Recovery of Salts from Synthetic Erythritol Culture Broth via Electrodialysis: An Alternative Strategy from the Bin to the Loop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Feed Solutions
2.2.1. Salts from Culture Media
2.2.2. Erythritol and By-Products
2.2.3. Other Compounds from Culture Media
2.3. Experimental Settings
2.4. Analysis of Anions and Cations with Ion Chromatography (IC)
2.5. Analysis of Erythritol, Glycerol, and Glucose with HPLC
2.6. Removal of Ions and Current Efficiency (CE)
2.7. Energy Consumption
3. Results
3.1. Chemical Composition of S, SP, and SCB Solutions
3.2. Physicochemical Parameters
3.3. Desalination of Product in the Diluted Fraction
3.4. Performance of Ion-Removal Rate in S, SP, and SCB Samples
3.5. Current Efficiency (CE)
3.6. Recovery of Salts in the Concentrated Fraction
3.7. Losses of Products in the Concentrated Fraction
3.8. Energy Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martău, G.A.; Coman, V.; Vodnar, D.C. Recent advances in the biotechnological production of erythritol and mannitol. Crit. Rev. Biotechnol. 2020, 40, 608–622. [Google Scholar] [CrossRef]
- Boesten, D.M.P.H.J.; den Hartog, G.J.M.; de Cock, P.; Bosscher, D.; Bonnema, A.; Bast, A. Health effects of erythritol. Nutrafoods 2015, 14, 3–9. [Google Scholar] [CrossRef]
- Kasumi, T. Fermentative production of polyols and utilization for food and other products in Japan. Japan Agric. Res. Q. 1995, 29, 49–55. [Google Scholar]
- BeMiller, J.N. Carbohydrate and Noncarbohydrate Sweeteners. In Carbohydrate Chemistry for Food Scientists; Ball, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 371–399. ISBN 9780128120699. [Google Scholar]
- Hao, H.X.; Hou, B.H.; Wang, J.K.; Zhang, M.J. Solubility of erythritol in different solvents. J. Chem. Eng. Data 2005, 50, 1454–1456. [Google Scholar] [CrossRef]
- Ahuja, K.; Rawat, A. Erythritol Market Size by Form (Powder, Granular), by Application (Beverage, Bakery, Confectionery & Dairy Products, Personal Care, Pharmaceutical), Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026; Global Market Insights: Selbyville, DE, USA, 2020. [Google Scholar]
- Guo, J.; Li, J.; Chen, Y.; Guo, X.; Xiao, D. Improving Erythritol Production of Aureobasidium pullulans from Xylose by Mutagenesis and Medium Optimization. Appl. Biochem. Biotechnol. 2016, 180, 717–727. [Google Scholar] [CrossRef]
- Kang, P.; Li, L.; Yan, L.; Ju, X.; Hu, C.; Yao, X. Enhancement of erythritol production in Trichosporonoides oedocephalis by regulating cellular morphology with betaine. Chem. Pap. 2019, 73, 2065–2072. [Google Scholar] [CrossRef]
- Ghezelbash, G.R.; Nahvi, I.; Malekpour, A. Erythritol production with minimum By-product using Candida magnoliae mutant. Appl. Biochem. Microbiol. 2014, 50, 292–296. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Iwata, H.; Mizushima, D.; Ogihara, J.; Kasumi, T. Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Lett. Appl. Microbiol. 2015, 60, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Regnat, K.; Mach, R.L.; Mach-Aigner, A.R. Erythritol as sweetener—wherefrom and whereto? Appl. Microbiol. Biotechnol. 2018, 102, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Luo, F.; Zou, R.; Liu, J.; Yan, Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J. Proteom. 2021, 234, 104097. [Google Scholar] [CrossRef]
- Yang, C.; Ji, X.; Pan, W.; Liu, Y.; Zhou, L.; Chen, Q.; Tang, X. Paliperidone ascending controlled-release pellets with osmotic core and driven by delayed osmotic pressure. J. Drug Deliv. Sci. Technol. 2018, 48, 193–199. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Y.; Chu, J.; Mohsin, A.; Zhuang, Y. Exploring cellular fatty acid composition and intracellular metabolites of osmotic-tolerant mutant Lactobacillus paracasei NCBIO-M2 for highly efficient lactic acid production with high initial glucose concentration. J. Biotechnol. 2018, 286, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Choi, H.K.; Kim, J.H.; Lee, H.S.; Hong, S.S. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb. Technol. 2001, 28, 202–209. [Google Scholar] [CrossRef]
