Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Super-Efficiency DEA–SBM Model
3.2.2. The Malmquist Total Factor Productivity Index Model
4. Empirical Analysis
4.1. Descriptive Statistics
4.2. Pearson Correlation Analysis
4.3. Evaluation of Container Terminals’ Operational Efficiency
4.4. Malmquist Total Factor Productivity Index
5. Conclusions
5.1. Research Summary
5.2. Discussion
5.3. Policy Recommendations
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.F.; Wang, M.; Wang, L.J. Dynamic Efficiency Evaluation of Yangtze River Delta Port Group Based on Four-Stage DEA-Malmquist. Stat. Decis. 2022, 38, 184–188. [Google Scholar]
- Liu, C.C. Evaluating the operational efficiency of major ports in the Asia-Pacific region using data envelopment analysis. Appl. Econ. 2008, 40, 1737–1743. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. Review of Maritime Transport; United Nations: New York, NY, USA; Geneva, Switzerland, 2018. [Google Scholar]
- Lee, C.Y.; Song, D.P. Ocean container transport in global supply chains: Overview and research opportunities. Transp. Res. Part B Methodol. 2017, 95, 442–474. [Google Scholar] [CrossRef]
- Waterway Transport Market Development in 2021 and Market Outlook in 2022. Ministry of Transport of the People’s Republic of China Home Page. Available online: http://www.gov.cn/xinwen/2022-03/17/content_5679521.html (accessed on 17 March 2022).
- Global Port Development Report. Shanghai International Shipping Institute Home Page. 2021. Available online: http://www.sisi-smu.org/ (accessed on 14 April 2022).
- 2021 China’s Port Cargo Throughput Report. Ministry of Transport of the People’s Republic of China Home Page. Available online: http://www.yueyang.gov.cn/bmdt/62417/content_1906971.html (accessed on 28 February 2022).
- Liu, M.; Wang, X. Evaluation of Operation Efficiency Container Port in Yangtze River Based on DEA-Tobit. Math. Pract. Theory 2019, 49, 36–46. [Google Scholar]
- Wu, L.; Lan, J. Efficiency Evaluation of China’s Coastal Container Ports. Math. Pract. Theory 2021, 51, 127–141. [Google Scholar]
- Min, H.; Park, B.I. Evaluating the inter-temporal efficiency trends of international container terminals using data envelopment analysis. Int. J. Integr. Supply Manag. 2005, 1, 258–277. [Google Scholar] [CrossRef]
- Wang, D.; Hao, Z. Operation Efficiency Evaluation of Liaoning Container Terminals Based on Super efficiency DEA. Logist. Sci-Tech. 2013, 36, 8–11. [Google Scholar]
- Bichou, K. A two-stage supply chain DEA model for measuring container-terminal efficiency. Int. J. Shipp. Transp. Logist. 2011, 3, 6–26. [Google Scholar] [CrossRef]
- Mennis, E.; Platis, A.; Lagoudis, I.; Nikitakos, N. Improving port container terminal efficiency with the use of Markov theory. Marit. Econ. Logist. 2008, 10, 243–257. [Google Scholar] [CrossRef]
- Lu, B.; Park, N.K.; Huo, Y. The evaluation of operational efficiency of the world’s leading container seaports. J. Coast. Res. 2015, 73, 248–254. [Google Scholar] [CrossRef]
