eDNA Metabarcoding Analysis of the Composition and Spatial Patterns of Fish Communities in the Sanbanxi Reservoir, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Scheme Design
2.2. DNA Extraction and PCR Amplification
2.3. Data Analysis
2.3.1. DNA Analysis and Species Identification
2.3.2. Statistical Analysis
Alpha Diversity Analysis
Beta Diversity Analysis
3. Results
3.1. Species Composition
3.2. Spatial Patterns of the Community Structure Composition and Species Diversity Analysis
3.3. Beta Diversity Analysis
4. Discussion
4.1. Changes in Fish Composition
4.2. The Associated Effects of eDNA Monitoring
4.3. Changes in Fish Community Composition and Structure Caused by the Construction of the Reservoir
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levy-Booth, D.J.; Campbell, R.G.; Gulden, R.H.; Hart, M.M.; Powell, J.R. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 2007, 39, 2977–2991. [Google Scholar] [CrossRef]
- Pietramellara, G.; Ascher, J.; Borgogni, F.; Borgogni, F.; Ceccherini, M.T. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 2009, 45, 219–235. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [Green Version]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Baird, D.J.; Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 2012, 21, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Jerde, C.L.; Mahon, A.R.; Chadderton, W.L.; Lodge, D.M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 2011, 4, 150–157. [Google Scholar] [CrossRef]
- Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Trituruscristatus). Biol. Conserv. 2015, 183, 19–28. [Google Scholar] [CrossRef]
- Sigsgaard, E.E.; Carl, H.; Møller, P.R.; Thomsen, P.F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 2015, 183, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Takahara, T.; Minamoto, T.; Doi, H. Using environmental DNA to estimate the distribution of an invasivefish species in ponds. PLoS ONE 2013, 8, e56584. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Matsuhashi, S.; Doi, H.; Yamamoto, S.; Minamoto, T. Use of en-vironmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshw. Sci. 2016, 35, 748–754. [Google Scholar] [CrossRef]
- Laramie, M.B.; Pilliod, D.S.; Goldberg, C.S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Conserv. 2015, 183, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Wiuf, C.; Rasmussen, M.; Gilbert, M.T.P.; Orlando, L.; Willerslev, E. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 2012, 21, 2565–2573. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, T.M.; McKelvey, K.S.; Young, M.K.; Jane, S.F.; Lowe, W.H.; Whiteley, A.R.; Schwartz, M.K. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS ONE 2013, 8, e59520. [Google Scholar] [CrossRef] [Green Version]
- Lodge, D.M.; Turner, C.R.; Jerde, C.L.; Barnes, M.A.; Chadderton, L.; Egan, S.P.; Feder, J.L.; Mahon, A.R.; Pfrender, M.E. Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 2012, 21, 2555–2558. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.P.; O’Donnell, J.L.; Lowell, N.C.; Shelton, A.O.; Samhouri, J.F.; Hennessey, S.M.; Feist, B.E.; Williams, G.D. Genetic signatures of ecological diversity along an urbanization gradient. PeerJ 2016, 4, e2444. [Google Scholar] [CrossRef] [Green Version]
- Port, J.A.; O’Donnell, J.L.; Romero-Maraccini, O.C.; Leary, P.R.; Litvin, S.Y.; Nickols, K.J.; Yamahara, K.M.; Kelly, R.P. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 2016, 25, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillotson, M.D.; Kelly, R.P.; Duda, J.J.; Hoy, M.; Kralj, J.; Quinn, T.P. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Pfleger, M.O.; Rider, S.J.; Johnston, C.E.; Janosik, A.M. Saving the doomed: Using eDNA to aid in detection of rare sturgeon for conservation (Acipenseridae). Glob. Ecol. Conserv. 2016, 8, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.B.; Tang, H.Y.; Qiao, H.; Yang, Z.; Chen, J.S. A study on the current status of fish resources in the lower reaches of the Jinsha River. J. Water Ecol. 2013, 34, 44–49. [Google Scholar]