- Gutierrez, C.; Abee, T.; Booth, I.R. Physiology of the osmotic stress response in microorganisms. Int. J. Food Microbiol. 1995, 28, 233–244. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.; Kim, J.; Oh, D. Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnol. Lett. 1997, 19, 727–729. [Google Scholar] [CrossRef]
- Li, L.; Gu, L.; Ju, X.; Hu, C.; Fu, J.; Cheng, H.; Kang, P. Osmotic pressure regulation using KCl for enhanced erythritol production using trichosporonoides oedocephalis ATCC 16958. Food Sci. Technol. Res. 2017, 23, 793–800. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Xia, J.; Lv, J.; Xu, J.; Dai, B.; Xu, X.; Xu, J. Erythritol production by Yarrowia lipolytica from okara pretreated with the in-house enzyme pools of fungi. Bioresour. Technol. 2017, 244, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Frigaard, N. Sugar and Sugar Alcohol Production. In Genetically Engineered Foods; Grumezescu, A., Butu, A., Eds.; Elsevier: Helsingor, Denmark, 2018; pp. 31–47. ISBN 9780128115190. [Google Scholar]
- Hernández-Pérez, A.F.; Machado, F.; De Souza Queiroz, S.; Vaz De Arruda, P.; Chandel, A.K.; Das Graças, M.D.A. Biotechnological production of sweeteners. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–292. ISBN 9780444643230. [Google Scholar]
- Chan, E.C.S. Microbial nutrition and basic metabolism. In Handbook of Water and Wastewater Microbiology; Mara, D., Horan, N., Eds.; Elsevier: London, UK, 2003; pp. 3–33. ISBN 9780080478197. [Google Scholar]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef]
- Reihani, S.F.S.; Khosravi-Darani, K. Influencing factors on single-cell protein production by submerged fermentation: A review. Electron. J. Biotechnol. 2019, 37, 34–40. [Google Scholar] [CrossRef]
- Ren, H.Y.; Kong, F.; Ma, J.; Zhao, L.; Xie, G.J.; Xing, D.; Guo, W.Q.; Liu, B.F.; Ren, N.Q. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types. Bioresour. Technol. 2018, 252, 110–117. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lv, H.; Xing, Y.; Wang, C.; You, X.; Chen, X.; Zhang, Q. The nutrients in Moringa oleifera leaf contribute to the improvement of stylo and alfalfa silage: Fermentation, nutrition and bacterial community. Bioresour. Technol. 2020, 301, 122733. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, L.; Ai, M.; Qiao, Y.; Liu, G.; Fan, X.; Lv, X.; Feng, Z. Nutrient requirements of Lactobacillus casei Shirota and their application in fermented milk. LWT 2020, 118, 108735. [Google Scholar] [CrossRef]
- Koh, E.S.; Lee, T.H.; Lee, D.Y.; Kim, H.J.; Ryu, Y.W.; Seo, J.H. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 2003, 25, 2103–2105. [Google Scholar] [CrossRef] [PubMed]
- Jeya, M.; Lee, K.M.; Tiwari, M.K.; Kim, J.S.; Gunasekaran, P.; Kim, S.Y.; Kim, I.W.; Lee, J.K. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl. Microbiol. Biotechnol. 2009, 83, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Saran, S.; Mukherjee, S.; Dalal, J.; Saxena, R.K. High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans. Bioresour. Technol. 2015, 198, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk, A.M.; Rakicka, M.; Biegalska, A.; Rymowicz, W.; Dobrowolski, A. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour. Technol. 2015, 198, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Rakicka, M.; Rywińska, A.; Lazar, Z.; Rymowicz, W. Two-stage continuous culture—Technology boosting erythritol production. J. Clean. Prod. 2017, 168, 420–427. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Furgała, J.; Rakicka, M.; Rymowicz, W. Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J. Ind. Microbiol. Biotechnol. 2014, 41, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daza-Serna, L.; Serna-Loaiza, S.; Masi, A.; Mach, R.L.; Mach-Aigner, A.R.; Friedl, A. From the culture broth to the erythritol crystals: An opportunity for circular economy. Appl. Microbiol. Biotechnol. 2021, 105, 4467–4486. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Arola, K.; Thompson Brewster, E.; Mehta, C.M.; Batstone, D.J. Nutrient recovery from wastewater through pilot scale electrodialysis. Water Res. 2018, 135, 57–65. [Google Scholar] [CrossRef]