- Carine, A.C.F. Analyzing the Operational Efficiency of Container Ports in Sub-Saharan Africa. Open J. Soc. Sci. 2015, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.M.; Goldberg, D.J.; Cardoso, J.S. Benchmarking operational efficiency of port terminals using the OEE indicator. Marit. Econ. Logist. 2017, 19, 504–517. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, J.; Li, J.; Wang, H.; Gajpal, Y. Evaluating the environmental performance and operational efficiency of container ports: An application to the maritime silk road. Int. J. Environ. Res. Public Health 2019, 16, 2226. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, X.; Guo, J. Port efficiency and its influencing factors in the context of pilot free trade zones. Transp. Policy 2021, 105, 67–79. [Google Scholar] [CrossRef]
- Yang, H.; Lin, K.; Kennedy, O.R.; Ruth, B. Sea-port operational efficiency: An evaluation of five Asian ports using stochastic frontier production function model. J. Serv. Sci. Manag. 2011, 4, 391. [Google Scholar] [CrossRef] [Green Version]
- Sarkis, J. An analysis of the operational efficiency of major airports in the United States. J. Oper. Manag. 2000, 18, 335–351. [Google Scholar] [CrossRef]
- Wanke, P.F.; Barros, C.P. Public-private partnerships and scale efficiency in Brazilian ports: Evidence from two-stage DEA analysis. Socio-Econ. Plan. Sci. 2015, 51, 13–22. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Jo, G.S.; Wang, Y.; Yeo, G.T. The relative efficiency of container terminals in small and medium-sized ports in China. Asian J. Shipp. Logist. 2015, 31, 231–251. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Alemán, A.; Sarriera, J.M.; Serebrisky, T.; Trujillo, L. When it comes to container port efficiency, are all developing regions equal? Transp. Res. Part A Policy Pract. 2016, 86, 56–77. [Google Scholar] [CrossRef] [Green Version]
- Kutin, N.; Nguyen, T.T.; Vallée, T. Relative efficiencies of ASEAN container ports based on data envelopment analysis. Asian J. Shipp. Logist. 2017, 33, 67–77. [Google Scholar] [CrossRef]
- Ha, M.H.; Yang, Z.; Notteboom, T.; Ng, A.K.; Heo, M.-W. Revisiting port performance measurement: A hybrid multi-stakeholder framework for the modelling of port performance indicators. Transp. Res. Part E Logist. Transp. Rev. 2017, 103, 1–16. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018–2021.
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Wei, Q. Data envelopment analysis. Chin. Sci. Bull. 2001, 46, 1321–1332. [Google Scholar] [CrossRef]
- Song, M.; Zhang, L.; An, Q.; Wang, Z.; Li, Z. Statistical analysis and combination forecasting of environmental efficiency and its influential factors since China entered the WTO: 2002–2010–2012. J. Clean. Prod. 2013, 42, 42–51. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, J.F. Energy efficiency analysis on Chinese industrial sectors: An improved Super-SBM model with undesirable outputs. J. Clean. Prod. 2014, 65, 97–107. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Lee, C. Malmquist productivity analysis using DEA frontier in Stata. Stata Users Group 2011, 21, 1–9. [Google Scholar]
- Färe, R.; Grosskopf, S. Malmquist productivity indexes and Fisher ideal indexes. Econ. J. 1992, 102, 158–160. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trab. De Estadística 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Bayesian Pearson correlation analysis. In Modern Bayesian Statistics in Clinical Research; Springer: Cham, Switzerland, 2018; pp. 111–118. [Google Scholar]
- Cook, W.D.; Harrison, J.; Imanirad, R.; Rouse, P.; Zhu, J. Data envelopment analysis with non-homogeneous DMUs. In Data Envelopment Analysis; Springer: Boston, MA, USA, 2015; pp. 309–340. [Google Scholar]
