset is split into 80% for the
training set and 20% for the testing set. Min–Max normalization is deployed. In particular,
the testing set is normalized using the maximum and minimum of the training set to avoid
information leakage to the testing set.

2.4. PCA

PCA is probably the most popular multivariate technique that aims to reduce the
dimensions of the data using some new orthogonal variables (principal components) to
represent the original data [17]. It uses an orthogonal transformation to reconstruct a series
of linearly related variables into a set of linearly unrelated new variables which are the
principal components. The small structure of the data resulting from PCA provides the
benefit of accurate and straightforward analysis [18]. To deliver the new representation
of the dataset, PCA is used to reduce the dimension of the 38-feature dataset with the
following goals [17]:

1. Obtain the most crucial information from the 38-feature dataset;
2. Exclude the less critical information to achieve a smaller dataset;
3. Simpify the description of the dataset;
4. Assess the attributes of the new representation.

To deliver these four goals, PCA maps n-dimensional features to k-dimensions. This
k-dimension is a new orthogonal feature called principal components. PCA sequentially
finds a set of mutually orthogonal coordinate axes from the original space. The first new
coordinate axis shows the most considerable variance in the original data, and the second
new axis is the plane orthogonal to the first new axis that maximizes the variance, while
the third new axis is the enormous variance in the plane orthogonal to the first and second
axes, and so on, until n such coordinate axes can be obtained. K coordinates with non-zero
variances can be obtained, and the latter coordinate axes are almost zero variances, which
can be discarded to achieve the goal of dimensional reduction. An explained variance ratio
is provided in Appendix B to analyze the variance of components.
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2.5. Machine Learning Algorithms

KNN, in pattern recognition, classifies samples based on the distance to the closest
training samples in the feature map exemplified in Figure 5. It is noticeable that two axes
are used to reflect two attributes of the sample in Figure 5. The meaning of the axis is
also applicable in Figures 6 and 7. An unknown sample is assigned to one of the groups
according to a majority vote of its k nearest neighbors. As can be seen in Figure 5, the k
nearest neighbors is set to 5 (the k must be a positive integer and can be tuned to obtain
the optimal performance), which implies that the five nearest points are identified by
measuring the Euclidean distance between two points, and the unknow point is compared
to the 5 points to determine which group the unknown point is allocated to. During the five
closest samples, the majority are yellow samples, so that the unknown sample is classified
to the yellow group.
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SVM was first introduced for 2-group classification problems [19]. The binary input
vectors are mapped to a feature map, and then the SVM is used to determine the hyper-
plane that can separate the binary input vectors seen from Figure 6. The support vectors
characterize the most significant margin between the two groups. Many hyperplanes can
separate the two classes, such as the two hyperplanes shown in Figure 6. SVM strives to
find an optimal hyperplane that is the most far away (optimal margin) from any samples in
the feature space. If the misclassified samples cannot be avoided, a constant C is introduced
to define the tolerance of the misclassified samples. From Figure 7 (left), a low value of C
ignores the misclassified sample to achieve a large optimal margin. In contrast, the right
of Figure 7 provides a small optimal margin due to the immense value of C not allowing
an error. The extension of SVM from binary classification to multiclass classification has
been well developed and assessed in [20]. An artificial neural network (ANN) is inspired
by the human brain structure [21], which is the fundamental reason it has intelligence.
Figure 8 provides a typical example of SNN with only one hidden layer between the input
and output layers. W, b, and z are the weights, biases, and the output of the hidden
layer; the activation function denotes tanh, relu, or identity; and X and y are the input and
output vectors, respectively. DNN shares the characteristics with SNN but more than one
hidden layer.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 
Figure 8. An example of an SNN network. 