- Allan, J.D.; Flecker, A.S. Biodiversity conservation in running waters. BioScience 1993, 43, 32–43. [Google Scholar] [CrossRef]
- Marchant, R.; Hehir, G. The use of AUSRIVAS predictive models to assess the response of lotic macroinvertebrates to dams in south-east Australia. Freshw. Biol. 2002, 47, 1033–1050. [Google Scholar] [CrossRef]
- March, J.G.; Benstead, J.P.; Pringle, C.M.; Scatena, F.N. Damming tropical island streams: Problems, solutions, and alternatives. BioScience 2003, 53, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Li, W.; Castello, L.; Murphy, B.R.; Xie, S.G. Potential effects of dam cascade on fish: Lessons from the Yangtze River. Rev. Fish Biol. Fish. 2015, 25, 569–585. [Google Scholar] [CrossRef]
- Glowacki, L.B.; Penczak, T. Drivers of fish diversity, homogenization/differentiation and species range expansions at the watershed scale. Divers. Distrib. 2013, 19, 907–918. [Google Scholar] [CrossRef]
- Cowx, I.G.; Noble, R.A.; Nunn, A.D.; Bolland, J.; Walton, S.; Peirson, G.; Harvey, J.P. Flow requirements of non-salmonids. Fish. Manag. Ecol. 2012, 19, 548–556. [Google Scholar] [CrossRef]
- Rahel, F.J. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 2002, 33, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Clavero, M.; Blanco-Garrido, F.; Prenda, J. Fish fauna in Iberian Mediterranean River basins: Biodiversity, introduced species and damming impacts. Aquat. Conserv. Mar. Freshw. Ecosyst. 2004, 14, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Nunn, A.D.; Harvey, J.P.; Britton, J.R.; Frear, P.A.; Cowx, I.G. Fish, climate and the Gulf Stream: The influence of abiotic factors on the recruitment success of cyprinid fishes in lowland rivers. Freshw. Biol. 2007, 52, 1576–1586. [Google Scholar] [CrossRef]
- Young, P.S.; Cech, J.J.; Thompson, L.C. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs. Rev. Fish Biol. Fish. 2011, 21, 713–731. [Google Scholar] [CrossRef]
- Agostinho, A.A.; Gomes, L.C.; Veríssimo, S.; Okada, E.K. Flood regime, dam regulation and fish in the Upper Paraná River: Effects on assemblage attributes, reproduction and recruitment. Rev. Fish Biol. Fish. 2004, 14, 11–19. [Google Scholar] [CrossRef]
- He, W.; Lian, J.; Zhang, J.; Yu, X.; Chen, S. Impact of intra-annual runoff uniformity and global warming on the thermal regime of a large reservoir. Sci. Total Environ. 2019, 658, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Lian, J.; Yao, Y.; Wu, M.; Ma, C. Modeling the effect of temperature-control curtain on the thermal structure in a deep stratified reservoir. J. Environ. Manag. 2017, 202, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Gu, Y.H.; Li, D.H.; Wang, C.L. Analysis of fish resources in the reservoir area of Sanbanxi Power Station of Qingshui River. J. Guizhou Norm. Univ. (Nat. Sci. Ed.) 1998, 3, 5–12. [Google Scholar]
- Gao, X.; Zeng, Y.; Wang, J.; Liu, H. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir. Environ. Biol. Fishes 2010, 87, 163–173. [Google Scholar] [CrossRef]
- Santos, R.M.; Fernandes, L.F.; Cortes, R.M.; Varandas, S.G. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total Environ. 2017, 601–602, 1108–1118. [Google Scholar] [CrossRef]
- Perera, H.A.C.C.; Li, Z.J.; Silva, S.S.; Zhang, T.L.; Yuan, J.; Ye, S.W.; Xia, Y.G.; Liu, J.S. Effect of the distance from the dam on river fish community structure and compositional trends, with reference to the Three Gorges Dam, Yangtze River, China. Acta Hydrobiol. Sin. 2014, 38, 438–445. [Google Scholar]