- Ye, S.L.; Jiang, Z.R.; Qi, X.H. Spatio-temporal characteristics and influencing factors of container terminals efficiency in the Yangtze River Delta. Geogr. Res. 2020, 39, 1782–1793. [Google Scholar]
- Liu, B.L.; Liu, W.L.; Cheng, C.P. The efficiency of container terminals in mainland China. An application of DEA approach. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–17 October 2008; pp. 1–10. [Google Scholar]
Ref. | Research Subjects | Mode | Method |
---|---|---|---|
Liu [2] | Terminal operational efficiency | Asia’s top 10 ports | DEA–CCR DEA–BCC |
Lu et al. [14] | Container terminal operational efficiency | World’s leading container seaports | DEA–CCR DEA–BCC |
Carine [15] | Container terminal operational efficiency | Container ports in sub-Saharan Africa | DEA–CCR DEA–BCC Super DEA |
Dong et al. [17] | Container terminal operational efficiency | Container ports along the Maritime Silk Road (MSR) | DEA–SBM |
Liu et al. [18] | Terminal operational efficiency | China’s six new free trade zones | DEA–SBM |
Wanke et al. [21] | Terminal operational efficiency | Public-private ports in Brazil | DEA–CCR |
Ding et al. [22] | Container terminal operational efficiency | 21 coastal small and medium-sized port container terminals in China | DEA–CCR DEA–BCC DEA–Malmquist |
Suárez-Alemán et al. [23] | Container terminal efficiency | Container terminals in developing countries | DEA–Malmquist |
Kutin et al. [24] | Container terminal efficiency | 50 ASEAN container ports and terminals | DEA–CCR DEA–BCC |
Type of Indicator | Name of Indicator | Unit |
---|---|---|
Input Indicators | Number of employees (X1) | People |
Number of berths (X2) | Pcs | |
Total length of berth (X3) | Meter | |
Amount of loading/unloading equipment (X4) | Set | |
Output Indicators | Container throughput (Y1) | 10,000 TEU |
Net weight of cargo (Y2) | 10,000 tons |
Min | Max | Mean | Median | SD | |
---|---|---|---|---|---|
X1 | 54.00 | 2268.00 | 552.59 | 438.00 | 438.05 |
X2 | 2.00 | 30.00 | 5.59 | 4.00 | 4.75 |
X3 | 269.00 | 7382.00 | 1603.88 | 1090.00 | 1437.46 |
X4 | 6.00 | 327.00 | 64.20 | 44.00 | 61.84 |
Y1 | 30.46 | 1334.90 | 349.87 | 257.63 | 306.26 |
Y2 | 365.14 | 13,273.00 | 3480.30 | 2771.40 | 2893.81 |
X1 | X2 | X3 | X4 | Y1 | Y2 | |
---|---|---|---|---|---|---|
X1 | 1 | 0.708 ** | 0.827 ** | 0.869 ** | 0.852 ** | 0.761 ** |
X2 | 0.708 ** | 1 | 0.802 ** | 0.772 ** | 0.781 ** | 0.756 ** |
X3 | 0.827 ** | 0.802 ** | 1 | 0.935 ** | 0.880 ** | 0.855 ** |
X4 | 0.869 ** | 0.772 ** | 0.935 ** | 1 | 0.879 ** | 0.837 ** |
Y1 | 0.852 ** | 0.781 ** | 0.880 ** | 0.879 ** | 1 | 0.932 ** |
Y2 | 0.761 ** | 0.756 ** | 0.855 ** | 0.837 ** | 0.932 ** | 1 |
DMU | 2017 | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|---|
Dalian | 1.033 | 1.068 | 0.845 | 0.488 | 0.858 |
Dongguan | 0.608 | 0.518 | 0.620 | 0.647 | 0.598 |
Nansha | 1.307 | 1.417 | 1.387 | 0.705 | 1.204 |
Guangzhou | 0.373 | 0.365 | 0.467 | 0.588 | 0.448 |
Haigang | 1.598 | 0.722 | 1.724 | 0.938 | 1.245 |
Jinzhou | 1.025 | 1.093 | 1.015 | 0.392 | 0.881 |
Xinshidai | 0.474 | 0.281 | 0.708 | 0.574 | 0.509 |
Taipingyang | 0.270 | 1.006 | 0.377 | 0.449 | 0.525 |
Zhaoshang | 0.547 | 0.560 | 0.590 | 0.696 | 0.598 |
Meizishan | 0.486 | 0.566 | 0.486 | 0.560 | 0.524 |
Zhoushan | 0.577 | 0.547 | 0.576 | 0.678 | 0.594 |
Xiamen | 0.338 | 0.254 | 0.272 | 0.302 | 0.291 |
Xinhaida | 0.519 | 0.628 | 0.729 | 1.081 | 0.739 |