2.6. Evaluations Measures of Machine Learning Algorithms 
To compare the performance of different machine learning classifiers, the most com-

mon method accuracy lacks focusing on a class. The introduction of a new learning prob-
lem inevitably focuses on its field but ignores the detailed analysis. Therefore, the main 
disadvantage of the most used empirical measure, accuracy, is no discrimination between 
the sum of appropriate labels of diverse classes. In [21], apart from accuracy, three addi-
tional measures were introduced—precision, recall, and F-measure, which can be calcu-
lated from Equations (1)–(4). In the present study, we also exploit these four measures 
since the accuracy is used to assess the model’s overall performance, and the other three 
evaluate the model in each activity. Figure 9 unveils terms used in Equations (1)–(4), 
where the column exposes the actual labels, and the row represents the values classified. 
Accuracy is the number of samples correctly predicted divided by the number of all sam-
ples. Precision describes the relationship between correctly classified samples (true posi-
tives) and the ones inappropriately identified as positives (false positives). At the same 
time, the recall highlights the function of true positives and the falsely classified samples 
(false negatives). Sometimes, the precision and recall indicators are contradictory, so we 
need to consider them comprehensively using the F-measure, which balances the preci-
sion and recall. The worst to perfect cases of F-measures can be shown by the value from 
zero to one of the F-measure. 

 
Figure 9. Confusion matrix. 

Figure 8. An example of an SNN network.



Sustainability 2022, 14, 690 9 of 19

2.6. Evaluations Measures of Machine Learning Algorithms

To compare the performance of different machine learning classifiers, the most com-
mon method accuracy lacks focusing on a class. The introduction of a new learning problem
inevitably focuses on its field but ignores the detailed analysis. Therefore, the main disad-
vantage of the most used empirical measure, accuracy, is no discrimination between the
sum of appropriate labels of diverse classes. In [21], apart from accuracy, three additional
measures were introduced—precision, recall, and F-measure, which can be calculated
from Equations (1)–(4). In the present study, we also exploit these four measures since the
accuracy is used to assess the model’s overall performance, and the other three evaluate
the model in each activity. Figure 9 unveils terms used in Equations (1)–(4), where the
column exposes the actual labels, and the row represents the values classified. Accuracy is
the number of samples correctly predicted divided by the number of all samples. Preci-
sion describes the relationship between correctly classified samples (true positives) and
the ones inappropriately identified as positives (false positives). At the same time, the
recall highlights the function of true positives and the falsely classified samples (false
negatives). Sometimes, the precision and recall indicators are contradictory, so we need to
consider them comprehensively using the F-measure, which balances the precision and
recall. The worst to perfect cases of F-measures can be shown by the value from zero to one
of the F-measure.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F−measure =
2× precision× recall

precision + recall
(4)
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3. Results

This chapter aims to find the optimal window size to compute handcrafted features,
the optimal components to represent the original dataset, and the fine-tuned models
producing optimal performance. The overall performance is presented in this section. More
details are available in the Appendix A section.

3.1. Window Sizes

The measures mentioned in Section 2.5 generated from KNN, SVM, SNN, and DNN
employing eight window sizes are presented in Table A1. Appendix A provides details of
the evaluation of the window sizes providing the optimal window size for KNN and SVM
is 2 s that offers the most accurate scenario claimed in [12]. However, the optimal window
size for SNN and DNN is 40 s. Therefore, the following experiments are conducted under
the window sizes of 2 s and 40 s depending on the algorithms. The hyper-parameter of each
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model is not tuned, and no PCA occurs at this stage. The hyper-parameters corresponding
to each ML model are tabulated in Table 4.

Table 4. Hyper-parameter of the Four models.

Type of Algorithms Parameter

KNN 1. Number of neighbors = 3

SVM 1. C = 10

SNN
1. Number of hidden layers = 1
2. Number of Neurons = 40
3. Activation function = tanh

DNN

1. Number of layers = 4
2. Number of neurons for each layer: layer 1 = 20, layer 2 = 20,

layer 3 = 15, layer 4 = 15
3. Activation function = tanh

3.2. Explained Variance Ratio

In this section, PCA is implemented to extract the most informative features. Figure A1
shows the explained variance ratio that presents the percentage of the original information
that can be described by the extracted features using PCA. There is evidence that the
18 features and 15 features configurations offer more than 99% information of the original
datasets with a 2 s window size and a 40 s window size.