- European Commission. Recovering Resources from Industrial Wastewater to Minimise Environmental Impact; Zero Brine Project; Cordis EU Research Results; European Commission: Brussel, Belgium, 2020. [Google Scholar]
- European Commission. Wastewater Treatment Progresses towards a Circular Economy; Incover Project; European Commission: Brussel, Belgium, 2019. [Google Scholar]
- European Commission. Unlocking New Value from Urban bioWASTE; Value Waste Project; European Commission: Brussel, Belgium, 2018. [Google Scholar]
- VCM. Nitroman Project. Interreg EU Project. 2019. Available online: https://www.vcm-mestverwerking.be/nl/kenniscentrum/20262/nitroman (accessed on 16 May 2021).
- Ding, Y.; Sartaj, M. Optimization of ammonia removal by ion-exchange resin using response surface methodology. Int. J. Environ. Sci. Technol. 2016, 13, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.; Harker, J.; Backhurst, J. Ion Exchange. In Coulson and Richarson’s Chemical Engineering by Coulson & Richardson; Butterworth Heinemann: Oxford, UK, 2002; pp. 1053–1075. [Google Scholar]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prochaska, K.; Staszak, K.; Woźniak-Budych, M.J.; Regel-Rosocka, M.; Adamczak, M.; Wiśniewski, M.; Staniewski, J. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresour. Technol. 2014, 167, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Duan, J.; Liu, Y.; Yu, L.; Xing, X. Demineralization of glutamine fermentation broth by electrodialysis. Desalination 2005, 172, 129–135. [Google Scholar] [CrossRef]
- Phanthumchinda, N.; Thitiprasert, S.; Tanasupawat, S.; Assabumrungrat, S.; Thongchul, N. Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochem. 2018, 68, 205–213. [Google Scholar] [CrossRef]
- Cheryan, M.; Parekh, S.R. Separation of glycerol and organic acids in model ethanol stillage by electrodialysis and precipitation. Process Biochem. 1995, 30, 17–23. [Google Scholar] [CrossRef]
- Wu, R.C.; Xu, Y.Z.; Song, Y.Q.; Luo, J.A.; Liu, D. A novel strategy for salts recovery from 1,3-propanediol fermentation broth by bipolar membrane electrodialysis. Sep. Purif. Technol. 2011, 83, 9–14. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, X.; Zhang, Y.; Gao, C. Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalin. Water Treat. 2016, 57, 22304–22310. [Google Scholar] [CrossRef]
- Hboová, V.; Melzoch, K.; Rychtera, M.; Sekavová, B. Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination 2004, 162, 361–372. [Google Scholar] [CrossRef]
- Vadthya, P.; Kumari, A.; Sumana, C.; Sridhar, S. Electrodialysis aided desalination of crude glycerol in the production of biodiesel from oil feed stock. Desalination 2015, 362, 133–140. [Google Scholar] [CrossRef]
- Shen, J.Y.; Duan, J.R.; Yu, L.X.; Xing, X.H.; Xu, P. Desalination of glutamine fermentation broth by electrodialysis. Process Biochem. 2006, 41, 716–720. [Google Scholar] [CrossRef]
- Wu, R.C.; Ren, H.J.; Xu, Y.Z.; Liu, D. The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol. 2010, 73, 122–125. [Google Scholar] [CrossRef]
- Kresnowati, M.T.A.P.; Regina, D.; Bella, C.; Wardani, A.K.; Wenten, I.G. Combined ultrafiltration and electrodeionization techniques for microbial xylitol purification. Food Bioprod. Process. 2019, 114, 245–252. [Google Scholar] [CrossRef]
- Scarazzato, T.; Panossian, Z.; Tenório, J.A.S.; Pérez-Herranz, V.; Espinosa, D.C.R. A review of cleaner production in electroplating industries using electrodialysis. J. Clean. Prod. 2017, 168, 1590–1602. [Google Scholar] [CrossRef]
- ISO 3696:1987; ISO Water for Analytical Laboratory Use; Specification and Test Methods; International Organization for Standardization: Geneva, Switzerland, 1991.