Jiujiang | 0.187 | 0.319 | 0.411 | 0.547 | 0.366 |
Guandong | 1.002 | 0.909 | 1.004 | 1.029 | 0.986 |
Yidong | 0.765 | 0.910 | 1.239 | 1.113 | 1.007 |
Zhendong | 1.016 | 0.866 | 0.922 | 1.021 | 0.956 |
Hudong | 0.702 | 0.698 | 0.699 | 0.779 | 0.720 |
Mingdong | 1.148 | 1.407 | 1.472 | 1.495 | 1.380 |
Pudong | 0.637 | 0.617 | 0.609 | 0.727 | 0.647 |
Shengdong | 1.087 | 0.857 | 0.913 | 1.004 | 0.965 |
Shekou | 0.530 | 0.549 | 0.569 | 0.616 | 0.566 |
Zhenghe | 0.877 | 1.149 | 1.080 | 1.001 | 1.027 |
Tianjin | 0.493 | 0.528 | 0.536 | 0.730 | 0.572 |
Lianmengguoji | 1.035 | 0.967 | 1.044 | 1.145 | 1.048 |
Jinyang | 0.304 | 0.371 | 0.319 | 0.364 | 0.340 |
Wuhan | 1.043 | 1.152 | 1.232 | 1.027 | 1.113 |
Yantian | 0.541 | 0.534 | 0.554 | 0.616 | 0.561 |
Yingkou | 0.933 | 0.868 | 0.644 | 0.768 | 0.803 |
Xinshiji | 1.079 | 1.085 | 0.657 | 0.775 | 0.899 |
Yongjia | 0.305 | 0.332 | 0.296 | 0.304 | 0.309 |
Hongwan | 0.408 | 0.361 | 0.338 | 0.356 | 0.366 |
Average | 0.726 | 0.734 | 0.760 | 0.735 | 0.739 |
DMU | EFFCH | TECH | PECH | SECH | TFPCH |
---|---|---|---|---|---|
Dalian | 0.844 | 1.017 | 0.948 | 0.891 | 0.859 |
Dongguan | 1.022 | 0.962 | 1 | 1.022 | 0.983 |
Nansha | 0.953 | 0.871 | 1 | 0.953 | 0.83 |
Guangzhou | 1.163 | 0.95 | 1.078 | 1.078 | 1.105 |
Haigang | 0.984 | 0.766 | 0.99 | 0.995 | 0.754 |
Jinzhou | 0.745 | 0.98 | 1 | 0.745 | 0.73 |
Xinshidai | 1.044 | 0.997 | 1 | 1.044 | 1.041 |
Taipingyang | 1.195 | 0.975 | 1 | 1.195 | 1.165 |
Zhaoshang | 1.159 | 0.877 | 1.1 | 1.053 | 1.016 |
Meizishan | 1.084 | 0.906 | 1.05 | 1.032 | 0.982 |
Zhoushan | 1.128 | 0.872 | 1.077 | 1.047 | 0.983 |
Xiamen | 0.98 | 0.932 | 1 | 0.98 | 0.913 |
Xinhaida | 1.161 | 0.874 | 1 | 1.161 | 1.015 |
Jiujiang | 1.487 | 0.905 | 1 | 1.487 | 1.345 |
Guandong | 1 | 0.985 | 1 | 1 | 0.985 |
Yidong | 1.051 | 0.961 | 1 | 1.051 | 1.01 |
Zhendong | 1 | 0.973 | 1 | 1 | 0.973 |
Hudong | 1.089 | 0.92 | 1.086 | 1.003 | 1.002 |
Mingdong | 1 | 1.017 | 1 | 1 | 1.017 |
Pudong | 1.101 | 0.885 | 1.042 | 1.056 | 0.975 |
Shengdong | 1 | 0.945 | 1 | 1 | 0.945 |
Shekou | 1.029 | 1 | 1.05 | 0.98 | 1.029 |
Zhenghe | 1.01 | 1.029 | 1 | 1.01 | 1.04 |
Tianjin | 1.113 | 0.927 | 1.059 | 1.051 | 1.032 |
Lianmengguoji | 1 | 1.042 | 1 | 1 | 1.042 |
Jinyang | 1.053 | 0.96 | 0.993 | 1.061 | 1.012 |
Wuhan | 1 | 1.031 | 1 | 1 | 1.031 |
Yantian | 1.042 | 0.975 | 1 | 1.042 | 1.015 |
Yingkou | 0.964 | 0.886 | 1 | 0.964 | 0.854 |
Xinshiji | 0.936 | 0.931 | 1 | 0.936 | 0.871 |
Yongjia | 1.002 | 0.956 | 0.957 | 1.047 | 0.957 |
Hongwan | 0.9 | 0.899 | 0.901 | 0.998 | 0.809 |
Average | 1.032 | 0.942 | 1.01 | 1.022 | 0.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, X.; Zheng, R.; Na, S.; Liu, C. Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China. Sustainability 2022, 14, 13007. https://doi.org/10.3390/su142013007
Li Z, Wang X, Zheng R, Na S, Liu C. Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China. Sustainability. 2022; 14(20):13007. https://doi.org/10.3390/su142013007
Chicago/Turabian StyleLi, Zhuyuan, Xiaolong Wang, Run Zheng, Sanggyun Na, and Chang Liu. 2022. "Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China" Sustainability 14, no. 20: 13007. https://doi.org/10.3390/su142013007
APA StyleLi, Z., Wang, X., Zheng, R., Na, S., & Liu, C. (2022). Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China. Sustainability, 14(20), 13007. https://doi.org/10.3390/su142013007