3.3. Hyper-Parameter Tunning

In this section, we present the process of hyper-parameter tuning to all four algorithms.
The number of neighbors is tuned for KNN; the value of C is tuned for SVM; the number
of neurons and the activation function are tuned for SNN and DNN; an additional hyper-
parameter, the number of hidden layers, is also adjusted for DNN.

Figure 10 offers how the testing accuracy of KNN responses to the change of the
number of neighbors. The testing accuracy starts at 0.961 and suffers an overall drop to
0.957 at the number of neighbors of 10. The trend of the graph shows the optimal number
of neighbors is one.
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The result obtained from Figure 11 is that when C is equal to 180, the testing accu-
racy reaches its peak of testing accuracy 0.970 and remains at that level, although C is
turned to 200.
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What stands out from Figure 12 is that the optimal result of 0.972 is provided by the
relu and 80 neurons configuration. We can see a higher performance reported by the tanh
and relu compared to identity.
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number of neurons.

From Tables A4–A6, we already know that the 80 neurons provide the optimal perfor-
mance for SNN with the relu activation function. As aforementioned, the DNN features
two or more hidden layers compared to the SNN. Therefore, the DNN is tuned by adding
more hidden layers to the optimal SNN to see any improvements. Figure 13 presents
the optimal capability is 0.974 procured by 3 hidden layers with 80, 10, and 10 neurons
in each hidden layer. As can be seen from Tables A5 and A7, there is a slight rise in the
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testing accuracy of 0.002 from SNN to DNN. Overfitting refers to the trained model having
poor performance on the testing dataset but good performance on the training dataset [22].
There is no significant gap between them the training accuracy and testing accuracy in each
model. The model does not encounter an overfitting problem.
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4. Discussion

This study set out to develop a high-performance gym activity classifier for smart-
phones. The primary constraint is the storage and the computational capability of the
phone. There is a requirement for phones that need to sense the subject’s movement con-
tinuously. In addition, the model implemented on the phone needs to update constantly.
These two actions require immense computing resources. Therefore, the proposed model is
designed to use one sensor and a dataset with a small size. It is not practical for a phone to
use raw sensory data because of the large requirement of computation energy. We strive to
transform the raw data into a dataset that is small and keeps as much helpful information
as possible. First of all, the variable—window size—is analyzed, and it is inferred that 40 s
is favorable. Every 40 s, raw data are converted to a wide range of handcrafted features
(38 features) followed by a PCA technique to further reduce 38 elements to 15 elements.
Table A1 tells that the 38-feature dataset is sensible due to the satisfaction performance
offered by the four models. However, the size of the dataset can be reduced more by PCA.
DNN can produce the same result with a 15-element dataset resulting from PCA.

The DNN model procures an error of 0.026 using a 360-sample testing set. We can
calculate the 95% confidence interval with a z-value of 1.96 producing the confidence
interval [0.0096, 0.0426]. It implies that there is a 95% possibility that the interval contains
the true classification error of the DNN model on unseen data.

Qi et al. [3] proposed a state-of-the-art technique to classify gym aerobic and weightlift-
ing activities with wearable sensors. Without a throughout window size analysis, they also
derived data from 10 subjects but with multiple sensors. However, only an accelerometer
was used to detect the aerobic exercises of running, cycling, and ascending [3,23–25]. In
addition, PCA was also exploited to reduce the 88 handcrafted features to 36 features. The
optimal results from us and [3,26] are listed together in Table 5.
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Table 5. Comparison analysis between [3] (green) and the proposed model (red).

Ascending Ascending Cycling Cycling Running Running

Precision 0.824 0.935 0.826 0.993 0.904 0.993

Recall 0.788 0.963 0.812 0.978 0.882 0.983

F-measure 0.805 0.949 0.898 0.985 0.912 0.988

Regarding the three measures in Table 5, our model outperforms the baseline model
classifying ascending, cycling, running in the gym. However, the potential performance of
the proposed model classifying other gym exercises remains unknown. Future investiga-
tions might be possible to quantify how much computational cost can be saved by reducing
the dataset. Further studies will need to be undertaken which take the computational time
and the battery used if the model is implemented to a smartphone into account.