- National Center for Biotechnology Information. PubChem Compound Summary for CID 222285, Erythritol; National Center for Biotechnology Information: Bethesda, MD, USA, 2021. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 753, Glycerol; National Center for Biotechnology Information: Bethesda, MD, USA, 2021. [Google Scholar]
- Wang, T.; Meng, Y.; Qin, Y.; Feng, W.; Wang, C. Removal of furfural and HMF from monosaccharides by nanofiltration and reverse osmosis membranes. J. Energy Inst. 2018, 91, 473–480. [Google Scholar] [CrossRef]
- Cowan, D.A.; Brown, J.H. Effect of Turbulence on Limiting Current in Electrodialysis Cells. Ind. Eng. Chem. 1959, 51, 1445–1448. [Google Scholar] [CrossRef]
- Lindemann, M.; Widhalm, B.; Kuncinger, T.; Srebotnik, E. An integrated process for combined microbial VOC reduction and effluent valorization in the wood processing industry. Bioresour. Technol. Rep. 2020, 11, 100471. [Google Scholar] [CrossRef]
- Chaabouni, A.; Guesmi, F.; Louati, I.; Hannachi, C.; Hamrouni, B. Temperature effect on ion exchange equilibrium between CMX membrane and electrolyte solutions. Water Reuse Desalin. 2015, 4, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Rakicka, M.; Rukowicz, B.; Rywińska, A.; Lazar, Z.; Rymowicz, W. Technology of efficient continuous erythritol production from glycerol. J. Clean. Prod. 2016, 139, 905–913. [Google Scholar] [CrossRef]
- Nichka, V.S.; Geoffroy, T.R.; Nikonenko, V.; Bazinet, L. Impacts of flow rate and pulsed electric field current mode on protein fouling formation during bipolar membrane electroacidification of skim milk. Membranes 2020, 10, 200. [Google Scholar] [CrossRef]
- Ruiz, B.; Sistat, P.; Huguet, P.; Pourcelly, G.; Araya-Farias, M.; Bazinet, L. Application of relaxation periods during electrodialysis of a casein solution: Impact on anion-exchange membrane fouling. J. Memb. Sci. 2007, 287, 41–50. [Google Scholar] [CrossRef]
- Gohil, G.S.; Nagarale, R.K.; Shahi, V.K.; Rangarajan, R. Micellar-enhanced electrodialysis: Influence of surfactants on the transport properties of ion-exchange membranes. Sep. Purif. Technol. 2005, 47, 1–9. [Google Scholar] [CrossRef]
- Der Pan, W.; Chiang, B.; Chiang, P. Desalination of the Spent Brine from Pickled Prunes Processing by Electrodialysis. J. Food Sci. 1988, 53, 134–137. [Google Scholar] [CrossRef]
- Luiz, A.; McClure, D.D.; Lim, K.; Leslie, G.; Coster, H.G.L.; Barton, G.W.; Kavanagh, J.M. Potential upgrading of bio-refinery streams by electrodialysis. Desalination 2017, 415, 20–28. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Mohammadi, T. Treatment of sea water using electrodialysis: Current efficiency evaluation. Desalination 2009, 249, 279–285. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Huang, S.; Wang, J.; Zhang, X. Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: A theoretical and experimental study. Desalination 2021, 498, 114793. [Google Scholar] [CrossRef]