- Deiner, K.; Walser, J.; Machler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying effects of UV-B, temperature, and pH on eDNA degrada tion in aquatic microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Turner, C.R.; Barnes, M.A.; Xu, C.C.Y.; Jones, S.E.; Christopher, L.J.; Lodge, D.M. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 2014, 5, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 2017, 12, e0179251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejean, T.; Valentini, A.; Miquel, C.; Taberlet, P.; Bellemain, E.; Miaud, C. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrogLithobates catesbeianus. J. Appl. Ecol. 2012, 49, 953–959. [Google Scholar] [CrossRef]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Eichmiller, J.J.; Bajer, P.G.; Sorensen, P.W. The relationship between the distribution of common carp and their environ mental DNA in a small lake. PLoS ONE 2014, 9, e112611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, H.L.; Noble, T.H.; Saunders, R.J.; Robson, S.K.; Burrows, D.W.; Jerry, D.R. Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol. Ecol. Resour. 2016, 16, 922–932. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, Y.; Wang, D.; Wu, J.; Ni, L. Assessing water temperature variations and impacts on fish spawning downstream of Three Gorges dam. J. Hydroelectr. Eng. 2018, 37, 48–55. [Google Scholar]
- Dudgeon, D. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Ann. Rev. Ecol. Syst. 2000, 31, 239–263. [Google Scholar] [CrossRef]
- Dai, Y.G.; Chen, Y.F. Fish fauna and its ecological types of Qingshui River in GuizhouProvince, Southwest China. Chin. J. Ecol. 2007, 26, 682–687. [Google Scholar]
- Xie, G.; Chen, K.C.; Hu, Y.C.; Deng, G.C.; Li, C.W. Relationship between embryonic development of Spinibarbus denticulatus and water temperature and salinity. J. Dalian Fish. Univ. 2003, 18, 95–98. [Google Scholar]
Taxon | Habitat Type | Documentary Records (before Impounding) | Detected on eDNA |
---|---|---|---|
Cypriniformes | |||
Cobitidae | |||
Leptobotia guilinensis | Flowing and benthic fish | + | |
Leptobotia tchangi | Flowing and benthic fish | + | |
Parabotia banarescui | Flowing and benthic fish | + | |
Parabotia maculosus | Flowing and benthic fish | + | |
Schistura fasciolata | Flowing and benthic fish | + | |
Cobitis sinensis | Flowing and benthic fish | + | |
Misgurnus anguillicaudatus | still water | + | + |
Cyprinidae | |||
Zacco platypus | Flowing fish | + | |
Opsariichthys bidens | streaming flow | + | |
Pseudolaubuca sinensis | streaming flow | + | |
Rectoris luxiensis | streaming flow | + | + |
Sinilabeo tungting | rapid flow | + | |
Acheilognathus meridianu | streaming flow | + | + |
Rhodeus ocellatus | streaming flow or still water | + | + |
Microphysogobio kiatingensis | streaming flow | + | + |
Microphysogobio fukiensis | streaming flow | + | + |
Gobiobotia meridionalis | streaming flow | + | |
Pseudorasbora parva | streaming flow | + | |
Sarcocheilichthys kiansiensis | streaming flow | + | |
Cyprinus carpio | streaming flow or still water | + | + |
Carassius auratus | streaming flow or still water | + | + |
Ctenopharyngodon idellus | streaming flow or still water | + | + |
Abbottina rivularis | streaming flow | + | |
Squalidus argentatus | streaming flow or still water | + | + |
Squalidus wolterstorffi | streaming flow | + | |
Hemibarbusmaculatus | streaming flow or still water | + | + |
Hemibarbus labeo | rapid flow | + | |
Saurogobio dabryi | streaming flow | + | |
Platysmacheilus exiguus | streaming flow | + | |
Sinibrama macrops | streaming flow or still water | + | + |
Sinibrama taeniatus | streaming flow or still water | + | + |
Hemicculter Leuciclus | streaming flow or still water | + | + |
Pseudohemiculter hainanensis | streaming flow or still water | + | + |
Spinibarbus denticulatus | streaming flow | + | + |
Acrossocheilus monticola | streaming flow | + | + |
Onychostoma lini | streaming flow | + | + |
Onychostoma rara | streaming flow | + | + |
Folifer brevifilis | rapid flow | + | |
Distoechodon tumirostris | streaming flow | + | |
Xenocypris argentea | streaming flow | + | + |
Megalobrama terminalis | streaming flow or still water | + | |
Megalobrama amblycephala | streaming flow or still water | + | |