5. Conclusions

Ensuring healthy styles and promoting wellbeing at all ages is critical to sustainable
development. This study addresses one of the United Nation’s sustainable development
goals, with respect to Goal #3 ‘Good health and wellbeing’. Active lifestyles and physical
activities (or exercises) can help in increasing life expectancy and reducing some of the
common risk factors associated with obesity and heart diseases. However, more efforts
and incentives are required to fully eradicate a wide range of diseases and address many
different persistent and emerging health issues. By fostering on providing more efficient
recognition, classification, and quantification of physical activities, improved understand-
ing, and increased access to fitness activities, significant progress can be made in helping to
improve the quality of lives of millions. In this study, novel deep neural networks have
been established to predict the most common fitness activities, including four gym aerobic
activities ascending on a treadmill, cycling, elliptical, and running on a treadmill to prompt
more physical activities in gyms.

In order to aid the data collection and quantification of fitness activities, an AI-based
mobile app integrated with smartphone sensors has been developed. An accelerometer
embedded in a phone has been calibrated with a Brüel & Kjær industrial transducer and
then used to collect the time series data of gym activities. The smartphone has been adopted
since mobile phones have been used in the daily lives of potential end-users nowadays,
and the novel AI-based apps developed can be implemented within smartphones for
daily usage.

In addition, this research examines various ML models classifying four gym cardio
activities. The experiments on data fusion and assimilation techniques have contributed to
a new understanding of the impact of the window size during feature extraction from raw
data to handcrafted features, the effectiveness of the feature extraction to further reduce the
data dimensions, and how we tune the hyper-parameter to obtain optimal ML models. The
proposed method is compared with an advanced solution to gym activity recognition to
show outstanding performance. This development can be further implemented in the App
Store in the future to enhance the public usage of the apps so that active physical human
activities can be promoted to enhance ‘Good health and Well-being’ in accordance with
United Nation’s sustainable development goals (Goal #3).
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Appendix A. Window Sizes

Table A1 gauges the performance of four models in terms of accuracy, recall, precision,
and F-measure. The precision, recall, and F-measure of the four activities are ordered as
ascending, cycling, elliptical, and running activities. The highest testing accuracy is marked
in red to assist reading, which is also applicable in Tables A1–A7. To access the optimal
window size, the first indicator for the overall performance is the testing accuracy. The
remaining three measures, precision, recall, and F-measure are used to confirm that the
values in red are the best without any potential biases.

Table A1. Detail performances of four models by using different window sizes.