- Luo, G.S.; Pan, S.; Liu, J.G. Use of the electrodialysis process to concentrate a formic acid solution. Desalination 2002, 150, 227–234. [Google Scholar] [CrossRef]
- Doornbusch, G.; Swart, H.; Tedesco, M.; Post, J.; Borneman, Z.; Nijmeijer, K. Current utilization in electrodialysis: Electrode segmentation as alternative for multistaging. Desalination 2020, 480, 114243. [Google Scholar] [CrossRef]
- Han, L.; Galier, S.; Roux-de Balmann, H. Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination 2015, 373, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Roghmans, F.; Wessling, M. Ion mobility and partition determine the counter-ion selectivity of ion exchange membranes. J. Memb. Sci. 2020, 597, 117645. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Memb. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Sata, T.; Sata, T.; Yang, W. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J. Memb. Sci. 2002, 206, 31–60. [Google Scholar] [CrossRef]
- Sata, T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—Effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J. Memb. Sci. 2000, 167, 1–31. [Google Scholar] [CrossRef]
- Stenina, I.; Golubenko, D.; Nikonenko, V.; Yaroslavtsev, A. Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement. Int. J. Mol. Sci. 2020, 21, 5517. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Bazinet, L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef]
- Kooistra, W. Characterization of ion exchange membranes by polarization curves. Desalination 1967, 2, 139–147. [Google Scholar] [CrossRef]
Compound | Molecular Formula | [g/L] | Sample | ||
---|---|---|---|---|---|
S | SP | SCB | |||
Ammonium sulphate | (NH4)2 SO4 | 1.4 | x | x | x |
Magnesium sulphate heptahydrate | MgSO4 7H2O | 0.5 | x | x | x |
Potassium dihydrogen phosphate | KH2PO4 | 4.2 | x | x | x |
Ferrous sulphate heptahydrate | FeSO4 7H2O | 0.0025 | x | x | x |
Manganese sulphate monohydrate | MnSO4 H2O | 0.00085 | x | x | x |
Zinc sulphate heptahydrate | ZnSO4 7H2O | 0.0007 | x | x | x |
Calcium chloride dihydrate | CaCl2 2H2O | 0.001 | x | x | x |
Sodium chloride * | NaCl | 0.8 | x | x | x |
Tween 80 | C64H124O26 | 0.25 | x | ||
Peptone | n.a. | 0.05 | x | ||
Erythritol | C4H10O4 | 5 | x | x | |
Glycerol | C3H8O3 | 5 | x | x | |
Glucose | C6H12O6 | 2 | x | x |
Ion | S * [mg/L] | SP [mg/L] | SCB [mg/L] |
---|---|---|---|
Cl− | 426.9 | 399.6 ± 17.6 | 431.5 ± 8.2 |
SO42− | 1162.2 | 1088.6 ± 29.8 | 1165.7 ± 11.0 |
H2PO4− | 1281.7 | 1216.8 ± 47.7 | 1236.5 ± 7.8 |