Hypophthalmichthys molitrix | streaming flow or still water | + | + |
Hypophthalmichthys nobilis | streaming flow or still water | + | + |
Procypris rabaudi | streaming flow | + | |
Cirrhinus mrigala | + | ||
Mylopharyngodon piceus | streaming flow | + | + |
Chanodichthys mongolicus | streaming flow | + | |
Culter alburnus | streaming flow or still water | + | + |
Squaliobarbus curriculus | streaming flow | + | |
Homalopteridae | |||
Sinogastromuzon hisashiensis | rapid flow | + | |
Lepturichthys fimbriata | rapid flow | + | |
Hemimyzon macroptera | rapid flow | + | |
Vanmanenia pingchowensis | rapid flow | + | |
Catostomidae | |||
Myxocyprinus asiaticus | streaming flow | + | |
Siluriformes | + | ||
Siluridae | + | ||
Silurus asotus | streaming flow or still water | + | + |
Silurus meriordinalis | streaming flow or still water | + | + |
Bagridae | |||
Pelteobagrus fulvidraco | streaming flow | + | + |
Pseudobagrus adiposalis | streaming flow | + | + |
Pseudobagrus truncatsu | streaming flow | + | + |
Leiocassis crassilabris | streaming flow | + | |
Leiocassis longirostris | streaming flow | + | + |
Hemibagrusmacropterus | streaming flow | + | + |
Hemibagrus guttatus | streaming flow | + | |
Sisoridae | |||
Glyptothorax fukiensis | rapid flow | + | |
Ictaluridae | |||
Ictalurus punctatus | + | ||
Perciformes | |||
Serranidae | |||
Siniperca scherzeri | streaming flow | + | + |
Siniperca kneri | streaming flow | + | + |
Siniperca undulata | rapid flow | + | |
Siniperca obscura | rapid flow | + | |
Coreosiniperca roulei | rapid flow | + | |
Channidae | + | ||
Channa asiatica | streaming flow or still water | + | + |
Eleotridae | |||
Odontobutis obscurus | streaming flow or still water | + | |
Gobiidae | |||
Rhinogobius giurinus | streaming flow or still water | + | + |
Cichlidae | |||
Oreochromis niloticus | + | ||
Centrarchidae | |||
Micropterus salmoides | + | ||
Synbranchiformes | |||
Synbranchidae | |||
Monopterus albus | cavernicolous | + | |
Cyprinodontiformes | |||
Poeciliidae | |||
Gambusia affinis | + |
Sample | Chao1 | Simpson | ACE | Shannon | Coverage |
---|---|---|---|---|---|
sbx01 | 779.6515 | 0.1204 | 765.8161 | 5.3154 | 0.999286599 |
sbx02 | 773.0175 | 0.1102 | 747.1849 | 4.8642 | 0.999147635 |
sbx03 | 681.6493 | 0.0635 | 685.4279 | 5.2386 | 0.998604079 |
sbx04 | 760.8 | 0.2033 | 763.4724 | 4.5517 | 0.999425456 |
sbx05 | 769.5151 | 0.1315 | 753.7876 | 5.308 | 0.998973452 |
sbx06 | 764.7391 | 0.202 | 753.8015 | 4.5841 | 0.999160983 |
sbx07 | 756.1587 | 0.2403 | 755.117 | 4.5889 | 0.999725285 |
sbx08 | 736.4705 | 0.1865 | 725.0926 | 4.7334 | 0.999213728 |
sbx09 | 824.0857 | 0.172 | 811.7644 | 5.0211 | 0.999317919 |
sbx10 | 729.2419 | 0.212 | 723.4629 | 4.4205 | 0.999445499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yang, H.; Zhong, X.; Zeng, P.; Zhou, X.; Zeng, S.; Dong, X.; Min, W.; Huang, F. eDNA Metabarcoding Analysis of the Composition and Spatial Patterns of Fish Communities in the Sanbanxi Reservoir, China. Sustainability 2022, 14, 12966. https://doi.org/10.3390/su142012966
Ma X, Yang H, Zhong X, Zeng P, Zhou X, Zeng S, Dong X, Min W, Huang F. eDNA Metabarcoding Analysis of the Composition and Spatial Patterns of Fish Communities in the Sanbanxi Reservoir, China. Sustainability. 2022; 14(20):12966. https://doi.org/10.3390/su142012966
Chicago/Turabian StyleMa, Xiuhui, Hanwei Yang, Xue Zhong, Peng Zeng, Xianjun Zhou, Sheng Zeng, Xianghong Dong, Wenwu Min, and Fujiang Huang. 2022. "eDNA Metabarcoding Analysis of the Composition and Spatial Patterns of Fish Communities in the Sanbanxi Reservoir, China" Sustainability 14, no. 20: 12966. https://doi.org/10.3390/su142012966
APA StyleMa, X., Yang, H., Zhong, X., Zeng, P., Zhou, X., Zeng, S., Dong, X., Min, W., & Huang, F. (2022). eDNA Metabarcoding Analysis of the Composition and Spatial Patterns of Fish Communities in the Sanbanxi Reservoir, China. Sustainability, 14(20), 12966. https://doi.org/10.3390/su142012966