Measures
Window Sizes

1 s 2 s 5 s 10 s 20 s 40 s 60 s 80 s

KNN training accuracy 0.979 0.981 0.977 0.972 0.966 0.961 0.939 0.930

KNN testing accuracy 0.959 0.965 0.959 0.952 0.937 0.904 0.848 0.856

KNN precision

0.931
0.981
0.939
0.987

0.939
0.984
0.957
0.980

0.945
0.976
0.940
0.976

0.923
0.971
0.936
0.976

0.875
0.992
0.891
0.989

0.811
0.935
0.919
0.967

0.778
0.897
0.783
0.931

0.747
0.891
0.845
0.984

KNN recall

0.943
0.957
0.964
0.971

0.952
0.967
0.963
0.976

0.928
0.964
0.971
0.974

0.911
0.960
0.945
0.990

0.941
0.889
0.933
0.989

0.896
0.841
0.913
0.975

0.811
0.805
0.783
0.979

0.903
0.814
0.790
0.909

KNN F-measure

0.937
0.969
0.952
0.979

0.946
0.976
0.960
0.978

0.937
0.970
0.956
0.975

0.917
0.966
0.940
0.983

0.907
0.938
0.912
0.989

0.851
0.885
0.916
0.971

0.794
0.848
0.783
0.954

0.818
0.851
0.817
0.945

SVM training accuracy 0.953 0.961 0.958 0.942 0.926 0.904 0.835 0.770

SVM testing accuracy 0.950 0.961 0.952 0.945 0.917 0.869 0.814 0.793

SVM precision

0.905
0.979
0.935
0.986

0.922
0.983
0.960
0.982

0.907
0.985
0.949
0.972

0.906
0.975
0.915
0.982

0.824
0.992
0.869
0.985

0.782
0.940
0.803
0.992

0.885
0.784
0.685
0.947

0.884
0.762
0.642
0.968

SVM recall

0.930
0.957
0.945
0.969

0.952
0.960
0.960
0.973

0.935
0.952
0.958
0.965

0.900
0.953
0.948
0.976

0.882
0.885
0.933
0.968

0.776
0.797
0.927
0.983

0.568
0.874
0.892
0.938

0.528
0.914
0.839
0.909

SVM F-measure

0.917
0.968
0.940
0.978

0.937
0.971
0.960
0.977

0.921
0.968
0.954
0.968

0.903
0.964
0.931
0.979

0.852
0.936
0.900
0.977

0.779
0.863
0.861
0.987

0.692
0.826
0.775
0.942

0.661
0.831
0.727
0.937

SNN training accuracy 0.978 0.991 0.995 0.991 0.992 0.994 0.995 0.968
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Table A1. Cont.

Measures
Window Sizes

1 s 2 s 5 s 10 s 20 s 40 s 60 s 80 s

SNN testing accuracy 0.967 0.973 0.974 0.974 0.973 0.982 0.967 0.933

SNN precision

0.953
0.975
0.957
0.983

0.963
0.980
0.978
0.972

0.959
0.983
0.974
0.982

0.967
0.964
0.987
0.976

0.943
0.997
0.969
0.982

0.943
0.993
0.993
0.999

0.948
0.999
0.962
0.960

0.930
0.999
0.900
0.903

SNN recall

0.943
0.974
0.972
0.976

0.957
0.979
0.972
0.986

0.966
0.984
0.969
0.978

0.956
0.977
0.970
0.990

0.976
0.970
0.965
0.982

0.985
0.978
0.973
0.992

0.958
0.989
0.916
0.999

0.917
0.957
0.871
0.985

SNN F-measure

0.948
0.975
0.964
0.980

0.960
0.979
0.975
0.979

0.962
0.984
0.972
0.98

0.962
0.971
0.979
0.983

0.959
0.983
0.967
0.982

0.964
0.985
0.983
0.996

0.953
0.994
0.938
0.980

0.923
0.978
0.885
0.942

DNN training accuracy 0.979 0.984 0.980 0.986 0.990 0.995 0.992 0.944

DNN testing accuracy 0.967 0.970 0.963 0.961 0.957 0.974 0.942 0.896

DNN precision

0.949
0.981
0.953
0.985

0.941
0.982
0.985
0.975

0.925
0.989
0.975
0.968

0.943
0.971
0.963
0.967

0.937
0.983
0.925
0.978

0.949
0.999
0.973
0.975

0.937
0.977
0.924
0.929

0.882
0.957
0.864
0.877

DNN recall

0.945
0.972
0.975
0.975

0.966
0.973
0.956
0.987

0.959
0.967
0.949
0.978

0.939
0.966
0.959
0.979

0.929
0.956
0.965
0.975

0.970
0.971
0.967
0.992

0.937
0.989
0.880
0.958

0.833
0.957
0.823
0.970

DNN F-measure

0.947
0.977
0.964
0.980

0.953
0.978
0.970
0.980

0.942
0.978
0.962
0.973

0.941
0.969
0.961
0.973

0.933
0.969
0.944
0.977

0.959
0.985
0.970
0.983

0.937
0.983
0.901
0.944

0.857
0.957
0.843
0.921

Appendix B. PCA

An index named explained variance ratio in PCA represents the percentage of the vari-
ance of each retrained component. As can be seen from Figure A1, it shows a relationship
between the number of principal components and the explained variance ratio. The larger
the percentage, the more information is retained in the original data.