Na+ | 272.1 | 279.4 ± 31.2 | 289.6 ± 1.5 |
NH4+ | 230.4 | 221.8 ± 15.0 | 248.9 ± 34.5 |
K+ | 515.4 | 516.9 ± 75.6 | 588.1 ± 13.6 |
Mg2+ | 67.2 | 71.6 ± 15.3 | 69.1 ± 2.6 |
Diluted Fraction | |||||||
---|---|---|---|---|---|---|---|
Parameter | Units | S | SP | SCB | |||
Initial | Final | Initial | Final | Initial | Final | ||
pH | 4.59–4.60 | 3.92–4.07 | 4.59–4.63 | 4.29–4.30 | 4.53–4.55 | 4.23–4.42 | |
Temperature | °C | 21.7 ± 2.9 | 20.2 ± 0.5 | 21.2 ± 1.1 | 20.8 ± 0.5 | 20.8 ± 3.8 | 20.2 ± 0.2 |
Conductivity | mS/cm | 5.57 ±0.03 | 0.28 ± 0.00 | 5.41 ± 0.05 | 0.28 ± 0.00 | 5.43 ± 0.03 | 0.28 ± 0.00 |
Concentrated Fraction | |||||||
Parameter | Units | S | SP | SCB | |||
Initial | Final | Initial | Final | Initial | Final | ||
pH | 4.59–4.60 | 4.40–4.59 | 4.56–4.64 | 4.39–4.52 | 4.58–4.59 | 4.48–4.72 | |
Temperature | °C | 21.7 ± 2.9 | 20.3 ± 1.1 | 22.2 ± 1.1 | 20.8 ± 0.5 | 24.2 ± 1.4 | 19.8 ± 0.5 |
Conductivity | mS/cm | 5.57 ± 0.03 | 11.79 ± 0.51 | 5.57 ± 0.02 | 10.02 ± 0.02 | 5.54 ± 0.01 | 11.2 ± 0.06 |
Sample | Solution | ||
---|---|---|---|
S [%] | SP [%] | SCB [%] | |
Cl− | 99.3 ± 0.1 | 99.0 ± 0.3 | 99.0 ± 0.3 |
SO42− | 98.6 ± 0.3 | 95.4 ± 0.6 | 97.3 ± 0.0 |
H2PO4− | 86.6 ± 0.8 | 91.0 ± 0.6 | 93.9 ± 0.7 |
Na+ | 86.3 ± 1.5 | 88.4 ± 3.2 | 91.9 ± 1.0 |
NH4+ | 92.6 ± 1.5 | 91.8 ± 0.8 | 94.5 ± 1.6 |
K+ | 94.6 ± 0.1 | 94.5 ± 0.6 | 94.9 ± 0.6 |
Mg2+ | 92.9 ± 0.6 | 93.7± 0.5 | 91.7 ± 0.7 |
Total av. | 93% | 93% | 96% |
Ion | S | SP | SCB | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BKP Time * | Reduction in Removal Rate ** | Removed at BKP Time *** | BKP Time * | Reduction in Removal Rate ** | Removed at BKP Time *** | BKP Time * | Reduction in Removal Rate ** | Removed at BKP Time *** | ||||||
[min] | % | % | [min] | % | % | [min] | % | % | ||||||
K+ | 40 | 77.8 | 78.5 | 55 | 78.1 | 86.5 | 45 | 84.0 | 83.3 | |||||
NH4+ | 40 | 69.0 | 71.7 | 55 | 62.4 | 79.6 | 45 | 78.0 | 79.2 | |||||
Na+ | 40 | 53.5 | 60.8 | 40 | 61.6 | 64.7 | 45 | 64.4 | 69.5 | |||||
Mg2+ | 40 | 61.8 | 66.3 | 65 | 80.3 | 90.2 | 45 | 71.5 | 74.3 | |||||
Cl− | 25 | 90.3 | 86.4 | 25 | 92.8 | 88.7 | 25 | 92.6 | 85.8 | |||||
SO42− | 40 | 81.8 | 85.1 | 55 | 79.0 | 87.9 | 45 | 78.5 | 82.5 | |||||
H2PO4− | 40 | 52.3 | 58.3 | 55 | 40.9 | 74.4 | 55 | 74.3 | 82.8 | |||||
Average ions-removal rate before and after BKP [%removal/min] | ||||||||||||||
K+ | NH4+ | Na+ | Mg2+ | Cl− | SO42− | H2PO4− | ||||||||
t < BKP | t > BKP | t < BKP | t > BKP | t < BKP | t > BKP | t < BKP | t > BKP | t < BKP | t > BKP | t < BKP | t > BKP | t < BKP | t > BKP | |
S | 2.0 | 0.4 | 1.8 | 0.5 | 1.5 | 0.7 | 1.6 | 0.6 | 3.5 | 0.3 | 2.1 | 0.4 | 1.5 | 0.7 |
SP | 1.6 | 0.3 | 1.5 | 0.4 | 1.6 | 0.6 | 1.4 | 0.3 | 3.5 | 0.3 | 1.6 | 0.3 | 1.3 | 0.7 |