The line marked in blue implies that 15 components can represent almost 100% of
the original dataset for the 40 s window size, while 18 components are employed when
the window size is 2 s. Therefore, the original 38-feature dataset is reduced to a 15-feature
dataset for SNN and DNN and an 18-feature dataset for KNN and SVM.
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Appendix C. Hyper-Parameter Tuning

For KNN, the number of neighbors is tuned to deliver optimal performance. The
result is summarized in Table A2. KNN is good at classifying running during the four
activities since the highest precision, recall, and F-measure are yielded for running. On the
contrary, KNN is not sensitive to ascending.

Table A2. KNN outcomes for the number of neighbors tuned.

Number of Neighbors 1 2 3 4 5 6 7 8 9 10

Training accuracy 0.990 0.980 0.978 0.972 0.971 0.967 0.966 0.964 0.963 0.962

Testing accuracy 0.961 0.957 0.960 0.958 0.959 0.957 0.958 0.958 0.957 0.957

Precision

0.939
0.974
0.952
0.979

0.908
0.975
0.959
0.989

0.935
0.979
0.949
0.980

0.924
0.981
0.948
0.982

0.936
0.980
0.943
0.979

0.926
0.981
0.943
0.981

0.934
0.981
0.940
0.980

0.928
0.981
0.942
0.982

0.931
0.982
0.937
0.981

0.928
0.981
0.938
0.983

Recall

0.943
0.968
0.957
0.975

0.969
0.964
0.935
0.960

0.948
0.962
0.959
0.974

0.954
0.960
0.949
0.969

0.944
0.963
0.957
0.972

0.948
0.961
0.952
0.969

0.942
0.961
0.959
0.970

0.948
0.961
0.953
0.968

0.942
0.959
0.957
0.970

0.946
0.959
0.954
0.968

F-measure

0.941
0.971
0.955
0.977

0.938
0.970
0.947
0.974

0.941
0.970
0.954
0.977

0.939
0.970
0.948
0.975

0.940
0.971
0.950
0.975

0.937
0.971
0.948
0.975

0.938
0.971
0.949
0.975

0.938
0.971
0.947
0.975

0.937
0.970
0.947
0.975

0.937
0.970
0.946
0.975

Table A3 tunes a wide range of values of C to get the optimal SVM model. When
the C is set to 180, SVM outperforms the model with other C settings. Like KNN, SVM is
also sensitive to running. It is understandable since the running spurs the most dramatic
movement compared to ascending, cycling, and elliptical.
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Table A3. SVM outcomes for the number of C.

Number of C 1 20 40 60 80 100 120 140 160 180 200

Training accuracy 0.967 0.972 0.974 0.975 0.977 0.978 0.978 0.979 0.979 0.980 0.980

Testing accuracy 0.965 0.967 0.967 0.968 0.968 0.969 0.969 0.969 0.969 0.970 0.970

Precision

0.935
0.978
0.961
0.986

0.938
0.978
0.963
0.988

0.940
0.979
0.963
0.987

0.941
0.980
0.964
0.987

0.943
0.980
0.964
0.987

0.944
0.981
0.964
0.987

0.944
0.981
0.965
0.987

0.943
0.982
0.966
0.987

0.944
0.980
0.965
0.987

0.945
0.981
0.966
0.989

0.945
0.981
0.966
0.989

Recall

0.955
0.966
0.962
0.976

0.957
0.968
0.962
0.979

0.957
0.971
0.962
0.980

0.957
0.971
0.962
0.981

0.958
0.971
0.963
0.982

0.959
0.971
0.962
0.982

0.959
0.971
0.964
0.982

0.960
0.972
0.963
0.982

0.959
0.972
0.963
0.982

0.961
0.974
0.963
0.983

0.961
0.974
0.963
0.983

F-measure

0.945
0.972
0.962
0.981

0.948
0.973
0.963
0.984

0.948
0.975
0.963
0.984

0.949
0.975
0.963
0.984

0.950
0.976
0.963
0.984

0.951
0.976
0.963
0.985

0.951
0.976
0.964
0.984

0.951
0.977
0.964
0.985

0.951
0.976
0.964
0.985

0.953
0.977
0.965
0.986

0.953
0.977
0.965
0.986

Tables A4–A6 present the tunning process for the number of neurons and the type of
activation functions of SNN. Going deep to the activity level, SNN performs better when
classifying cycling than KNN and SVM, leading to a slightly better overall performance.