SCB | 1.9 | 0.3 | 1.5 | 0.4 | 1.5 | 0.5 | 1.7 | 0.5 | 4.3 | 0.3 | 1.8 | 0.4 | 1.5 | 0.4 |
Treated Sample | Initial Concentration [g/L] | Energy Application Approach | Removal/Concentration | Current Efficiency | Ref. |
---|---|---|---|---|---|
Saline solution | 10 | Constant voltage 6 V | 3.92% | 47.54% | [68] |
Formic acid solution | 276–414 | Constant current density | 140% * | 100–220% | [70] |
Saline solution | 29.8 | Non-uniform current 5.75 A (total) | 92.7% | 94% | [71] |
Brine from pickled prunes | 100 | Constant current density <10 mA/cm2 | 87.6% | 90–95% | [66] |
Lignocellulosic effluent 1,2 | 14.05 | Constant current density 39.1 mA/m2 | ~96% | ~95% | [67] |
Sugarcane juice 2 | 2.03 | Constant current density 17.2 mA/m2 | >90% | ~75% | [67] |
Molasses 2 | 81.2 | Constant current density 101.6 mA/m2 | ~60% | ~104% | [67] |
S | 3.90 | Stepwise voltage 10, 9, 7 and 6 V | 93% | 54 ± 3% | This work |
SP | 3.80 | Stepwise voltage 10, 9, 7 and 6 V | 93% | 49 ± 4% | This work |
SCB | 4.00 | Stepwise voltage 10, 9, 7 and 6 V | 96% | 53 ± 2% | This work |
Stage | Compound | ||||||
---|---|---|---|---|---|---|---|
Na+ | NH4+ | K+ | Mg2+ | Cl− | SO42− | H2PO4− | |
S | 2.4 ± 0.1 | 2.1 ± 0.1 | 2.3 ± 0.1 | 2.7 ± 0.0 | 1.9 ± 0.2 | 1.9 ± 0.1 | 1.5 ± 0.1 |
SP | 2.5 ± 0.3 | 1.8 ± 0.2 | 2.0 ± 0.3 | 1.4 ± 0.1 | 2.6 ± 0.6 | 2.3 ± 0.3 | 2.3 ± 0.4 |
SCB | 2.1 ± 0.2 | 1.8 ± 0.3 | 2.0 ± 0.5 | 1.5 ± 0.0 | 2.4 ± 0.7 | 2.4 ± 0.6 | 2.1 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daza-Serna, L.; Knežević, K.; Kreuzinger, N.; Mach-Aigner, A.R.; Mach, R.L.; Krampe, J.; Friedl, A. Recovery of Salts from Synthetic Erythritol Culture Broth via Electrodialysis: An Alternative Strategy from the Bin to the Loop. Sustainability 2022, 14, 734. https://doi.org/10.3390/su14020734
Daza-Serna L, Knežević K, Kreuzinger N, Mach-Aigner AR, Mach RL, Krampe J, Friedl A. Recovery of Salts from Synthetic Erythritol Culture Broth via Electrodialysis: An Alternative Strategy from the Bin to the Loop. Sustainability. 2022; 14(2):734. https://doi.org/10.3390/su14020734
Chicago/Turabian StyleDaza-Serna, Laura, Katarina Knežević, Norbert Kreuzinger, Astrid Rosa Mach-Aigner, Robert Ludwig Mach, Jörg Krampe, and Anton Friedl. 2022. "Recovery of Salts from Synthetic Erythritol Culture Broth via Electrodialysis: An Alternative Strategy from the Bin to the Loop" Sustainability 14, no. 2: 734. https://doi.org/10.3390/su14020734
APA StyleDaza-Serna, L., Knežević, K., Kreuzinger, N., Mach-Aigner, A. R., Mach, R. L., Krampe, J., & Friedl, A. (2022). Recovery of Salts from Synthetic Erythritol Culture Broth via Electrodialysis: An Alternative Strategy from the Bin to the Loop. Sustainability, 14(2), 734. https://doi.org/10.3390/su14020734