Table A4. SNN outcomes for the No. neurons and the activation function tanh.

Number of Neurons 1 10 20 30 40 50 60 70 80 90 100

Training accuracy 0.944 0.985 0.990 0.990 0.994 0.995 0.998 0.999 0.999 0.999 0.999

Testing accuracy 0.910 0.945 0.969 0.963 0.959 0.965 0.961 0.969 0.965 0.970 0.970

Precision

0.857
0.985
0.858
0.944

0.904
0.971
0.938
0.967

0.934
0.993
0.966
0.983

0.915
0.985
0.966
0.992

0.906
0.985
0.966
0.983

0.914
0.985
0.979
0.983

0.913
0.985
0.966
0.983

0.927
0.993
0.973
0.983

0.908
0.999
0.959
0.999

0.921
0.993
0.979
0.992

0.934
0.978
0.980
0.992

Recall

0.806
0.964
0.887
0.992

0.910
0.978
0.913
0.983

0.955
0.971
0.960
0.992

0.963
0.964
0.940
0.992

0.940
0.971
0.940
0.992

0.55
0.971
0.947
0.992

0.940
0.971
0.947
0.992

0.948
0.978
0.960
0.992

0.963
0.971
0.940
0.992

0.963
0.978
0.953
0.990

0.955
0.978
0.960
0.992

F-measure

0.831
0.974
0.872
0.967

0.907
0.975
0.926
0.975

0.945
0.982
0.963
0.988

0.938
0.974
0.953
0.992

0.923
0.978
0.953
0.988

0.934
0.978
0.963
0.988

0.926
0.978
0.956
0.988

0.937
0.985
0.966
0.988

0.935
0.985
0.949
0.996

0.942
0.985
0.966
0.992

0.945
0.978
0.970
0.992

Table A5. SNN outcomes for the No. neurons and the activation function relu.

Number of Neurons 1 10 20 30 40 50 60 70 80 90 100

Training accuracy 0.927 0.979 0.973 0.986 0.983 0.988 0.990 0.993 0.992 0.995 0.992

Testing accuracy 0.915 0.939 0.954 0.959 0.956 0.958 0.969 0.970 0.972 0.965 0.972

Precision

0.833
0.954
0.925
0.959

0.882
0.956
0.940
0.983

0.924
0.978
0.924
0.999

0.914
0.985
0.959
0.983

0.899
0.978
0.952
0.999

0.913
0.978
0.966
0.975

0.947
0.985
0.954
0.992

0.941
0.985
0.966
0.992

0.955
0.993
0.961
0.983

0.914
0.993
0.966
0.992

0.955
0.978
0.961
0.999

Recall

0.896
0.906
0.900
0.967

0.896
0.942
0.940
0.983

0.903
0.964
0.967
0.983

0.948
0.971
0.947
0.975

0.933
0.971
0.933
0.992

0.940
0.964
0.947
0.983

0.940
0.978
0.967
0.992

0.955
0.978
0.960
0.992

0.940
0.978
0.980
0.992

0.955
0.971
0.947
0.992

0.948
0.978
0.973
0.992
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Table A5. Cont.

Number of Neurons 1 10 20 30 40 50 60 70 80 90 100

F-measure

0.863
0.929
0.912
0.963

0.889
0.949
0.940
0.983

0.913
0.971
0.945
0.992

0.930
0.978
0.953
0.979

0.916
0.975
0.943
0.996

0.926
0.971
0.956
0.979

0.944
0.982
0.960
0.992

0.948
0.982
0.963
0.992

0.947
0.985
0.970
0.988

0.934
0.982
0.956
0.992

0.951
0.978
0.967
0.996

Table A6. SNN outcomes for the No. neurons and the activation function identity.

Number of Neurons 1 10 20 30 40 50 60 70 80 90 100

Training accuracy 0.907 0.918 0.917 0.920 0.93 0.917 0.931 0.903 0.930 0.923 0.921

Testing accuracy 0.902 0.906 0.911 0.911 0.926 0.895 0.924 0.889 0.919 0.917 0.913

Precision

0.807
0.963
0.879
0.967

0.807
0.992
0.866
0.975

0.831
0.985
0.868
0.975

0.821
0.992
0.872
0.975

0.883
0.999
0.862
0.975

0.901
0.978
0.781
0.967

0.882
0.992
0.863
0.975

0.748
0.992
0.874
0.975

0.846
0.993
0.875
0.975

0.835
0.993
0.879
0.975

0.895
0.978
0.830
0.975

Recall

0.813
0.949
0.873
0.983

0.843
0.957
0.860
0.975

0.843
0.964
0.873
0.975

0.858
0.957
0.867
0.975

0.843
0.964
0.920
0.983

0.679
0.971
0.953
0.975

0.836
0.957
0.927
0.983

0.866
0.949
0.787
0.975

0.858
0.964
0.887
0.975

0.866
0.964
0.873
0.975

0.761
0.964
0.947
0.983

F-measure

0.810
0.956
0.876
0.975

0.825
0.974
0.863
0.975

0.837
0.974
0.870
0.975

0.839
0.974
0.870
0.975

0.863
0.982
0.890
0.979

0.774
0.975
0.859
0.971

0.858
0.974
0.894
0.979

0.803
0.970
0.828
0.975

0.852
0.978
0.881
0.975

0.850
0.978
0.876
0.975

0.823
0.971
0.885
0.979

In Table A7, DNN, with additional layers, shows more precise performance to classify
elliptical and running compared to SNN. DNN performs better at classifying elliptical and
running but worse at ascending compared to SNN.

Table A7. DNN outcomes response to the No. layer, the No. neurons in each layer, and the
relu function.

Number of Neurons
in Each Hidden Layer 80, 5 80, 10 80, 15 80, 5, 5 80, 10,

5
80, 10,

10
80, 10,
10, 5

80, 10,
10, 10

80, 15,
5, 5

80, 15,
10, 5

80, 15,
10, 10

Training accuracy 0.994 0.995 0.998 0.995 0.994 0.999 0.996 0.999 0.993 0.999 0.999

Testing accuracy 0.963 0.963 0.967 0.961 0.967 0.974 0.965 0.961 0.952 0.965 0.967

Precision

0.914
0.985
0.979
0.975

0.908
0.978
0.972
0.999

0.927
0.978
0.973
0.992

0.920
0.999
0.940
0.992

0.933
0.985
0.966
0.983

0.935
0.993
0.973
0.993

0.915
0.978
0.979
0.992

0.914
0.993
0.966
0.975

0.923
0.964
0.935
0.992

0.934
0.964
0.966
0.999

0.915
0.985
0.973
0.999

Recall

0.955
0.957
0.953
0.992

0.955
0.971
0.940
0.992

0.948
0.971
0.960
0.992

0.940
0.978
0.933
0.999

0.940
0.978
0.960
0.992

0.963
0.978
0.967
0.983

0.963
0.971
0.940
0.992

0.955
0.964
0.940
0.992

0.896
0.971
0.953
0.992

0.948
0.964
0.953
0.999

0.963
0.971
0.947
0.992

F-measure

0.934
0.971
0.966
0.983

0.931
0.975
0.956
0.996

0.937
0.975
0.966
0.992

0.930
0.989
0.936
0.996

0.937
0.982
0.963
0.988

0.949
0.985
0.970
0.988

0.938
0.975
0.959
0.992

0.934
0.978
0.953
0.983

0.909
0.968
0.944
0.992

0.941
0.964
0.960
0.999

0.938
0.978
0.959
0.996
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